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Abstract: Neural networks (NNs) have been successfully applied to channel equalization for optical
communications. In optical fiber communications, the linear equalizer and the nonlinear equalizer
with traditional structures might be more appropriate than NNs for performing real-time digital
signal processing, owing to its much lower computational complexity. However, the optimization
algorithms of NNs are useful in many optimization problems. In this paper, we propose and
evaluate the tap estimation schemes for the equalizer with traditional structures in optical fiber
communications using the optimization algorithms commonly used in the NNs. The experimental
results show that adaptive moment estimation algorithm and batch gradient descent method perform
well in the tap estimation of equalizer. In conclusion, the optimization algorithms of NNs are useful
in the tap estimation of equalizer with traditional structures in optical communications.
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1. Introduction

In recent years, since deep learning has been applied in image recognition, natural language
processing, target tracking, recommendation system, and so on, it is becoming one of the most popular
spots for academic research and industrial application [1]. Neural networks (NNs), as an important
part of deep learning architectures, can approximate complex nonlinear functions. It turns out that
NNs have great potential for solving some intricate problems that cannot be described by analytical
methods easily [2]. Research on NNs for optical communication systems has been increasingly popular
and has started to be successfully used in many optical communication systems. In coherent optical
orthogonal frequency division multiplexing systems, NNs have been tried to mitigate the nonlinear
propagation effects [3,4]. Also, NNs have been implemented in intensity modulation and direct
detection (IM/DD) systems to overcome both the linear and nonlinear distortions. To reach 50 Gb/s
four level pulse amplitude modulations (PAM4) systems over 10 GHz devices, NN was used to
optimize the equalization in the receiver side [5]. 32 GBaud and 40 Gbaud PAM8 IM/DD systems with
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NN equalizers were demonstrated [6,7]. NN has been considered to be a good solution for eliminating
the channel distortion in other communication systems. NN-based equalizers for indoor optical
wireless communications [8], 170 Mb/s visible light communications system [9] and modulation
format identification in heterogeneous fiber-optic networks were proposed [10]. As a promising type
of recurrent neural network, reservoir computing in all-optical implementation enables high-speed
signal processing and can set the framework for a new generation of hardware for computing and
future optical networks [11].

Although the use of NNs can often bring good results, the high computational complexity of
NNs is a problem that cannot be ignored. Generally speaking, the computational complexity of simple
multilayer perceptron NN-based equalizers is higher than that of the traditional linear feed-forward
equalizer (FFE) and even the Volterra nonlinear equalizer [7,12], not to mention the NNs with more
complex structures, such as long short-term memory NN or convolutional NN. The cost of training
a NN is very high in terms of computational complexity and size of the training set, which might
be not well-suited for some communication systems to perform real-time digital signal processing.
Furthermore, there are dangers of overestimating the performance gain when applying NN in systems
with pseudo-random bit sequences (PRBS) or with limited memory depths [13]. The use of PRBS
may lead to overestimation of the NN performance. However, this issue is beyond the scope of this
paper, so it is not discussed here. There is a trade-off between the accuracy and the number of training
samples used in the training process for NNs [14]. Since it is believed that more data beats better
algorithm [15], scientists in the field of artificial intelligence always use large-scale training data sets to
train NNs. As a result, many efficient optimization algorithms have been proposed to ensure fast and
stable convergence of minimizing the error function of the NNs models [16–18].

Many problems in many fields of science and engineering can be converted into the
optimization problems of maximizing or minimizing objective functions by adjusting the parameters.
Gradient-based optimization algorithms are the most commonly used optimization methods in these
fields but not the exclusive tools of NN research. The optimization algorithms mainly include the
first- and second-order optimization algorithms [19]. However, there are two main limitations in the
second-order optimization algorithm, such as Newton’s method and its variants. One limitation of
the second-order optimization algorithms is that the cost function must be smooth, and the second
derivatives are available or numerical approximation is achievable. Another limitation is that the
Hessian matrix must be positive definite, and its dimension had better not be too large, taking
the computational load into consideration [20]. Thus, the first-order gradient-based optimization
algorithms, i.e., gradient descent and its variants are widely used in deep learning problems [21].

If the first partial derivatives of the cost function are available with respect to parameters,
the gradient descent method is a very effective optimization method. To properly adjust the parameters,
in every training iteration, the optimization algorithm calculates a gradient vector. Then the parameters
is changed in the opposite direction of the gradient vector. It is worth noting that the commonly
used tap estimation algorithms in time-domain equalizers (TDE) with the traditional structures, i.e.,
least mean square (LMS) and recursive least square algorithms, are based on first-order gradient of
the cost function. Therefore, it is very possible to optimize the TDE with traditional structure by
using gradient descent and its variants. In optical communications, especially short-reach optical
communications, the distortion models are almost certain. The traditional TDE have been widely
applied in optical communication systems and achieved good performance. Therefore, NNs are not
always required in some communication systems with deterministic distortion models, taking the cost
of training into consideration. In this paper, we propose and evaluate the tap estimation schemes for the
equalizer with traditional structures in optical fiber communications using the optimization algorithms
commonly used in the NNs. The experimental results show that adaptive moment estimation algorithm
and batch gradient descent method perform well in the tap estimation of equalizer. In conclusion,
the optimization algorithms of NNs are useful in the tap estimation of equalizer with traditional
structures in optical communications.
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The rest of this paper is organized as follows. In Section 2, we first review the mathematical model
of FFE. Section 3 presents the principle of the proposed tap estimation schemes using optimization
algorithms of NNs. The experimental setup is described in Section 4 and the detailed results and
discussions are provided in Section 5. Finally, Section 6 concludes the paper.

2. Optimization Problems of Equalizers with Traditional Structures

Since linear transfer function can be generated by the FFE with the feature of easy implementation,
it played a very significant role in compensating the channel impairments [22,23]. As depicted in
Figure 1, the optimal tap coefficients are estimated by the optimization algorithms. As an application
of stochastic gradient descent (SGD) method , LMS algorithm aims to minimize the current square
error between the training sample yt and output of the equalizer st, which can be expressed as [24]

minimize
ωi

(
N

∑
i=1

xj−i+1 ×ωi − yt)
2 (1)

where N is the number of taps and ωi is the tap coefficient, for i = 1, 2, ..., N. In addition, xj is the
received signal.

Figure 1. Schematic of an FFE with N taps.

3. Optimization Algorithms for Equalizers with Traditional Structures

3.1. BGD Method

There are three variants of gradient descent, including SGD, batch gradient descent (BGD) and
mini-batch gradient descent (Mini-BGD) [21]. The main difference is that they use different number of
training sample every training iteration. SGD updates the gradient of error function with respect to the
only one training sample, while BGD uses all training samples to perform the parameters updating
every iteration. To solve the problem of sharp increase in computation by using all samples every
iteration in BGD, partial training samples are used in Mini-BGD every iteration. However, different
from deep learning training, which requires large-scale training set, in practical communication
systems, it is necessary to use as few training samples as possible. As a result, there is no need to adopt
Mini-BGD but using BGD directly with a relatively small batch size. BGD method aims to minimize
the mean square error (MSE) of all training samples, which can be expressed as

minimize
ωi

1
M− N + 1

M

∑
j=N

(
N

∑
i=1

xj−i+1 ×ωi − yt)
2 (2)

where M is the total number of training samples. BGD method using gradients for all training samples
to perform just one update of tap coefficients and thus it is a global optimization algorithm. For better
convergence, the first N − 1 training samples are discarded [24]. Matrix form of Equation (2) can be
express as

minimize
ω

1
M− N + 1

(Rω− Y)T(Rω− Y) (3)
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where ω = [ ω1 ω2 . . . ωN ]T is the tap coefficient vector of the FFE and Y =

[ yN yN+1 . . . yM ]T is the desired training vector. The (M − N + 1)-by-N training matrix R
can be expressed as

R =


xN xN−1 . . . x1

xN+1 xN . . . x2
...

...
. . .

...
xM xM−1 . . . xM−N+1

 (4)

where xj are the received training samples, for j = 1, 2, ..., M. Gradient of MSE with respect with tap
coefficient can be calculated as

g(ω) =
2

M− N + 1
RT(Rω− Y). (5)

BGD method updates tap coefficient vector ω in the opposite direction of the gradient, which can
be expressed as

ωt = ωt−1 − θ × g(ωt−1) (6)

where θ is a positive step size and subscript t denotes t-th iteration.
NN researchers have long realized the fact that step size is one of the most difficult

hyper-parameters to determine but it is critical to model performance and training costs. Then the
following three adaptive step size optimization algorithms are successively proposed for NNs.
These algorithms can also be used in tap estimation of equalizers with traditional structures.

3.2. AdaGrad

AdaGrad optimization algorithm scales the step sizes of all tap coefficients inversely proportional
to cumulative squared gradient [16]. The cumulative squared gradient can be expressed as

rt = rt−1 + g(ωt−1)� g(ωt−1) (7)

where the cumulative squared gradient is initialized as N-by-1 zeros vector and � denotes the
Hadamard product. Gradient can be calculated from Equation (5) and tap coefficients are updated by

ωt = ωt−1 −
θ

δ +
√

rt−1
� g(ωt−1) (8)

where a small value δ is used for numerical stability.

3.3. RMSProp

RMSprop is an unpublished, adaptive learning rate optimization algorithm [17]. By changing the
cumulative gradient into an exponentially weighted moving average, RMSProp algorithm is derived
from AdaGrad algorithm. Compared to AdaGrad, a new hyper-parameter ρ is added to control the
scale of the moving average, which can be expressed as

rt = ρ× rt−1 + (1− ρ)× g(ωt−1)� g(ωt−1). (9)

Tap coefficients are also updated as by Equation (8).
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3.4. Adam

Adaptive moment estimation (Adam), obtains individual adaptive step sizes for each tap
coefficients from estimates of first and second moments of the gradients [18]. The biased first and
second moment estimates mt and vt of g(ωt) are initialized as zeros vector, which are updated as

mt = β1 ×mt−1 + (1− β1)× g(ωt), (10)

vt = β2 × vt−1 + (1− β2)× g(ωt)� g(ωt) (11)

where β1 and β2 are set to 0.9 and 0.999, respectively. However, they are biased towards zero, especially
during the first few steps. Bias-corrected first and second moment estimates counteract biases,

m̂t = mt/
(
1− βt

1
)

, (12)

v̂t = vt/
(
1− βt

2
)

. (13)

Tap coefficients are also updated by

ωt = ωt−1 −
θ

δ +
√

v̂t
� m̂t. (14)

4. Experimental Setups

The performance of the optimization algorithms of NNs that introduced to FFE are investigated
by a 129-Gbit/s optical PAM8 system. The Figure 2 shows the experimental setups. At the transmitter,
the input bits are first modulated to PAM8 symbols. After added 2000 training samples and 120
synchronized tokens, the digital PAM8 frames are uploaded into a digital-to-analog converter (DAC)
with 86-GSa/s sampling rate and 16-GHz 3-dB bandwidth to generate electrical PAM8 frames. There
are 82,360 PAM8 symbols per frames and the symbol rate of electrical PAM8 frames is 43 GBaud.
A 40-Gbit/s electro-absorption integrated laser modulator (EML) modulates the electrical PAM8 frames
to generate the optical PAM8 frames. Next, the generated optical PAM8 signals are launched into
2-km standard single-mode fiber (SSMF). At the receiver, received optical power (ROP) of the signals
is adjusted by a variable optical attenuator (VOA). Then the received optical signals are converted
into electrical signals by a photodiode (PD). The electrical signals are converted into digital signals
by a real-time oscilloscope (RTO) with sampling rate of 80 GSa/s and 3-dB bandwidth of 36 GHz.
Finally, off-line processing is implemented to deal with the digital signals, including re-sampling,
synchronization, equalization using the FFE with optimization algorithms of NNs, post filter, maximum
likelihood sequence detection (MLSD), PAM8 demodulation. The tap number of FFE is set to 101.
After equalization, the high-frequency noise is amplified, which greatly degrades the performance of
the system. So, a two-tap post filter is adopted to suppress the amplified high-frequency noise [25,26].
Furthermore, a known ISI is introduced by the post filter unavoidably, but it can be eliminated by
MLSD based on Viterbi algorithm [27,28].

Figure 2. Block diagram of 129-Gbit/s optical PAM8 system. TS, training samples; DAC,
digital-to-analog converter; EML, electro-absorption modulator integrated laser; SSMF, standard
single-mode fiber; VOA, variable optical attenuator; PD, photodiode; RTO, real-time oscilloscope;
Sync, Synchronization.
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5. Results and Discussion

In this section, experiment results based on the setup described above are presented and the
discussions are also provided. Figure 3 depicts the MSE curves of optimization algorithms versus
iteration at ROP of −1 dBm after 2-km SSMF transmission. The iteration numbers of all these
optimization algorithms are 120 times. It is clear that after 120 iteration, the MSE curves of using BGD
method and Adam algorithm is lower than those of AdaGrad and RMSProp algorithms, which need
more iterations to minimize the MSE. The MSE curve of BGD method drops rapidly and steadily
because BGD method updates the tap coefficients at the gradient direction. Although the MSE curve
of Adam algorithm fluctuates, it drops more quickly. The reason is that it does not update the tap
coefficients at the gradient direction but it computes adaptive step size for different tap coefficients
from estimates of first and second moments of gradients. It is obvious that tap estimation of FFE using
Adam algorithm converges to a lower value of MSE than the other three algorithms. As can be seen
from the insets, the diagrams of using BGD method and Adam algorithm are slightly clearer than those
of using AdaGrad and RMSProp algorithms, which indicates that BGD method and Adam algorithm
may be more effective in tap estimation of FFE.

Figure 3. MSE curves of different optimization algorithms applied to 129-Gbit/s optical PAM8 system at
ROP of −1 dBm after 2-km SSMF transmission. (a) BGD method; (b) AdaGrad algorithm; (c) RMSProp
algorithm; and (d) Adam algorithm. Insets are eye diagrams of the equalized signals using the
corresponding optimization algorithm.

The bit error rate (BER) performance of 129-Gbit/s PAM8 system versus ROPs at back-to-back
(BTB) and 2-km transmission are shown in Figure 4, which can indicate the effectiveness of applying
the optimization algorithms of NNs to tap estimation of traditional TDE. As shown in Figure 4a,
after BTB transmission, 129-Gbit/s PAM8 system using the above four optimization algorithms have
almost the same BER performance. At ROP of −5 dBm, the BER performance is below 7% forward
error correction (FEC) limit. Moreover, after 2-km transmission, the BER performance of the system
using AdaGrad and RMSProp algorithms are also almost same and below 7% FEC limit when the ROP
is greater than or equal to −2 dBm. However, the BER performance of using BGD method is better
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than those of using AdaGrad and RMSProp algorithms. Although it is believed that AdaGrad and
RMSProp algorithms are effective and practical in deep learning [29], for tap estimation of equalizer in
the communication system, it seems that BGD method is better than them in terms of BER performance
and computational complexity. The reason may be that these two algorithms are proposed to solve the
sparse gradients of the NN and are not particularly superior in the traditional equalizer with simple
structure [18]. It is empirically shown that Adam algorithm is usually better than other optimization
algorithms in deep learning [18]. In this experiment, Adam also performs better than the other three
optimization algorithms. The BER performance of using Adam algorithm is slightly better than that
of BGD method and the ROP of using Adam algorithm is more than 1 dB lower than those of using
AdaGrad and RMSProp algorithms at the 7% FEC limit. Therefore, the net rate of the system is
117 Gbit/s (3× 43× 80,240/82,360/(1 + 7%) ≈ 117 Gbit/s).

Figure 4. BER performance of 129-Gbit/s PAM8 system versus ROPs at BTB (a) and 2-km transmission
(b) with FFE, post filter, and MLSD. FFE employs BGD (blue triangle), AdaGrad (green rhombus),
RMSProp (orange square) and Adam (purple circle), respectively.

Next, the robustness of applying these algorithms to tap estimation of traditional TDE is going to
be discussed. Just like LMS algorithm, trial and error is usually required to determine the effective
step size of these optimization algorithms, to lead to satisfaction of fast and stable convergence of
the tap estimation [30]. As a result, the range of effective step size plays an important role in the
robustness of an optimization algorithm. In a general way, the wider the effective step size range
of an optimization algorithm is, the better the robustness of the algorithm is. As shown in Figure 5,
different optimization algorithms have different effective step sizes and ranges. In this experiment,
for BGD method, AdaGrad, RMSProp, and Adam algorithms, the optimal step sizes are about 0.013,
0.3, 0.01 and 0.1, respectively. In general, when the step size is too large, they may not converge or
even diverge; but when the step size is too small, they require a lot of iteration [29]. The effective
ranges of step size of these four algorithms are respectively about 0.01, 0.87, 0.03 and 7.50. It is obvious
that the effective step size range of BGD method is significantly narrower than that of the other three
algorithms, because they are adaptive step size algorithms, which improve the robustness of the
algorithms at the cost of increasing computational complexity. It is worth noting that Adam algorithm
not only has the best BER performance, but also has the widest effective step size range, which means
that it is more robust. Their effective ranges of step size in ascending order are as follows, BGD <

RMSProp < AdaGrad� Adam.
Finally, we analyze the computational complexity per iteration of the above optimization

algorithms using in tap estimation. As shown in Table 1, BGD method has the lowest computational
complexity, i.e., the minimum number of addition (Add.), multiplication (Mul.) operations and
square root (Sqrt.) calculations. Although Adam algorithm has the highest computational complexity
compared to the other three algorithms, the difference among them is not obvious. Their complexity in
ascending order are as follows, BGD < AdaGrad < RMSProp < Adam.
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Figure 5. BER versus step size for 129-Gbit/s optical PAM8 system with different optimization
algorithms at ROP of −1 dBm after 2-km SSMF transmission. (a) BGD method; (b) AdaGrad algorithm;
(c) RMSprop algorithm; and (d) Adam algorithm.

Table 1. Computational complexity per iteration of optimization algorithms of NNs introduced to tap
estimation of traditional equalizer.

BGD AdaGrad RMSProp Adam

Add. (2N − 1)(M− N + 1) (2N − 1)(M− N + 1) +N (2N − 1)(M− N + 1) +N (2N − 1)(M− N + 1) +2N

Mul. N[2(M− N + 1) + 1] N[2(M− N + 1) + 3] N[2(M− N + 1) + 5] N[2(M− N + 1) + 9]

Sqrt. 0 N N N

6. Conclusions

In this paper, we propose and evaluate the tap estimation schemes for the traditional TDE
in optical fiber communications using the optimization algorithms commonly used in the NNs.
The experimental results show that the optimization algorithms of NNs are also useful in tap estimation
of optical communication system. BER performance of 129-Gbit/s PAM8 optical communication
system adopting BGD method, AdaGrad, RMSProp, and Adam algorithms are all below 3.8× 10−3.
It is also shown that Adam algorithm and BGD method perform better in the tap estimation of
equalizer. Although Adam algorithm has the highest computational complexity compared to the
other three algorithms, its performance is best and it is most robust with the effective step size
range of ∼7.50. BGD method performs better than AdaGrad and RMSProp algorithms and it is
more straightforward to implement, but it is less robust with the effective step size range of ∼0.01.
In conclusion, the optimization algorithms of NNs are useful in the tap estimation of equalizer with
traditional structures in optical communications.
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