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Abstract: In recent years, facial expression analysis and recognition (FER) have emerged as an active
research topic with applications in several different areas, including the human-computer interaction
domain. Solutions based on 2D models are not entirely satisfactory for real-world applications, as they
present some problems of pose variations and illumination related to the nature of the data. Thanks to
technological development, 3D facial data, both still images and video sequences, have become
increasingly used to improve the accuracy of FER systems. Despite the advance in 3D algorithms,
these solutions still have some drawbacks that make pure three-dimensional techniques convenient
only for a set of specific applications; a viable solution to overcome such limitations is adopting
a multimodal 2D+3D analysis. In this paper, we analyze the limits and strengths of traditional and
deep-learning FER techniques, intending to provide the research community an overview of the
results obtained looking to the next future. Furthermore, we describe in detail the most used databases
to address the problem of facial expressions and emotions, highlighting the results obtained by
the various authors. The different techniques used are compared, and some conclusions are drawn
concerning the best recognition rates achieved.

Keywords: facial expression recognition; 3D face analysis; deep learning-based FER; 2D/3D comparison;
facial action coding system; action units

1. Introduction to Facial Expression Recognition (FER)

Facial Expression Recognition is a computer-based technology that uses mathematical algorithms
to analyze faces in images or video. The facial analysis is developed in three primary phases:
face detection, facial landmark detection, and facial expression and emotion classification. The last
step analyzes the movement of facial features and classifies them into emotion or attitude categories,
also taking the name of Facial Emotion Recognition, a topic of emotion recognition that involves the
analysis of human facial expressions in multimodal forms. More generally, emotion recognition is the
automatic processing of human emotions, most typically from facial expressions as well as from verbal
expressions, but also body movement and gestures. The acronym FER, in literature, often refers to
both facial expression recognition and facial emotion recognition [1]. In this paper, it stands for Facial
Expression Recognition, the recognition of emotional states based on facial expressions.

Facial expressions play an important role in expressing internal emotions and intentions and are
one of the most significant non-verbal ways in daily emotional communication. Nowadays, there is
a considerable demand for improving performance in facial expression recognition, due to the broad
set of its potential applications, such as surveillance, security, and communication, even in real-time.

The majority of face recognition research and commercial face recognition systems typically use
intensity images of the face (i.e., 2D texture data), but other approaches, which are becoming more and
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more common, consist of using 3D models of the face (i.e., 3D shapes) or both 2D and 3D face data
(multi-modal FER) [2].

Although significant progress has been made, most existing algorithms that use 2D features
fail to solve the challenging problems of illumination and pose variations, naturally overcome by
3D approaches. For this reason, and thanks to the rapid technological development of 3D scanning,
3D FER has attracted more and more attention. A promising research direction to meet the requirements
of real applications is the multi-modal 2D+3D FER, as it exists a considerable complementarity
among different modalities. Data modality is not the only possible classification. In general, it is
possible to distinguish two other perspectives to classify existing FER methods: expression granularity
and temporal dynamics. From the first one, they are divided into recognition of prototypical facial
expression (basic emotions) and detection of facial Action Units; from the second one, they are classified
into still images and image sequences.

In contrast to traditional approaches, in recent years, deep-learning-based algorithms have been
used for feature extraction, classification, and recognition tasks. Deep learning architectures, such as
the Convolutional Neural Networks (CNN) and the Recurrent Neural Networks (RNN), have been
applied to the field of computer vision, yielding state-of-the-art results in many studies with the
availability of big data, including object recognition, face recognition, and FER. One of the main
advantages of CNN is to enable “end-to-end” learning directly from input images, removing altogether
or highly reducing the dependence on pre-processing techniques [3].

The study of facial expressions and emotions is a topic that has interested in the research community
for several years. In the absence of a uniquely comprehensive and widely accepted theory, multiple
approaches for facial expression recognition have emerged, and extensive and detailed surveys of
FER focusing on traditional approaches research are given in [4–7]; the reader is referred to [8,9] for
3D and [10,11] for 2D earlier approaches. Recently, deep learning-based FER approaches emerged,
and have been surveyed in [1,12–14].

This study aims to highlight the advantages and drawbacks of 3D methods over 2D methods,
commonly thought to have the potential for greater recognition accuracy and robustness. Compared
to previous works focused on this topic, our survey offers a newcomer the very current scenario
and the best outcomes in the whole facial expression recognition field. We present and analyze both
traditional and deep-learning available methods for static and dynamic 3D FER, particularly focus on
feature-based algorithms. Here, we mainly focus on facial landmarks and feature extraction and the
main differences between 2D and 3D approaches.

After this brief overview of the possible types of classification of existing 3D FER algorithms,
the remainder of the paper is structured as follows. Section 2 focuses on basic emotions and action
units, and some models of emotion classification are presented. Section 3 gives an overview of
the conventional and deep learning-based methods for 2D, 3D, and multimodal FER, keeping the
distinction between feature-based and model-based approaches. Moreover, two exhaustive tables
are used to outline and organize the articles surveyed. Contributions have been chosen among the
years 2010 and 2019, to provide the most up-to-date view of the latest researches. Section 4 deals with
facial animation, discussing some critical references. Section 5 presents a summary of available facial
databases mainly used in this research field. Sections 6 and 7 investigated, respectively, the importance
of facial landmarks and the role of time in FER algorithms. In Section 8, the results of the main works of
the last decade on the three-dimensional recognition of facial expressions are reported, divided between
basic emotions and action units. Finally, Section 9 presents a comparison between the advantages and
the drawbacks of the 2D and 3D algorithms. It also mentions how some research groups have positively
addressed these disadvantages and what challenges are still open for the future. Section 10 concludes
the work and summarizes the obtained results to identify the best characteristics of an excellent
automatic facial expression recognition system.
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2. Basic Emotions and Action Units

Ekman [15], in 1971, defined a set of six emotions that are accepted as universal: anger, disgust,
fear, happiness, sadness, and surprise. Ekman and Friesen named this group the basic emotions,
which are universally recognized regardless of language and culture and cannot be decomposed into
smaller semantic labels. The seven characteristics of emotions identified by Ekman et al. [16] are:
“presence in other primates, distinctive physiology, universal commonalities in antecedent events,
quick onset, brief duration, automatic appraisal, and unbidden occurrence”. Most research studies on
FER have been limited to these six “cardinal” categories of emotions. However, humans make use of
a much fuller range of facial expressions for everyday communication than these six, some are even
combinations of these basic ones [17]. Martinez et al. state that “there are approximately 7000 different
expressions that people frequently use in everyday life” [18]. Furthermore, some of the expressions
can have multiple interpretations depending on the context in which they are shown [19].

Another possibility for studying facial expressions is the use of action units. An action unit (AU) is
the action of muscles typically seen when an individual produces facial expressions. Defined by Ekman
and Friesen in 1978 [20], the Facial Action Coding System (FACS) is given by a set of AUs to classify
the movements of a distinct muscle or a muscle group activation of facial expression. Facial features
are often divided into two groups, the upper face and the lower face, since facial actions in the upper
part have only small interactions with facial motion in the lower one, and vice versa. The parameters
associated with the upper face features describe the motion and the shape of the eyes, the brows,
and the check. On the other hand, the parameters associated with the lower face features describe the
motion and the shape of the lips, and the furrows in the nasolabial and nasal root regions [21]. At the
beginning, they divided the muscular activity in 46 AUs; although the number is relatively small,
more than 7000 combinations of action units have been observed [22], allowing to describe the details
of facial expression. For example, AU 12 (lip corner puller) defines the contraction of the zygomatic
major muscle, typically observed in feelings of happiness, together with AU 25 (lips part). The anger
expression, on the other hand, is characterized by AU 4, AU 7 and AU 24, which cause the lowering of
the eyebrows, the tension of the eyelids and the pressure of the lips respectively. Table 1 summarizes
the action units for Ekman’s six universal emotions.

Table 1. Prototypical action units (AUs) observed in each basic emotion category [1,17].

Emotion 1 Action Units 2 Description 3

Anger 4, 7, 24 Brow lowerer, Lid tightener, Lip pressor
Disgust 9, 10, 17 Nose wrinkle, Upper lip raiser, Chir raiser

Fear 1, 4, 20, 25 Inner brow raiser, Brow lowerer, Lip stretcher, Lips part
Happiness 12, 25 Lip corner puller, Lips part

Sadness 4, 15 Brow lowerer, Lip corner depressor
Surprise 1, 2, 25, 26 Inner brow raiser, Outer brow raiser, Lips part, Jaw drop
1 Ekman’s six basic emotions. 2 Number of corresponding action units, and 3 related description.

The emotion categories can be classified into two groups: basic emotions, described above, and
compound emotions, constructed as a combination of two basic emotion categories. Some examples of
compound emotions most typically expressed by people are: happily surprised, sadly fearful, fearfully
angry, and disgustedly surprised. It is important to note that often in the categories of composed
emotions, there is a conflict between the action units because it is impossible to perform some muscular
movements simultaneously, such as lip pressor (AU 24) and lips part (AU25) in happily surprised.
In total, the researchers mapped twenty-one different facial emotions from Ekman’s six basic emotions,
plus the neutral expression [17].

However, there are other emotions, such as guilt, jealousy, pride, and shame that people may
experience in everyday lives, but do not tend to show clear and distinct expressions. Ekman investigated
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them at the beginning of his studies and proposed an expanded list of basic emotions, including a range
of positive and negative emotions that are not all encoded in facial muscles.

Basic emotion classification is, still today, a more popular research topic than automatic AU
recognition, even though the latter is independent of interpretation and more suitable for describing
spontaneous facial behaviors [11]. At first, this disparity in favor of basic emotion classification [23–30]
at the expense of AU recognition [31–33] in both 2D and 3D domains, partly due to lack of FACS-codes
databases. The Bosphorus is the first, and the only, 3D publicly available database that contains AU
annotations and provides facial action coding. Sun et al. [31] proposed an AU recognition system
manually labeling eight AUs in the BU-4DFE database, but their annotations are private.

Returning on the basic emotion method, in 2014 Jack et al. [34] from the University of Glasgow
reported new research, published in the journal Current Biology, intimating that there are only four
basic emotions. They reached this conclusion by studying the facial muscles involved in every emotion,
as well as the activation over time of each of them. The results obtained stated that while happiness
and sadness are distinct over time, fear and surprise share some common signals, like wide-open eyes.
Similarly, anger and disgust share the wrinkled nose.

Other scientists have developed the theme of basic emotions. For example, Plutchik [35,36]
developed a new model, called the “wheel of emotions”, where basic emotions can be expressed at
different intensities and can mix to form several emotions, as shown in Figure 1. Plutchik’s eight basic
emotions here called primary are joy, trust, fear, surprise, sadness, anticipation, anger, and disgust.
Additional emotions exist, like aggressiveness, optimism, love and submission: these are all seen as
a combination of primary emotions.
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Figure 1. Wheel of emotions.

Russell [37,38] developed the Circumplex Model of Affect, presented in Figure 2. It is a circular
model divided into quadrants, to show the level of valence and arousal of emotional states. The x-axis
represents the continuum between pleasant and unpleasant emotions, the y-axis represents the
continuum between high and low arousal emotions, while the center of the circle represents a neutral
valence and a medium level of arousal.

Another theory that has gained notoriety is Parrott’s approach [39], in which he identified over
100 emotions and conceptualized them as a tree-structured list, as seen from Figure 3. The first layer is
composed of six primary emotions (love, joy, surprise, anger, sadness, and fear) that can be branched
out into different forms of feeling, and the secondary emotions are the derivation of the primary ones
instead of being a combination of them. Some of these emotions were not categorized by human
expression, but rather, emotional states.
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In recent years, some research groups have tried to enlarge the number of emotions and facial
expressions considered, testing their algorithm not only on basic emotions. For example, Fabiano et al. [40]
consider in their study also embarrassment, nervousness, and pain. Zhang et al. [41,42] add to these
expressions also startle, whereas Wei and Jia [43] include yawn. Others, on the contrary, have chosen
to focus on a reduced set of these basic facial expressions, like Le et al. [44] who test their algorithm
only on happiness, sadness, and surprise, or Sandbach et al. [45,46] whose algorithm works on anger,
happiness and surprise emotions. An algorithm that works only on a small group of facial expressions
has limited capabilities but can be useful for particular application fields. An in-depth analysis of the
main works that use basic emotions or action units, with their respective recognition rates, is presented
in Section 7, both for traditional and deep learning approaches.
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3. Conventional and Deep Learning-Based Approaches

In this section, the main traditional methods for 3D facial expression recognition are presented,
comparing feature-based, model-based, and multi-modal algorithms. Next, the leading deep learning
techniques applied to FER for feature extraction and classification are described, distinguishing between
2D and 3D.

3.1. Feature-Based VS Model-Based Algorithms

Existing conventional approaches for FER based on 3D static data can be categorized into
feature-based algorithms and model-based ones. The first category focuses on the extraction, directly
from the input data, of facial surface geometric information such as curvature, spatial relations between
pairs of interest landmarks (Euclidean and Geodetic distances), gradient and local shape. Features
are usually calculated on the region surrounding principal facial landmarks or on the mouth and
eyes that inherently contain essential information for emotion recognition. These key features that
are considered closely related to expression categories, in order to perform FER are fed to various
classifiers, as well as Support-Vector Machines (SVM) [47–51], Adaboost, k-Nearest Neighbors (k-NN),
Linear Discriminant Analysis (LDA), Modified Principal Component Analysis (PCA), Hidden Markov
Model (HMM) [44–46], Random Forest [52] or Neural Networks [51,53,54].

Feature-based methods are straightforward, but present two main drawbacks. First of all, most of
these kinds of approach need a set of correctly located landmarks for feature extraction, an additional
step of the process. If until a few years ago it could be considered a difficult task in real-world
applications because it required the manual localization of landmarks for feature localization or
surface registration, to date this step has been automated, as recently reported by Zeng [55] and
Li [56]. Moreover, the performance of the model is directly related to the discriminative power of facial
features adopted instead of shapes. Most of the works found in literature make use of the landmarks
manually labeled on the BU-3DFE or Bosphorus dataset. Experiments have proven their excellent
performance in recognizing universal expressions, but most of the features used have not yet shown
enough discriminative power for distinguishing subtle facial AUs.

Thanks to the technological development in imaging and scanning, nowadays it is possible to
capture 3D scans and extract geometric characteristics from certain regions around facial landmarks.
Examples of some popular expression features are the distances between 3D facial landmarks [24,57–59],
3D facial curves [60], distances between locally extracted surface patches [56], facial geometry images
and normal maps [61]. Another possible technique exploits 3D face descriptors, which derive from
depth maps by using mathematical operators: first principal curvature, shape index, mean curvature,
curvedness, etc. Descriptors are presented and fully explained in [62,63].

Table 2 gives a comparison of selected 3D FER algorithms that use facial features to perform
expressions recognition. The works are listed chronologically by year of publication, and alphabetically
by author.

The model-based methods, on the other hand, make use of a generic face model created using the
neutral expression to determine emotions by measuring the feature vector formed by the coefficient of
shape deformation. This approach needs to bring into correspondence the tracking model to 3D face
scans by means of a registration step.

Zhao et al. [30] presented an automatic 3D FER approach to perform expression prediction by
combining a Bayesian Belief Net (BBN) and Statistical Facial Feature Models (SFAM). They tested
the developed automatic method on the BU-3DFE database, applying the SFAM for the automatic
recognition of the six universal expressions reaching an average recognition rate of over 82%. In [64],
Chen et al. proposed a real-time 3D model-based emotion recognition method. The 3D model of
the face, which gives essential clues for improving sturdiness and allows managing large head
rotations, rapid head movements, and partial facial occlusions, is restored by 2D images. More recently,
Fabiano et al. [40], in 2018 developed a novel method for 3D facial expression recognition based on
a statistical shape model with global and local constraints, showing that the combination of the
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global shape of the face, along with local shape index-based information can be used to recognize
a range of expressions, including the six basic emotions. The proposed method outperformed the
state-of-the-art results achieving a classification accuracy of 99.99% on non-spontaneous data and
99.69% on spontaneous data (BP4D database). Zhen et al. [65,66] presented in their papers a novel
approach to study FER problem based on the Muscular Movement Model (MMM) by combining
the advantages of both feature-based and model-based methods. They formed without any manual
landmark 11 muscle regions, each of which described by a certain number of geometric features
(e.g., coordinate, normal and shape index) to capture shape characteristics. A genetic algorithm learns
the weights of the several sections, and SVM and HMM classifiers are used for expression prediction
in 3D and 4D FER, respectively.

Table 3 gives a comparison of selected 3D FER algorithms that use face model technique to perform
expressions recognition. The works are listed chronologically by year of publication, and alphabetically
by author.

3.2. Multi-Modal Algorithms Using 2D and 3D Data

Algorithms that combine results from 2D and 3D data did not appear until about the early 2000s.
Up to date, in this area, the most straightforward approaches use combining the features obtained
independently from the bi-dimensional or three-dimensional methods, such as texture information,
landmarks location, facial shapes, and curvature, for recognizing expressions and measuring their
intensity [12]. Experiments show that merging features obtained in different modalities helps to catch
the general characteristics of facial deformation and to enhance recognition accuracy, even though the
texture information is affected by the illumination and pose variations.
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Table 2. Feature-based algorithms.

Author Database 1 2D 2 Dynamic 3 FLs 4 Method 5 Expressions 6 Highlights

Berretti et al. [67] BU-3DFE No No 20 man. SIFT descriptors + SVM 6 BE The neutral scans are not used

Maalej et al. [60] BU-3DFE No No 68 man. Curves and geodesic distance
+ SVM 6 BE

Curves used to capture the
deformation on different faces

under different expressions

Savran et al. [33] Bosphorus Yes No Not used ROC curves 25 AUs 3D performs better for lower face
AUs and low-intensity AUs

Soyel and Demirel
[27] BU-3DFE No No 11 man. Fisher criterion + Neural

Network 6 BE Pose-invariant algorithm

Tsalakanid and
Malassiotis [68] Private Yes Yes 81 aut. Geometry and curvature

features 5-11 AUs 2D+3D images recorded in
real-time

Venkatesh et al. [69] BU-3DFE No No Not used Spectral flow matrices as
features 6 BE No manual intervention or

Features selection step
Berretti et al. [70] BU-3DFE No No Aut. SIFT feature + SVM 6 BE Completely automatic approach

Le et al. [44] BU-4DFE No Yes Not used Facial Level Curves + Hidden
Markov Model

3 (happiness, sadness
and surprise) Parallelizable algorithm

Li et al. [61] BU-3DFE No No 60 man. HoG and HoS + SVM 6 BE Local shape descriptors are used

Sandbach et al. [45] BU-4DFE No Yes Not used 3D facial geometry + Hidden
Markov Model

3 (anger, happiness
and surprise) Fully automatic system

Vretos et al. [71] BU-3DFE and
Bosphorus Yes No Not used Zernike moments assures 6 BE Real-time

Drira et al. [52] BU-4DFE Yes Yes Not used DVF + Random Forest 6 BE Temporal analysis of facial
expressions

Li et al. [72] BU-3DFE No No Not used Multi-Scale Local Normal
Patterns + SimpleMKL 6 BE Fully automatic approach

Rabiu et al. [73] BU-3DFE and
UPM-3DFE No No 32 man. Minimum redundancy –

maximum relevance + SVM 6 BE Person and gender independent

Sandbach et al. [46] BU-4DFE No Yes -
Motion-based + Gentle Boost
classifier and Hidden Markov

Model
6 BE Temporal analysis

Sandbach et al. [74] Bosphorus and
D3DFACS No Yes 6 man. Depth map + APDI + SVM 22 AUs Temporal analysis

Lemaire et al. [75] BU-3DFE No No Not used Differential Mean Curvature
Maps + Multiclass-SVM 6 BE Face normalization step

Zeng et al. [55] BU-3DFE Yes No 3 aut. CFI and MCI + 2D texture
descriptors 6 BE Fully automatic
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Table 2. Cont.

Author Database 1 2D 2 Dynamic 3 FLs 4 Method 5 Expressions 6 Highlights

Zhang et al. [41] BP4D No Yes Not used HMM 6 BE Spontaneous expression data

Hayat and
Bennamoun [76] BU4DFE Yes Yes Not used Grassmannian manifold +

SVM 6 BE
No computationally expensive

pre-processing step and any user
interventions

Li et al. [77]
FRGC v2.0,
Bosphorus,

BU-3DFE and 3D-TE
No No Not used MSMC-LNP 6 BE Different expression intensity levels

Srivastava and Roy
[47] BU-3DFE No No 83 man. 3D flow of facial points +

SVM 6 BE Neutral 3D facial model for each
subject

Xue et al. [78] BU-3DFE No No
5 aut. + 35
heuristic

points
Depth features + SVM 6 BE Fully automatic

Yurtkan and
Demirel [79] BU-3DFE No No 83 man. 3D geometrical facial feature

point positions + SVM 6 BE Entropy is used to extract the most
discriminative features

Zhang et al. [42] BP4D Yes Yes 83 man. 3D dynamic facial expression
descriptors

8 (anger, disgust, fear,
happiness, sadness,

startle, embarrassment
and pain) + 27 AUs

Spontaneous expressions

Azazi et al. [48] BU-3DFE and
Bosphorus Yes No 20 aut. SURF + SVM 6 BE Facial muscular movements

exploiting

Jan and Meng [49] BU-3DFE and
Bosphorus Yes No 83 + 22 man. Geometric and textured

domains + SVM 6 BE 2D+3D to increase the overall
performance

Li et al. [56] BU-3DFE and
Bosphorus Yes No 49 aut. HSOG texture and SIFT +

Surface and curvature 6 BE
Multi-order gradient-based local

texture combined with shape
descriptors

Li et al. [80] BU-3DFE Yes No Not used Depth and texture
information 6 BE Fully automatic

Mao et al. [81]

UJSKED,
FaceWarehouse, and

real-time video
sequences

Yes No Not used
Features of animation units

(AUs) and feature point
positions (FPPs)

6 BE A real-time approach based on data
captured by Kinect.

Yang et al. [82] BU-3DFE No No Not used Shape index map 6 BE Fully automatic 3D FER method

Huynh et al. [53] BU-3DFE Yes No Not used Shape and texture descriptors
+ CNN 6 BE Deep learning technique for 3D

FER

Li et al. [83] BU-3DFE Yes No Not used Different kinds of range
images 6 BE

Range images do not lose primitive
discriminative information for

recognition
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Table 2. Cont.

Author Database 1 2D 2 Dynamic 3 FLs 4 Method 5 Expressions 6 Highlights

Derkach and Sukno
[84] BU-3DFE No No 68 man.

3D geometry and features
decomposition in their special

frequency components
6 BE + 17 AUs

3D geometry analysis extended
from a curve-based representation

into a spectral representation

Hussain et al. [50] BU-4DFE No Yes 12 man. Facial distances + SVM and
Neural Network

2 (happiness and
sadness) + 7 AUs

Facial distances are used to
localized active muscles

Savran and Sankur
[85] BU-3DFE No No Not used Dynamic feature extraction

mechanism 6 BE Non-rigid registration incorporated
in face-model-free analysis

Hariri et al. [86] BU-3DFE No No 92 man. Covariance matrices 6 BE
Covariance descriptors allow the
combination of different types of

features

Dong et al. [87] Bosphorus Yes No Not used Global and local features +
SFMs 16 AUs A sign-based approach for FER

Binghua et al. [54] Private Yes Yes Not used LBP features + CNN 6 BE Testing on a private database,
recorded by RealSense camera

Jan et al. [51] BU-3DFE Yes No 49 aut. 2D texture + 3D depth map +
CNN and SVM 6 BE

2D texture and 3D depth maps
information showed a consistent

RR improvement
1 Denotes the database, or a portion of it, used for the study; 2 indicates the use of 2D data associated, and 3 the use of temporal information (3D image sequences). 4 The presence, number,
and type of facial landmarks: manual or automatic. 5 Methods: scale-invariant feature transform (SIFT), support vector machines (SVM), receiver operating characteristic (ROC), neural
network (NN), histogram of mesh gradient (HoG), histogram of shape index (HoS), deformation vector field (DVF), random forest (RF), azimuthal projection distance image (APDI),
conformal factor image (CFI), mean curvature image (MCI), hidden Markov model (HMM), multi-scale and multi-component local normal patterns (MSMC_LNP), speed up robust
features (SURF), feature point positions (FPPs), convolutional neural network (CNN), statistical feature model (SFM). 6 Expressions: basic emotions (BE) are anger, disgust, fear, happiness,
sadness, and surprise.
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Table 3. Model-based algorithms.

Author Database 1 2D 2 Dynamic 3 FLs 4 Method 5 Expressions 5 Highlights 6

Ramanathan et al.
[88] Private No No Not used Morphable Expression Model 3 (happiness, sadness

and anger) Morphable 3D model

Mpiperis et al. [26] BU-3DFE No No Man. Elastically deformable model
algorithm + bilinear models 6 BE Face recognition invariant to facial

expressions

Gong and Wang [28] BU-3DFE No No - BFSC and ESC + SVM 6 BE Single 3D face without any manual
assistance

Zhao et al. [30] BU-3DFE No No 19 aut. SFAM + BBN 6 BE Flexibility of the method, applicable to
real-use cases

Zhao et al. [32] Bosphorus No No 19 aut. SFAM 16 AUs Extended statistical facial feature model

Fang et al. [89] BU-3DFE and
BU-4DFE No Yes 12 aut. AFM + PDM 6 BE

First approach that registers 4D data and
bring them into dense correspondence

without the need of texture information
Chen et al. [64] AVEC 2012 Yes Yes 42 inners Random forest-based 6 BE Real-time

Zhen et al. [66] BU-3DFE and
BU-4DFE No Yes Not used MMM + geometry features 6 BE Introduction of a novel muscular model

Wei and Jia [43] RGB-D and
KinectFaceDB Yes No Not used FFPs and AUs + random

forest

4 (smile, yawn, angry
and sad) + 2 (smile

and yawn)
Sensor Kinect for real-life applications

Fabiano et al. [40] BU-4DFE No Yes 83 man. Random forest 6 BE + embarrassment,
nervousness and pain Spontaneous and non-spontaneous data

1 Denotes the database, or a portion of it, used for the study; 2 indicates the use of 2D data associated, and 3 the use of temporal information (3D image sequences). 4 The presence, number,
and type of facial landmarks: manual or automatic. 5 Methods: basic facial shape component (BFSC), expression shape component (ESC), support vector machine (SVM), statistical facial
feature model (SFAM), annotated face model (AFM), point distribution model (PDM), muscular movement model (MMM), facial feature points (FFPs), action units (AUs), random forest
(RF). 6 Expressions: basic emotions (BE) are anger, disgust, fear, happiness, sadness, and surprise.
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In 2014 Hayat and Bennamoun [76] used the 2D texture information incorporated along-with 3D
features. After learning the SVM models from the 2D and 3D data separately, they performed the
classification and undertook a fusion of results separately obtained for performance improvement.
Hence, a feature dimensionality reduction technique is used to reduce the size of the feature vector
while retaining its quality. Jan and Meng [49] in 2015, proposed to fuse the key features obtained
from the geometric and textured domains, to investigate how the overall performance is affected.
Also in this work, a feature dimensionality reduction method is used, before applying machine learning
techniques; merging the many elements produced by the algorithms can result in a large feature vector
which can slow down the system. Accordingly, in 2018, they continued to use a textured 3D face scan,
since both detailed 3D geometric features and 2D texture information can provide key cues for FER.
Experiments are conducted on the BU-3DFE database, demonstrating the effectiveness of combing
texture and depth cues.

From a general point of view, multimodal techniques may deal with various data modalities,
originating from other sources of information such as thermal image acquisitions, voice data,
brain signals or cardiovascular activity, and context information. Other visual cues that could be
combined with standard features for improving methods that detect facial expressions are eye gaze,
head orientation, the motion of the head and body, mouth fidgeting, and FEs frequency or duration.
Some researchers have already demonstrated that context can improve emotion recognition, as well as
the body posture that becomes more important as the FE is more ambiguous. Meanwhile, also the
voice can provide indications on emotions through acoustic properties such as pitch range, rhythm,
and amplitude or duration changes.

Marginal studies have been conducted on the combination of 3D facial data and physiological
or acoustic cues. Investigations on the possible integration of visual and non-visual modalities,
like physiological data coming from wearable devices, could be a possible branch of research for the
coming years.

3.3. Deep Learning Applied to FER

Deep learning [90,91] is a machine learning technique theorized for the first time in the 1980s [92]
but only lately considered in practice because it needs a large amount of labeled data and considerable
processing power. In recent years, deep learning techniques have been employed successfully in a wide
range of tasks including the recognition of facial expressions, a difficult problem for machine learning,
since people can show their feelings in very different ways. Deep Neural Networks (DNN) have been
used to classify images of the human face into emotion categories in an end-to-end approach and
overcome the difficulties of the traditional methods, reaching a level of recognition accuracy higher
than that of man in some activities.

Automatic deep FER includes three different steps: pre-processing, deep feature learning,
and deep feature classification [13]. Pre-processing is necessary before training the neural network to
learn essential features for recognition; some examples are image cropping, rotation correction,
data augmentation, and spatial normalization. Completed this preliminary phase, one of the
deep learning techniques, particularly CNN or RNN, is applied for FER, and the given face is
classified into one of the basic emotion categories. Using deep networks, feature extraction and their
classification are performed in an end-to-end way [93], while in the traditional methods these two
last phases are independent. Alternatively, the neural network can be used for feature extraction
only, and then independent classifiers, such as support vector machine (SVM), can be applied to the
extracted representations.

3.3.1. Convolutional Neural Networks (CNN)

Most of the deep learning methods use neural network architectures, and one of the well-known
and used to recognize objects or faces is the Convolutional Neural Network (CNN). The three main
factors that have contributed to the use of CNNs for deep learning are the elimination of manual
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extraction of features, the cutting-edge recognition results and the possibility of retraining existing
networks for other recognition activities [1].

A CNN is composed of an input layer, an output layer and up to 150 hidden layers in the middle
(for this reason, it is called “deep”) [94], while traditional neural networks have only 2–3. These layers
are intended to find and learn features, repeating convolution, activation or Rectified Linear Unit
(ReLU), and pooling operations; each hidden layer increases the complexity of the features of the
image [95]. Below is a summary of the three main steps:

- Convolution is a mathematical operation that recalls the functioning of a scanner and consists of
applying a smaller matrix called kernel to the input matrices, the images. Each of the convolutional
filters is translated with a specific translation stride and activates certain features of the pictures.

- After a convolutional layer, in most ConvNets, there is an activation function. The main purpose
of this layer is introducing a non-linearity in the system, using non-linear functions, such as
tanh, sigmoid, and ReLU. The Rectified Linear Units returns 0 if it receives any negative input,
but for any positive value x it returns that value back, so it can be written as f(x) = max (0, x):
only activated features are transferred to the next layer.

- The pooling performs a non-linear subsampling, reducing the size of the output matrices and the
number of parameters that must be learned by the network. The most common operations are
MaxPooling and AveragePooling.

After the learning phase of the features, the classification phase begins. To provide the classification
output, a fully connected layer, and a classification layer, such as SoftMax, are used. The penultimate
layer generates a vector of dimensions equal to the number of classes, containing the probability
for each one and computing the class score on the entire original image. The last layer of the CNN
architecture assigns the decimal probabilities to each class, in a multi-class problem.

3.3.2. RNN-LSTM

A Recurrent Neural Network (RNN) is a type of advanced artificial neural network commonly used
in speech recognition. While in a traditional neural network all inputs and outputs are independent of
each other, RNNs use sequential information. This class of neural networks shows temporal dynamic
behavior and uses its internal memory to calculate output depending on the earlier computations.

A variation of the recurrent net, the so-called Long Short-Term Memory (LSTM), was proposed in
the mid-90s by the German researchers Hochreiter and Schmidhuber [96]. These networks use three
gates to regulate and control the cell state and thus overcome the issue of the vanishing gradients and
exploding problems that are common in training RNNs. LSTMs can keep the memory for a more
extended period than RNNs, enabling them to model long-term dependencies in a sequence; common
areas of application include speech recognition, language modeling, and video analysis (video-based
expression recognition tasks).

3.3.3. State of the Art

In 1872 Darwin published the book “The Expression of Emotion in Man and Animals” [97], which first
gave rise to the recognition and study of emotions. Subsequently, the researchers Izard and Ekman,
inspired by Darwin, have conducted important studies on facial expressions, leading to significant
advancements. The first study that presents an algorithm developed to perform Facial Emotion
Recognition was conducted by Bartlett et al. in 2003. The paper [98] tried to make a method capable
of automatically detecting frontal faces in a video stream and classifying facial expression as either
anger, disgust, fear, happiness, sadness, surprise, and neutral. The real-time face-detection system,
a development of Viola-Jones’ work [99], was tested on the Cohn-Kanade dataset of posed facial
expressions. Later, several types of conventional approaches for automatic FER were developed.
These algorithms are able to accomplish the task, detecting the face region and extracting geometric
features (such as facial landmarks, face shape and its components), appearance features (such as pixel
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intensities and texture of the face), or a hybrid of geometric and appearance features [1,100]. The works
presented in the literature can be divided according to the feature representations (static images or
dynamic image sequences), the deep-learning-based algorithm (CNN or hybrid CNN-RNN), and the
type of data (2D, 3D or 2D+3D). In this survey, the works of the last decades are presented, subdividing
them into two-dimensional, three-dimensional, or multi-modal methods.

a. 2D FER

Matsugu et al. [101] developed the first facial expression recognition model with the property of
subject independence as well as translation, rotation, and scale invariance. They employed a CNN,
more efficient and compact than the Fasel’s model [102] presented the year before, to “detect smiling or
laughing faces based on differences in local features between a normal face and those not.” In his paper,
Fasel proposed two independent CNNs, one for facial expressions, and the other for face identity
recognition, combined by a Multilayer Perceptron (MLP). FER systems are traditionally evaluated
in a subject-independent way or with a cross-database approach, rarely in a subject-dependent
way. This last technique, in which only a single person builds each classification model, is used in
limited cases [103] where greater importance is given to recognition accuracy than generalization.
The subject-independent manner, on the other hand, trains the classifier on a subset of images and
evaluates it on the remaining part of the same database, while the cross-database method trains and
evaluates the classifier on all of the pictures in different databases. Cross-database tasks are more
complicated to satisfy as each database presents different settings of illumination, pose, resolution, etc.
Deep neural networks are able to recognize subtle features, and for this reason, perform well in flexible
learning tasks reaching high levels of accuracy in FER problems [104].

In 2014 there was one of the largest and the most challenging computer vision competition,
ImageNet 2014 challenge. GoogLeNet, a new architecture of CNN inspired by LeNet [105] and
implemented by Google, won the classification and object recognition challenges, achieving a top-5
error rate of 6.67%. In the following years, this same network, trained initially to distinguish between
1000 objects, was re-trained for different objectives, including facial recognition [106]. The performance
of 2D facial expression recognition is degraded by pose variation and illumination problems, not present
with a three-dimensional approach.

b. 3D FER

The technological progress in recent years has enabled us to achieve better performance in various
areas, including facial expression recognition. The acquisition of high-quality 3D facial scans overcomes
the problems of illumination and pose changes and contains more information about the movements
of facial muscles induced by expressions.

In 2006 the first database including three-dimensional face models, the BU-3DFE, was made
public, and many studies were performed. In addition to traditional approaches, categorized into
model-based ones as well as feature-based ones, some researchers used deep networks in tasks of
computer vision, often reaching higher accuracies.

The multimodal 2D+3D is a common approach for facial expression recognition, widely used in
literature. Savran et al. [33] showed that in general 3D data perform better than 2D data, especially for
lower face AUs, but with the fusion of two modalities higher detection rates are achieved (97.1 %).
Depth maps (3D meshes) are fused with other 2D maps, such as texture maps [2,51,107], curvature
maps [2,108] and normal maps [2,107].

Li et al. conducted two studies with Deep Learning-based methods. In the first [109], they generated
the deep representation of the 3D face by putting the geometry map, normal maps, normalized curvature
map, and texture map into a pre-trained CNN. Facial geometric attributes are then classified using
SVM, achieving the facial expression prediction. Two years later, in their second work [2], they built
a new deep CNN model for subject-independent multimodal 2D+3D facial expression recognition and
trained it on six types of facial attribute maps. The single end-to-end training framework increases the
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accuracy and achieves the best results. “This is the first work of introducing deep CNN to 3D FER and
deep learning-based feature level fusion for multimodal 2D+3D FER” [2].

Oyedotun et al. [110] proposed a CNN model able to learn more discriminative features from both
RGB and depth map latent representation for joint learning of facial expressions. Yang and Yin [108]
presented a 3D facial expression recognition algorithm using CNNs and landmark clues, with the sole
use of 3D geometrical facial models.

Chen et al. [111], in their paper, directly used 3D facial point-clouds for FER based on a fast and
light manifold CNN model, FLM-CNN. Compared to the existing ones, the method proposed is better
in speed and feature extraction, achieving state-of-art performance on BU-3DFE and showing a high
tolerance to pose changes.

Some of the last year’s works are [112–117]. Others are those of Jan et al. [51] and Zhu et al. [118].
Jan et al. [51] designed a novel system for 3D FER based on accurate facial parts extraction according
to localized facial landmarks, and deep feature fusion of facial parts. With the use of facial parts,
they achieved better performance than using the entire face. Finally, a multi-class SVM classifier is
adopted for facial expression prediction. Zhu et al. [118] introduced a novel deep learning approach to
3D FER, namely Discriminative Attention-based Convolution Neural Network (DA-CNN), to capture
more comprehensive expression related representations. They conducted several experiments to prove
the effectiveness of their method, and state-of-art results are achieved for both 3D FER and multi-modal
3D+2D FER.

Lately, some researchers have started using 4D (3D dynamic) data [3,119,120]. Sandbach et al. [9,46]
proposed a method that exploits 3D motion-based features for dynamic FER in the BU-4DFE database,
performing a six-way classification, the six basic emotion. In the second paper they surveyed the
progresses in 3D and 4D face acquisition and presented available databases for static and dynamic
3D FER.

4. Facial Animation

Facial animation is an area of computer graphics that consists of methods and techniques for
generating and animating models of a human, an animal, or a fantasy character face. Parke made
the first efforts to represent and animate three-dimensional faces using computers in 1972 [121].
Computer-based facial expression modeling and character animation is not a new endeavor but has
been considerable growth of interest in recent years.

Following the success for describing movements of facial muscles of the FACS and Action
Units developed by Ekman and Friesen in 1978 [20], Platt [122] and Brennan [123] in the early-1980s
produced, respectively, the first physically based muscle-controlled face model, and techniques for
facial caricatures. Their studies gave birth to the first animated human character able to express
emotion through facial expressions and body movements.

Different techniques exist for the generation of facial animation data: marker-based motion
capture [124,125], markerless motion capture, audio-driven, and keyframe animation. Marker-based
techniques are widely used for real-time facial animation thanks to their robustness but are not useful
for retrieving fine-scale dynamics and require specialized sensors. To simplify the motion capture
process, techniques without requiring markers or specialized tracking hardware came out leveraging
depth sensors and structured-light based devices [126]. The researchers demonstrated the ability to
track detailed facial expressions from a 3D sensor in real-time, but the system required an extensive
set of pre-processed facial expressions and consequently a lengthy training session. The year later,
Li et al. [127] used the same system replacing the Principal Component Analysis (PCA) model with
an optimized rig, in order to reduce training poses and enable retargeting.

Real-time 3D low-cost sensors such as Microsoft’s Kinect favored the development of new
methodologies that simplify the procedure [128,129]. In [128], a user-specific dynamic expression
model is created in an offline preprocessing step. The novel face tracking algorithm combines 2D color
image and 3D depth map, simultaneously captured by Kinect, in a systematic way with user-specific
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blendshapes. This proposed method achieves high-quality performance-driven facial animation in
real-time with a low-cost and markerless acquisition system, and more robust and accurate results
than previous video-based methods. Li et al. [129] proposed a real-time facial animation system with
adaptive tracking without any training or expression calibrations, achieving superior tracking fidelity
than existing state-of-the-art techniques.

Other works in facial animation are [130–132]. Mousas and Anagnostopoulos [130] presented
in their paper a novel mesh deformation method to automatically transfer facial blendshapes from
a reference to a source face model. Parameters such as elasticity, mesh curvature descriptors were not
considered, but the presented method achieves a lower error rate than the previous methodologies.
Wei and Deng [131] studied speech animation in real-time based on live speech input, synthesizing but
maintaining the realism of facial animation. Ouzounis et al. [132] presented a methodology that provides
the ability to efficiently transfer facial animations to face models with different morphological variations.

Recently, Ma and Deng [133,134] presented a “complete pipeline to photo-realistically transform the
facial expression for monocular video in real-time” [133] and a “real-time, automatic, geometry-based
method for capturing fine-scale facial performance from monocular RGB video” [134]. Facial animation
applications include communication, education, and scientific simulation area, even if the primary use
remains animation films and computer games.

5. Databases

In the literature, there are numerous databases related to FER for comparative and extensive
experiments; some of them are used in particular for conventional FER approaches with decision
methods, others for FER systems based on deep learning with recognition algorithms. Traditionally,
human facial emotions have been studied using 2D data, static or dynamic, with many difficulties
attached. A 3D-based analysis of facial emotions will facilitate handling significant pose variations
and subtle facial behaviors but has specific problems such as a high computational cost. The databases
mainly used in this research field are described below and summarized in Table 4.

To date, various databases for 3D facial expression recognition exist and have been employed by
the research community for the evaluations of the developed algorithms. Of these, only three publicly
available have been designed specifically for emotion analysis, having datasets displaying the six basic
emotions or different AUs of the FACS, and are BU-3DFE, BU-4DFE, and Bosphorus. The databases
listed above are not the only ones to contain facial expressions; other public databases, for example,
FRGC v2.0 and GavabDB, present a set of expressions variations, but incomplete or with an irregular
distribution. The main databases with 3D images and video sequences used for the study of facial
expressions are described below.
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Table 4. A selection of face datasets employed in recent studies on expressions and AUs recognition.

Name Year Data 1 Datasets 2 Expressions Occlusions 3 Head Poses 4 # of Landmarks 5

JAFFE [135] 1999 2D images 213 (10) 6 basic emotions + neutral No No -
FRGC ver2.0 [136] 2005 3D scans 4950 (577) 6 basic emotions No No -

MMI [137] 2005 2D RGB images + 2D videos 740 + 2900 (75) 6 basic emotions + neutral + AUs No No -

BU-3DFE [138] 2006 3D facial models 2500 (100) 6 basic emotions ∗ 4 levels of intensity
+ neutral No No 83

Bosphorus [139] 2008 2D RGB images + 3D data 4666 (105) 6 basic emotions + neutral + 28 AUs Yes (4) Yes (13) 24
BU-4DFE [140] 2008 3D video sequences 606 (101) 6 basic emotions + neutral No No 83

CK+ [141] 2010 2D video sequences 593 (123) 6 basic emotions + contempt and
neutral + AUs No No -

D3DFACS [142] 2011 2D+3D static + dynamic 519 (10) 19-97 AUs individually +
combination No No 47

RGB-D [143] 2012 2D RGB images + depth
maps 1581 (31) Neutral, smile, sad, yawn and angry No Yes (17) -

UPM-3DFE [144] 2012 3D images 350 (50) 6 basic emotions + neutral No No 32
BP4D [41,42] 2013 3D video sequences 328 (41) 8 facial expressions + 27 AUs No No 49

KinectFaceDB [145] 2014

2D RGB images + 2.5D
depth maps + 3D point

clouds + RGB video
sequences

936 (52) Neutral, smile and yawn Yes (3) Yes (2) 6

FERG-DB [146] 2017 2D images 55767 (6) 6 basic emotions + neutral No No -
1 Denotes the type of data, 2 indicates the number of samples and, in brackets, the number of subjects. Presence and number of 3 occlusions of eyes and mouth, 4 various poses of the head
acquired for each subject in a systematic way, and 5 facial landmarks.
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The most common for 3D FER systems is the Binghamton University 3D Facial Expression
(BU-3DFE) database [138], the first one to become publicly available. It consists of raw 3D facial scans of
100 subjects, 56 females and 44 males, with different ethnic and racial ancestries, and ranging age from
18 to 70 years old. Each person performed the expressions corresponding to the six basic emotions,
acquired at four levels of intensity (low, middle, high, and higher) using 3D sensors, along with
a neutral expression. In total, therefore, the database contains 2500 3D facial expression models,
25 for each subject, plus the associated texture images captured at two views (about +45◦ and −45◦).
The manually annotated dense landmark set is provided with the release, contributing to its diffusion
and use.

The BU-4DFE [140] is a 3D dynamic facial expression database, built to analyze the facial behavior
in a dynamic 3D space. There are 58 female and 43 male subjects with a variety of ethnicities and
an age range of 18–45, each of one performed gradually the six universal emotions starting and then
finishing with the neutral expression. The sequences last approximately four seconds and are captured
at a video rate of 25 frames per second; the database contains 606 3D facial expression sequences,
giving a total of over 60thousand frame models.

The Bosphorus database [139] was designed for research on 2D and 3D FER tasks. There are
105 subjects, one-third of whom are professional actors and actresses, for a total of 4666 facial data
acquired using a structured-light based 3D system. The Bosphorus is the only publicly available
database to date that contains 3D face scans for AUs, including intensity and asymmetry codes for
each AU. Moreover, there are scans in various poses, expressions and realistic occlusion conditions,
such as glasses or hand around the mouth, or with mustache and beard. In this case, as in the
previous ones, the data was collected in a controlled environment in which the subjects were instructed
to perform specific emotions; therefore, the BU-3DFE, the BU-4DFE, and the Bosphorus are all
non-spontaneous databases.

The Binghamton-Pittsburgh 3D Dynamic Spontaneous (BP4D), developed by Zhang et al. [41,42],
actually is the only database that considers 3D dynamic spontaneous facial expressions [147]. The data
was collected in the course of social interactions between the participants and an interviewer, with the
use of 8 specific tasks that elicit different emotional expressions: happiness or amusement, sadness,
surprise or startle, embarrassment, fear or nervous, physical pain, anger or upset, and disgust. Hence,
the BP4D is suitable to design and test methods dealing with real-world scenarios.

Some works use the EUROKOM Kinect Face Dataset [145] or other private RGB-D database,
explored extensively for various applications. The EUREKOM Kinect Face Dataset consists of face
images of 52 people captured in nine states, including various facial expressions, with a Kinect RGB-D
camera, a sensor characterized by low data acquisition time and low-quality depth information.
The data are acquired in different modalities (2-D, 2.5-D, 3-D), and all the images are provided in the
three sources of information: the RGB color image, the depth map, and 3D.

6. Landmarks

Facial landmarks are key points that are used to extract facial information, such as identity,
expression, and emotion, in computer vision tasks. They are shared by all human faces and contain
a geometric and biometric meaning.

Landmarks were initially introduced by Farkas [148] and extensively applied to different disciplines
involving the human face [149]. Extensive handbooks and reference works have been written within
the context of the anthropometry discipline, such as “Anthropometry of the head and face” [150],
and “Three-Dimensional Cephalometry: A Color Atlas and Manual” [151], which report the truthful and
medical meaning of each landmark. Up to 59 points can be identified in the human face, but the most
famous and used are only 20.

The localization of the landmark points is an essential step in many facial expression recognition [152]
and head pose estimation [153] algorithms. Most of the studies in literature used manual landmarks,
usually exploiting the pool of landmark coordinates stored in the publicly available databases.
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The Bosphorus database, for example, provides 2D and 3D coordinates of 24 labeled facial landmarks,
which are: outer, middle, and inner left/right eyebrow, outer and inner left/right eye corner, nose saddle
left/right, left/right nose peak, nose tip, left/right mouth corner, upper and lower lip outer/inner
middle, chin middle, and left/right ear lobe. More recently, some researchers developed algorithms
to automatically detect the locations of the landmarks points of the human face on images or videos
without any assistance by the user [48,51,55,56,68,70].

However, facial key point detection is challenging due to significant variations in facial appearance
under different facial expressions, head poses, environment and lighting conditions, and motion
patterns, in particular for video sequences. Furthermore, facial occlusions can cause loss of landmarks
information. The mouth region, like the lips, mainly presents this difficulty because it has high degrees
of freedom in the movements. In more rigid parts, like eye corners, facial landmarks are easier
identified automatically. For these reasons, Zeng et al in [55] proposed a general and fully automatic
framework for 3D FER that only needs three main facial landmarks: nose tip, left and right inner eye
corners. Similarly, Xue at al. [78] presented in 2014 a fully automatic method, including the detection
of landmarks, for 3D FER. The algorithm, based on depth features, detect the four eye corners and
nose tip in real-time, and then, from these five points, define another 25 heuristic points for facial
expressions analysis.

In order to support the researchers’ choices to use a set of landmarks instead of another, statistical
analysis or assumptions are often used. For example, Derkach and Sukno [84] decided to discard 15 of
the 83 manually labeled landmarks in the BU-3DFE database corresponding to the silhouette contour
because they have arguably little validity in a 3D setting. Hence, only a subset of 68 landmarks laying
within the face area was considered.

The motivation to use a small number of facial landmarks is a significant reduction in recognition
time, a critical issue in real-time applications, where the expression must be determined almost
immediately. Instead, more features will result in added tracking time and greater complexity in
the classifier.

7. Role of Time

Facial expressions play an important role in the recognition of human emotions. At first, facial
expressions analysis interested only psychologists, but later it had a wide diffusion in the field of
scientific research.

In the past, many techniques, including neural networks, have been applied to recognize facial
expressions in still images. The strategies developed had some limitations; one of these is the possibility
to view only an instant of the expression, and usually, the still images capture the moment at which
it is most marked, without considering that in their daily lives people show the apex of their facial
emotions only for particular cases and for very brief periods of time. The subtle facial expressions
that are used for most of the communication activities are not identifiable in still images but became
visible in video sequences. For this reason, dynamic facial expressions became increasingly important
in recent years. Temporal dynamics of facial expression provide additional relevant information
that is not available in static 2D or 3D images. Indeed, an emotion lasts from 250 milliseconds to
5 seconds [154]; a dynamic method may be useful for evaluating the intensity level of muscle activities
and for classifying emotions.

Referring to the work of Schmidt and Cohn [155], a majority of spontaneous smiles reach onset
faster and show more action units than the posed smiles. In contrast to the 18 types of smile described
by Ekman, during spontaneous smiles “the appearance of AU 12 was either simultaneous with
or closely followed by one or more associated action units”, such as AU 6 (cheek raiser), AU 15
(lip corner depressor) or AU 17 (chin raiser). The dynamic properties of spontaneous human facial
expressions have significant implications for human-computer interaction to describe naturalistic
interactive behavior.
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Most of the works that choose video sequences as input use 2D FER algorithms; only a few
attempts have been made to analyze facial expression using 4D data (i.e., 3D videos), partly due to
the lack of public databases having three-dimensional dynamic sequences. Nowadays, thanks to the
incredible development of capturing, reconstruction, alignment, and tracking techniques, dynamics
3D recordings are increasingly used in expression analysis research [9].

The public availability of the BU-4DFE database contributed to this innovation process.
This database includes 3D sequences of the six universal emotions, but unfortunately, it does not
provide AU annotations.

8. Results and Challenges for 3D FER

The most studied and tested facial expressions are the six basic facial expressions indicated by
Paul Ekman as universal, but also other emotions have been considered, to develop sounder algorithms
able to deal with any occlusions. Table 5 summarizes the performance results (recognition rates of
the respective FER method) obtained by the different authors and reported in their papers through
a confusion matrix. The overall accuracy is indicated, as well as the results obtained for the various
types of expressions

Table 5. Recognition rates (RRs) in the presence of each type of facial expression and the overall average
result obtained. For every kind of emotion, the best result is written in bold characters.

Author Year Anger Disgust Fear Happiness Sadness Surprise Overall
Berretti et al. [67] 2010 81.7 73.6 63.6 86.9 64.6 94.8 77.53
Maalej et al. [60] 2010 96.50 97.00 94.50 94.67 96.00 97.83 96.08
Soyel and Demirel [156] 2010 91.7 93.9 90.0 94.1 90.8 98.9 93.23
Venkatesh et al. [69] 2010 87.17 84.45 73.47 100 74.14 94.18 85.57
Zhao et al. [30] 2010 79.20 87.60 79.20 93.3 90.8 93.37 87.25
Berretti et al. [70] 2011 81.7 73.6 63.6 86.9 64.6 94.8 77.53
Le et al. [44] 2011 / / / 95 91.67 90 92.22
Li et al. [61] 2011 76.8 78.1 73.2 91.4 75.5 94.5 81.6
Sandbach et al. [45] 2011 77.71 / / 89.37 / 85.40 83.03
Vretos et al. [71] 2011 / / / / / / /
Drira et al. [52] 2012 93.11 92.46 91.24 95.47 92.46 94.53 93.21
Fang et al. [89] 2012 92.42 91.67 81.06 98.48 88.64 93.94 91.04
Li et al. [72] 2012 77.92 77.17 69.25 93.17 70.67 92.67 80.14
Rabiu et al. [73] 2012 86.8 95.9 89.7 97.6 85.5 98.7 92.37
Sandbach et al. [46] 2012 51.92 62.71 46.15 75.28 68.97 82.56 64.60
Lemaire et al. [75] 2013 74.1 74.9 64.6 89.8 74.5 90.9 78.13
Zeng et al. [55] 2013 59.58 63.67 51.00 84.58 59.58 90.50 68.15
Zhang et al. [41] 2013 / / / / / / /
Hayat and Bennamoun [76] 2014 92.71 93.46 90.09 98.00 93.12 98.67 94.34
Li et al. [77] 2014 / / / / / / /
Srivastava and Roy [47] 2018 80 95 90 95 90 100 91.67
Xue et al. [78] 2014 / / / / / / /
Yurtkan and Demirel [79] 2014 76.25 80.00 68.75 83.75 80.00 91.22 80.00
Zhang et al. [42] 2014 55.1 83.4 73.2 61.0 77.1 / 69.96
Azazi et al. [48] 2015 78.67 90.83 73.67 93.5 83.67 94.50 85.81
Chen et al. [64] 2015 / / / / / / /
Jan and Meng [49] 2015 88.24 90.60 86.56 91.34 85.32 93.81 89.31
Li et al. [56] 2015 82.33 82.83 72.33 100 89.00 81.83 84.72
Mao et al. [81] 2015 85.14 83.28 81.86 80.67 80.48 98.49 84.99
Yang et al. [82] 2015 83.16 83.27 78.67 94.22 77.18 92.31 84.80
Huynh et al. [53] 2016 91.3 95.2 86.7 100 87.5 95.7 92.73
Zhen et al. [66] 2016 79.5 85.7 63.3 94.6 79.2 96.1 83.07
Derkach et al. [84] 2017 85.58 75.31 65.12 89.5 77.2 93.5 81.04
Hariri et al. [86] 2017 86.25 90.00 86.25 97.50 79.75 90.50 88.38
Savran et al. [85] 2017 77 79 79 94.5 82 93 84.03
Yang and Yin [108] 2017 / / / / / / /
Wei and Jia [43] 2017 / / / / / / /
Fabiano and Canavan [40] 2018 / / / / / / /
Binghua et al. [54] 2018 / / / / / / /
Jan et al. [51] 2018 / / / / / / /
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Only a few studies have dealt with data sets that explicitly incorporate AUs variation. Table 6
summarizes the performance results (recognition rates of the respective FER methods) obtained by
the different research groups. The overall accuracy is indicated, as well as the results obtained for the
single type of action units. The reported performances are greatly dependent on the inherent difficulty
of the data.

Table 6. Recognition rates (RRs) in the presence of different action units and the overall average result
obtained. For each type of AUs, the best result is written in bold characters.

Action Unit Derkach and Sukno [84] Dong et al. [87] Hussain et al. [50] Zhang et al. [42] Zhao et al. [32]
AU 1 75 / 100 62.1 /
AU 2 78 90 / 68.2 90.0
AU 4 79 75 94.67 68.7 75
AU 5 80 / / / /
AU 6 46 / 96.89 79.6 /
AU 7 73 78.3 / 69.6 78.3
AU 9 56 81.7 / / 81.7
AU 10 67 95 / 79.1 95
AU 12 76 85 90.22 70.3 85
AU 14 / / / 68.2 75
AU 15 34 / 86.67 73.9 /
AU 16 52 / / / /
AU 17 50 80 92 75.8 80
AU 18 / / / / 91.7
AU 20 30 / / / /
AU 22 / 90 / / 98.3
AU 23 50 / / 70.4 /
AU 24 61 / / 77.4 76.7
AU 25 94 / 94.67 / /
AU 26 88 91.7 / / 91.7
AU 27 / 91.7 / / 91.7
AU 28 / / / / 81.7
AU 34 / / / / 88.3
AU 43 / / / / 98.3

Overall 74 85.84 93.59 73.6 85.6

9. Discussion

9.1. Computational Problems

3D faces offer more granular cues but also impose a higher dimensionality than 2D faces. Indeed,
multiple scans from slightly different viewpoints are typically necessary to convert the raw data into
a clean data set and reconstruct the 3D geometrical model. This problem becomes even more significant
when the resolution and frame rates increase, raising the amount of 3D data acquired and consequently,
the storage and computational costs. Moreover, after the data pre-processing step, post-processing
which includes registration and merging of the scans, holes filling, smoothing, regularization, is needed,
as well as a point detection step for head pose estimation and feature extraction.

For the reasons mentioned above and to reduce the dimensionality problem, 3D recognition tasks
are often performed by mapping a 3D facial surface into the 2D plane. In other words, the depth image
from the 3D mesh or the point cloud is computed, and the value of the z-coordinate of every point in
the 3D space is assigned to the correspondent in the 2D plane.

In feature-based algorithms, also features selection step is crucial for the overall recognition
method performance and accuracy. It aims to select the most relevant feature set from all the prospective
features, and to eliminate the non-relevant features, consequently reducing the dimensionality. Hence,
it needs to be well planned to deal with the high dimensionality problem inherent with the use of 3D
face images.

Some research groups attempted to address this problem by proposing different strategies.
For example, Azazi et al. [48] tackle the significant dimensionality problem through a twofold solution.
First, the algorithm transforms the 3D faces into the 2D plane using conformal mapping. Then,
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a Differential Evolution (DE) based optimization algorithm is undertaken to select the optimal
facial feature set and the classifier parameters simultaneously. Only the features with the maximum
discriminative power are chosen.

These steps may lead to an increase in time and computational complexity [7]. Hence,
when a real-time response is desired, the 3D solution is not always right, although these strategies to
reduce the response time of the algorithm have been developed.

9.2. Illumination and Limitation of Acquisition Technology

Changes in lighting due to skin reflectance properties and due to the internal camera control
can significantly affect the performance of 2D FER systems. Illumination alterations cause troubles in
AUs and facial expression recognition algorithms by the production of shadows and significant 2D
texture variations [157]. To overcome these difficulties due to changes in the illumination conditions,
image representations that are not very sensitive to these variations exist. Some examples are edge
maps, image intensity derivatives, and images convolved with 2D Gabor-like filters, but Adini and
Moses’ results [158,159] showed that none of these representations is sufficient by itself. In general,
it remains an open question of whether edge maps and the others provide an illumination-insensitive
image for face recognition.

If on the one hand all or most of the 2D methods present illumination problems, on the other
hand, the 3D systems are naturally robust to light variations. However, the technologies available for
3D data acquisition may be significantly affected by the difference of illumination conditions during
the acquisition phase [160]. For example, artifacts, like holes or spikes, occur in oily facial regions or
the proximity of eyebrows, mustache, or beard, even under ideal illumination conditions.

This problem is even more significant when tridimensional dynamic sequences are acquired.
In these cases, to overpower the ambient light, the illumination provides by 3D sensors (i.e., flash) is not
enough, and conspicuous lighting equipment is necessary for obtaining a constant illumination. Hence
to develop a system robust to light variations for facial expression recognition remains an important
goal. For this reason, in 2011, Stratou et al. [161] introduced a novel 3D dataset, called Relightable
Facial Expression 3D database (ITC_3DRFE), which enables experimentations, having photometric
information for studying the effect of illumination on FER. The author aimed to evaluate what kind of
lighting can improve the algorithm’s performances.

Despite recent advances in 3D technologies and devices, the acquisition of facial data can be
accomplished only in controlled environments, representing a common drawback of 3D recognition
systems. These solutions also require that the person stay still in front of the 3D scanning device for
a time range from some seconds up to a few minutes. Besides, multiple scans from slightly different
acquisition view-points are typically necessary to reconstruct parts of the face that can be affected by
self-occlusions from a particular view.

9.3. Neutral Scan

The neutral scan that is the subjects’ frontal face scan with the neutral expression is used to normalize
the facial features. Based on the assumption of the availability of the subject’s neutral scan during
testing, it is possible to consider two different scenarios: person-dependent and person-independent.
In a person-dependent approach, the feature distances of the neutral scan of a subject are subtracted
from the features of his/her expressive scans.

The neutral scan of the input subject can be taken for granted in laboratory applications, but not
in real-life ones. During case-studies, people gradually perform the six basic emotions from (and then
go back to) the neutral in approximately four seconds. On the contrary, during real applications,
the capture time is minimal, and facial expressions change very rapidly from one to another without
necessarily passing through the neutral one, making it challenging to acquire it. Berretti et al. [67] in
2010 proposed an approach capable of achieving state of the art results, without using neutral scans.
The same strategy was used by Fang et al. [8] in 2012. Three years later, Azazi et al. [48] proposed
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a person-independent approach. Their algorithm can recognize the facial expression in any arbitrary 3D
textured face image, without any prior information about the neutral face of the person. The strength
of this choice lies in the fact that it does not need a neutral face, taking advantage of its use for real-time
applications is required for real-life applications.

9.4. 2D VS 3D: Pros and Cons

The use of 3D facial data overcomes some problems encountered on solutions based on 2D models,
but, at the same time, it has some drawbacks that make three-dimensional techniques convenient only
for a set of specific applications. Table 7 lists the main advantages and disadvantages of 2D and 3D
methods, next highlighting the common challenges.

Table 7. Pros and cons of 2D and 3D methods.

Comparisons 2D 3D

Illumination changes, head
motions, aging, and facial make-up

2D images and videos suffer
from these variations, which can

affect performance

3D data is naturally robust to these variations,
immune to illumination and to some extent to

pose variations

Data acquisition Trivial acquisition, possible with
any device

Technology makes 3D acquisition easier and
easier

Amount of data available Large amount of data and public
datasets

Only a few datasets are available but are
meant to increase

Dimensional and computational
costs Very low costs Greater dimensionality and, consequently,

higher storage and computational costs

Facial surface measurements Not enabled, it is a difficulty
inherent in 2D modality 3D enables true facial surface measurements

Hidden acquisition cameras Available Not available

Performances for low-intensity AUs Poor performance, achieving
recognition rate lower than 3D

Good performance for lower face AUs and
low-intensity AUs

Acquisition and recognition Frontal view recognition Ear-to-ear frontal face acquisition

Neutral scanning No need for neutral scanning Often need for neutral scanning,
a disadvantage for real-time applications

Availability of databases with AUs
and dynamic facial samples

High availability of databases,
including public ones

Still low availability due to technical
problems. Increase in recent years, thanks to

the ease of 3D video capture

Real-time Easy for a small amount of data Not always good due to large
time consumption

The main common challenges that both 2D and 3D methods still have to overcome are listed below:

- Current publicly available databases include posed facial expressions; lack of spontaneous datasets
- Many features or facial points are marked by hand
- Algorithms usually depend on an excessive number of feature points
- Few works are fully automatic; many of the systems still require manual intervention
- Face images collected in commonly used facial expression databases ignore the effect of time

and age
- Due to the large-scale dissimilarity in the nature of the facial data, systems can accurately recognize

or classify expressions only for the human faces for which it is trained
- The detection of subtle AUs or the combinations of several co-occurring AUS is still challenging
- More expressions are needed to be handled by future facial expression recognition methodologies

as well as arbitrary and spontaneous ones, and micro expressions
- All the expressions have to be recognized with equal accuracy

9.5. Next Steps

Considering the different approaches analyzed in the paper, the highest recognition rates were
obtained by working on three-dimensional data, or with multi-modal algorithms using 2D and 3D data.
These results confirm the advantages of using 3D images or videos compared to the most common
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2D methods. Based on the amount of data available, it is possible to decide whether to apply a deep
learning technique to FER. Neural networks need a large amount of labeled data and considerable
processing power, but allow one to perform feature extraction and their classification in an end-to-end
way, reaching a state-of-the-art level of recognition accuracy. Alternatively, a conventional approach is
recommended, and the most widespread is the feature-based algorithm, whereas fewer works focused
on model-based or multimodal-based approaches. It is used both for the automatic AU recognition
and for the basic emotions, obtaining better performances for the latter. The AUs are independent
of the interpretation, and therefore more suitable to describe spontaneous facial behaviors. For this
reason, thanks also to the technological development and the birth of the first databases that consider
3D dynamic and spontaneous facial expressions, in the future works we could expect a more in-depth
study of the action units.

Technological advances have allowed the development of research in 3D facial expression analysis.
A large number of works still use databases for static 3D FER, most with posed and exaggerated
expressions of the six basic emotions, in contrast to real life. The analysis of facial expression dynamics
(4D FER) is increasingly expected shortly, along with the other significant challenge of recording
spontaneous behavior, “captured in a range of contexts having both high spatial and temporal
resolution in real-time” [9]. The next step will be to get closer to the real world. Nowadays, with the
acquisition and processing tools available, accessible to all at affordable prices, it is easier to work with
three-dimensional images and videos. The transition from 2D to 3D, although with some drawbacks
above all related to dimensional and computational costs, is almost complete. The next step will see
the use of 4D with the introduction of the variable time, with the need to speed up the recognition
algorithms and the creation of new databases.

Once the initial problems related to the amount of data needed and the required computing power
have been overcome, a combination of deep-learning algorithms improved the performance of FER. In the
future, it will be possible to integrate deep learning or other advanced algorithms with Internet-of-Things
sensors, improving the current recognition rates and including spontaneous micro-expressions.

10. Conclusions

This survey explores and aims to group and organize all the works and the various methods that
tried to face the problem of facial expression recognition through the analysis of human emotions,
focusing on 3D solutions. Traditional and deep-learning approaches for facial expression analysis
are detailed, with a further distinction between data modality (2D, 3D, and multi-modal 2D+3D),
expression granularity (prototypical facial expression and facial action units), and temporal dynamics
(still images and image sequences). With this study, we want to provide a guideline for newcomers
who will address this topic, and take stock of neural networks, taking advantage of the golden age of
AI. The most important works of recent years have been presented, highlighting the pros and cons and
the best outcomes in the entire facial expression recognition field.

The overall recognition accuracy of the expressions is included in a range between 60% and 90%.
Some expressions, like anger and fear, generally have the lowest recognition rates. Indeed, the motions
of these expressions are moderate compared to happiness or surprise, and thus more challenging to
recognize. Regarding the action units, the experiments reached recognition rates in a broader range,
between 50% and 95%. The number of features for each AU to be detected will be increased to achieve
more accurate results, and the neural networks will gradually be used more and more in the field of
facial expression recognition.

Despite the higher dimensional and computational costs, and the greater difficulty of working
in real-time, 3D methods have achieved better recognition rates than the more common 2D methods.
For this reason, it is essential to use a dataset that contains 3D facial models or 3D video sequences,
such as BU-3DFE, Bosphorus, BU-4DFE, D3DFACS, UPM-3DFE, BP4D, or a private one. Predicting
the expression of the human face in real-time requires recognition as accurately and as quickly as
possible, but it becomes quite complicated when compared to the static images because a video is
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a collection of many frames, not just a single frame. Soon the recognition of emotions in real-time
will be beneficial in the field of artificial intelligence research, with the need to recognize as many
emotions of different people in one frame and detect mixed emotions. Many researchers developed
algorithms that recognize the six basic expressions, but fewer contributions investigated other types of
facial expressions or action units. For applications able to work in uncontrolled conditions, further
improvements dealing with FER analysis must be done, enlarging the set of facial expressions and
considering spontaneous emotions. Reducing the computational time and memory usage are the
other two objectives. The primary motivation behind this is the urgent need to have robust and useful
applications, which can be used in the real-world.

In our future work, we plan to include deep learning techniques, working on a private database
containing three-dimensional videos and psychological validation of labeled emotions, to perform
emotion recognition in the wild.
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