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Abstract: In this work, the corrosion mechanism of a Cu-5Zn-5Al-1Sn alloy was examined in a 3.5 wt.%
NaCl solution. At the same time, the effect of a cysteine inhibitor was also investigated through
a multi-analytical approach. Electrochemical results suggested that inhibition efficiency increased with
the increase of cysteine concentration. From potentiodynamic polarization (PD) analysis, a decrease
in corrosion current and corrosion potential shift toward a more negative direction was observed.
The potential difference between the blank and inhibited surface was found to be 46 mV, which is
less than 85 mV, revealing a mixed type inhibition effect of cysteine for the Cu-5Zn-5Al-1Sn alloy.
The inhibition mechanism of cysteine (Cys) and the effect of alloying elements were investigated by
fitting experimental impedance data according to a projected equivalent circuit for the alloy/electrolyte
interface. A Langmuir adsorption isotherm was proposed to explain the inhibition phenomenon
of cysteine on the Cu-5Zn-5Al-1Sn alloy surface. Surface morphology observation confirmed that
the Cu-5Zn-5Al-1Sn alloy was damaged in 3.5 wt.% NaCl solution and could be inhibited by using
the cysteine inhibitor. The impact of alloying elements on the corrosion mechanism was further
examined by surface analysis techniques such as X-Ray photoelectron spectroscopy (XPS)/Auger
spectra, the results of which indicated that the corrosion inhibition was realized by the adsorption of
the inhibitor molecules at the alloy/solution interface.
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1. Introduction

In recent years, research on copper alloy corrosion have garnered more attention in the industrial
sector since copper and its alloys form a number of industrially important materials [1]. Based on alloying
elements, the important properties range from good thermal properties, electrical conductivities,
formability, and visual appearance, to good corrosion resistance [2–6]. Cu-5Zn-5Al-1Sn (Cu5Zn5Al1Sn)
consists of 89 wt.% copper, 5 wt.% aluminum, 5 wt.% zinc, and 1 wt.% tin, with the latter usually used
for the front covering due to its shiny and golden appearance [7]. The features of the microstructure of
the Cu5Zn5Al1Sn alloy have been studied by comparing it with pure copper [8]. The microstructure of
Cu5Zn5Al1Sn owns numerous properties that are promising from a corrosion resistance perspective.
These properties consist of meaningfully smaller grain size (2.1 µm versus 10.4 µm) and a higher
segment of coherent twin boundaries [8]. Smaller grain size and a closer, well-ordered grain boundary
illustrate the relatively high corrosion resistance of the alloy [8–10]. The Cu5Zn5Al1Sn alloy forms
relatively poorly soluble oxide films with its constituent metals in the presence of chlorides when
exposed to long-term outdoor and short-term laboratory conditions [11]. Even though corrosion
resistant behavior of this golden alloy is much better than that of other comparable alloys, it is found
to be easily corroded in acidic media. Similarly to Cu metal, Cu2O and Cu2(OH)3Cl are the principal
corrosion products produced from the Cu5Zn5Al1Sn alloy in marine outdoor conditions, with the
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latter largely present at the outmost surface of both Cu and the Cu5Zn5Al1Sn alloy [7,11]. Although
a big difference exists in their corrosion rates, the corrosion process is highly administered by the
molecular diffusion between the metal surface and the electrolyte [12].

One approach to prevent corrosion of Cu and its alloy is the use of corrosion inhibitors [13,14].
Among the corrosion inhibitors used in practice, cysteine (Cys) is found to be widely employed for Cu
protection in various media [15,16]. Cysteine is an amino acid that contains a –SH group in addition
to the amino group; this mercaptan group is strongly attracted to copper. A. A. Nazeer et al. have
studied the inhibitive effect of cysteine on a Cu10Ni alloy in sulfide containing atmospheres [16].
Based on this study, cysteine can act as a mixed-type inhibitor and cysteine molecules are adsorbed on
the alloy surface. The inhibition mechanism of cysteine with copper-based materials is characterized
by the formation of a stable Cu (I)–cysteine complex [17]. As confirmed by many researchers, the better
corrosion inhibition effect of cysteine relies on its surface adsorption through sulfur atoms [18,19].
I. Milošev et al. on the other hand have studied different amino acids as inhibitors for copper in acidic
environments and confirmed that cysteine has higher efficiency. Based on their molecular dynamic
simulation results, it has been suggested that the –SH group is in charge of the good protective
effect of cysteine [20]. G. M. Abd El-Hafez et al. have also investigated the protective action of
methionine, N-acetyl cysteine, and cysteine for a Cu-10Al-5Ni alloy in 3.5 wt.% NaCl solution and they
concluded that cysteine showed higher efficiency ascribed to the existence of the mercaptan moiety [21].
On the other hand, our previous study regarding the effect of cysteine on copper metal in corrosive
environments also showed its effectiveness on corrosion inhibition.

It can be seen from the above investigated results cysteine can be a very promising corrosion
inhibitor for copper and its alloys, and no information has been found on the action of cysteine for the
inhibition of Cu5Zn5Al1Sn alloy corrosion. Furthermore, the interaction between the cysteine molecule
and the alloy surface in chloride-containing solution has not yet been investigated. In the present paper,
the corrosion and corrosion inhibition of the Cu5Zn5Al1Sn alloy in chloride solutions is investigated.
The influence of various cysteine concentrations is also taken into account. The performance of
the studied inhibitor is evaluated using various electrochemical and surface analysis techniques.
The inhibition efficiency, surface behavior, and adsorption mechanism are clearly analyzed and
summarized using the obtained experimental results.

2. Materials and Methods

A commercial Cu5Zn5Al1Sn alloy in ther form of a 1 mm thick sheet (89 wt.% Cu, 5 wt.% Zn,
5 wt.% Al, and 1 wt.% Sn, equivalent to 84 at.% Cu, 11 at.% Al, 4.5 at.% Zn, and 0.5 at.% Sn) was
obtained from Aurubis (Hamburg, Germany). The specimens were wrapped in epoxy resin, exposing
a 1 cm2 surface area. Before any test, the alloy was ground by silicon carbide paper from #800 to #2000
and then successively polished with diamond paste to 2.5, 1.5, and 0.5 µm, respectively. The diamond
polished specimens were rinsed with analytical grade ethanol and dried in air.

3.5 wt.% sodium chloride (NaCl) was used as the corrosive solution. It was made from an analytical
grade reagent of NaCl and deionized water. Cysteine (KC90277-100gm, Suzhou tianke Co. Ltd., Suzhou,
China) was used as the inhibitor and stock solution of 1 × 10−2 M was prepared by mixing a suitable
amount of cysteine in distilled water. Solutions with cysteine concentrations of 1 × 10−3 to 1 × 10−5 M
were set from the stock solution using a dilution method.

The electrochemical cell used was a three-electrode glass cell with a capacity of 400 mL.
A silver/silver chloride electrode (Ag/AgCl) was used as the reference electrode. All potential values in
the manuscript were referred to using Ag/AgCl. A flat platinum sheet (4 cm2) was used as the counter
electrode. An electrochemical workstation Gamry (Reference 600) with a high input resistance of 1014 Ω,
a current detection limit of 60 pA, and a current resolution of 20 aA was used to conduct electrochemical
measurements. Prior to the tests of electrochemical impedance spectroscopy (EIS), the specimen was
deepened in the test solution for 60 min. EIS was carried out under potentiostatic conditions in the
frequency range of 100 kHz to 0.01 Hz at open circuit potential (OCP) with an amplitude of 5 mV.
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The EIS data was analyzed by Zsimpwin software to determine a simulated circuit and respective
parameters. Tafel curves were obtained from potentiodynamic polarization study which was performed
by varying the electrode potential automatically from −800 mV to +400 mV with respect to OCP at
a rate of 1 mV/s.

An FEI Quanta 250 scanning electron microscope was used to observe the surface morphology of
the Cu5Zn5Al1Sn alloy specimen with and without the cysteine inhibitor in the 3.5 wt.% NaCl solution.
X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) measurements were
performed on an ESCALAB 250Xi spectrometer with Al Kα X-ray (1486.6 eV) irradiation as the photo
source. Binding energy (BE) was calibrated against the C1s line of the aliphatic carbon contamination
set at 284.8 eV. Xpspeak41 software was used for data fitting, which was carried out graphically within
the constraints of Gaussian peak shapes.

3. Results

3.1. Potentiodynamic Polarization

Figure 1 presents Tafel polarization curves for the Cu5Zn5Al1Sn alloy exposed to 3.5 wt.% NaCl
solution with and without the Cys inhibitor. The trend of polarization curves suggests that a low
amount addition of cysteine (10−4 M, 10−5 M) in 3.5 wt.% NaCl solution moves the curves to the lower
current region in the anodic potential route compared with the blank solution. Nevertheless, the higher
concentration (10−3 M, 10−2 M) of the inhibitor in solution causes a shift of the curves to a more cathodic
potential region and decreases the corrosion current meaningfully. Consequently, cysteine influences
both the cathodic and anodic reactions. Hence, cysteine is shown to act as a mixed-type inhibitor to
the Cu5Zn5Al1Sn alloy in 3.5 wt.% NaCl and to retard majorly cathodic corrosion reactions [22–25].
The corrosion current density (Icorr) and corrosion potential (Ecorr) were calculated by fitting the
experimental results with Gamry Echem Analyst software 5.61 and listed in Table 1. The inhibition
efficiency (µ%) was also obtained by Equation (1) using parameters listed in Table 1 [26].

µ% =
Icorr− Icorr(inh)

Icorr
× 100% (1)Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 17 
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Table 1. Polarization parameters for the Cu5Zn5Al1Sn alloy measured in 3.5 wt.% NaCl solution in the
absence and presence of different concentrations of cysteine.

Cysteine
Concentration

Ecorr (V versus
Ag/AgCl)

βa
(mV/Decade)

βc
(mV/Decade)

Icorr
(µAcm−2)

µ%

Blank (0) −0.280 69.18 102.3 3.44 -
10−5 M −0.226 77.77 127.2 1.84 46.5
10−4 M −0.247 48.5 63.86 1.78 48.2
10−3 M −0.292 61.23 56.96 0.483 85.9
10−2 M −0.326 23.71 19.49 0.094 97.2

In this equation Icorr (inh) and Icorr are the current densities of the working electrode in the
3.5 wt.% NaCl solution with and without cysteine, respectively.

The Icorr is inversely related to the inhibitor concentration, i.e., an increase in inhibitor
concentration results in a lower value of Icorr. This is probably due to the improved protection
of the Cu5Zn5Al1Sn alloy by cysteine molecules. Therefore, the mitigation of the Cu5Zn5Al1Sn alloy
deterioration in 3.5 wt.% NaCl solution may associated with the development of a protective layer from
the adsorbed inhibitor species on the alloy surface [27]. The adsorption layer of cysteine molecules on
the alloy surface can hinder the movement of corrosive species, resulting in a reduction in corrosion
rate [2,23,24,28,29].

It is evident from Table 1 that both βc and βa are varied on the addition of the inhibitor. From this
behavior, it is suggested that both anodic and cathodic reactions are retarded by the protective
layer formed by inhibitor molecules and the alloy/electrolyte interface [3,23,29]. In addition, βc
values are greater than βa values at all inhibitor concentrations and the variation in βc with the
inhibitor concentration is greater than the variations in βa. Both the results give the same evidence
that cysteine is more efficient in inhibition of cathodic reactions than that of anodic reactions [3,30].
The efficiency of cysteine increases with its concentration and reaches a maximum value of 97.2% at
the concentration 10−2 M.

3.2. Electrochemical Impedance Spectroscopy

Nyquist and Bode diagrams of the Cu5Zn5Al1Sn alloy in 3.5 wt.% NaCl solution with and
without different amounts of cysteine are illustrated in Figure 2a,b, correspondingly. From Figure 2a,
the Nyquist diagram for Cu5Zn5Al1Sn alloy in 3.5 wt.% NaCl solution contains a capacitive loop at
intermediate frequency and a straight line in the low frequency region. A straight line at low frequency
area may be attributed to the presence of the Walberg constant as a result of the movement of soluble
metal species from the alloy surface to the bulk solution [23]. The diameter of the capacitive loop rises
in the presence of Cys and the straight line in the low frequency region is removed at higher Cys
concentrations, which may be attributed to the inhibitive effect of Cys on the corrosion process [31].
The results of Bode plots (Figure 2b) show that the frequency range with maximum phase becomes
larger with increasing Cys concentration. There is a shift in the phase maximum to a lower frequency
region and the phase angle is raised to about 80◦, in the inhibitor concentration of 10−2 M. These results
suggest that the protective ability of the Cu5Zn5Al1Sn alloy is increased with inhibitor concentration,
showing that inhibitor particles effectively adsorb on the alloy surface [32,33].

The results of the EIS experiment were fitted with a simulated circuit (Figure 3) and the value
of electrical elements that make up the equivalent circuit are presented in Table 2. The equivalent
circuit parameters are solution resistance (Rs), film resistance (Rf), film capacitance (Qf), charge transfer
resistance (Rct), double layer capacitance (Qdl), and Warburg resistance (W), which result from ionic
diffusion of the corrosion product to the electrode surface. The EIS fitting result of the Cu5Zn5Al1Sn
alloy in blank 3.5%wt NaCl solution shows a Warburg resistance and a lower value of Rct, as shown in
Figure 2a and Table 2, respectively. The Warburg impedance is included to account for the diffusion of
corrosion products to the bulk solution and/or dissolved oxygen to the electrode surface. With a lower
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Cys concentration, the Warburg impedance remains unchanged, and Rf and Qf are observed to address
the film formed between the Cys molecules and alloying elements. The presence of W is attributed to
the low inhibition efficiency of the lower concentration of Cys, which may be related to the thinner and
unstable film formed which can be easily dissolved to the bulk solution. When more than 10−4 M Cys
is added to the solution, the Warburg impedances vanish and the Rct values become larger. This shows
the presence of high resistance to transfer charge from bulk solution to specimen surface and/or and
specimen surface to bulk solution; hence, the diffusion process is controlled. This may be attributed to
the development of a thick and protective Cys/metal film on the alloy surface.
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(a), with 10−5 M Cys, R(Q(R(Q(RW)))) (b) and 10−4–10−2 M Cys, R(Q(R(QR))) (c). Legend: solution
resistance (Rs), film resistance (Rf), film capacitance (Qf), charge transfer resistance (Rct), double layer
capacitance (Qdl), and Warburg resistance (W).

Table 2. Impedance parameters for the Cu5Zn5Al1Sn alloy in 3.5 wt.% NaCl with and without different
concentrations of cysteine obtained by using ZSimpWin 3.50.

Cys Conc. (M) Rs (Ω) Qf Rf (Ω) Qct Rct (KΩ) W Rp (KΩ) µ%

Blank 2.668 1.55 × 10−4 692.7 0.0032 0.695 -
10−5 3.224 8.09 × 10−5 588.1 1.64 × 10−4 1169 0.0053 1.197 40.76
10−4 2.894 1.05 × 10−4 212.7 1.61 × 10−4 1.986 2.201 67.78
10−3 3.345 8.24 × 10−5 2382 1.10 × 10−4 6.399 8.784 91.92
10−2 3.067 5.28 × 10−5 12.02 4.41 × 10−6 19.940 19.955 96.44

Inhibition efficiency was obtained by using Equation (2) [34–36], the values of which are listed in
Table 2. The inhibition efficiency of Cys for Cu5Zn5Al1Sn alloy corrosion in 3.5 wt.% solution is seen to
increases with its concentration, and a maximum inhibition efficiency value of 96.44% is recorded for
the case of the Cys concentration being 10−2 M. The inhibition efficiencies obtained from polarization
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and EIS investigations are similar and follow the same trend, which implies that the explanation for
Cu5Zn5Al1Sn alloy corrosion characteristics on the basis of Icorr and Rp could be well-thought-out as
valid and reliable.

µ% =
Rp(inh) −Rp

Rp(inh)
× 100% (2)

where µ, Rp, and Rp (inh) are inhibition efficiency, and polarization resistance for uninhibited and
inhibited surfaces, respectively.

The inhibition efficiency results obtained from potentiodynamic (PD) and EIS experiments were
used to observe the adsorption behavior of cysteine on the Cu5Z5Al1Sn alloy surface. Therefore,
different adsorption isotherms were tested to determine the best suitable model to explain surface
phenomena [23,37,38].

C
θ
=

1
Kads

+ C (3)

θ =
RT
b

lnKads +
RT
b

lnC (4)

In this equation, C, θ, Kads, and b are inhibitor concentration, the inhibitor’s surface coverage,
the equilibrium constant related to the interfacial molecular adsorption-desorption phenomena,
and a constant relevant to the properties of both adsorbent and adsorbate in the Temkin
model, respectively.

Figure 4 shows plots of Langmuir and Temkin adsorption isotherms determined by the respective
equations listed in Equations (3) and (4), respectively. As observed in Figure 4a, a slope of 0.99 with
R2 = 0.99 derived from EIS and PD results which is close to unity can be observed from a C/θ versus
C linear plot for the case of the Langmuir adsorption isotherm. On the other hand, a regression of
0.89 and 0.83 acquired from EIS and PDP, respectively, was obtained from the plot of θ versus ln C
based on the Temkin adsorption isotherm (Figure 4b). By comparing the two isotherms, the Langmuir
adsorption isotherm, which was seen to have less fitting error, was chosen as the more suitable model
to describe the surface inhibition mechanism of cysteine for Cu5Z5Al1Sn alloy corrosion.Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 17 
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3.3. SEM Analysis

Further analysis was performed to examine the surface morphology and elemental characterizations
and their effects on corrosion behavior. Figure 5 illustrates the SEM images of the Cu5Zn5Al1Sn alloy
exposed to 3.5 wt.% NaCl solution without and with different amounts of Cys. However, the uninhibited
copper alloy surface (Figure 5b) is highly corroded and becomes rough as a result of the aggressive
attack the from corroding solution. A very different surface morphology is observed in the presence
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of 10−4 M Cys as, shown in Figure 5c. The inhibitor molecules, which partly cover the surface, are
seen to be formed. By contrast, Figure 5d does not show any corrosion attack and has almost the same
morphology as the unexposed surface, suggesting that the addition of 10−2 M Cys leads to a more
inhibited corrosion, the surface of which is almost the same as an unexposed polished one (Figure 5a).
Thus, it is obvious that corrosive attack is considerably restricted by 10−2 M Cys. It is assumed that
inhibitor molecules adsorb on the alloy surface and a smoother surface forms compared to the surface
treated with the blank 3.5 wt.% NaCl solution.
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3.4. XPS and Auger Results

In order to further understand the surface composition of the uninhibited and inhibited copper
alloy, high-resolution XPS Cu2p and Auger CuLM2 spectra of the Cu5Zn5Al1Sn alloy surface without
and with the addition of various concentrations of cysteine were recorded and are shown in Figure 6.
The Cu 2p profiles of Cu(0) and Cu(I) are similar, and as a result it is difficult to use the XPS Cu 2p
spectrum alone to differentiate them, whereas the binding energy of the Auger peak of Cu(I) is about
2 eV higher than the Auger peak of Cu(0), meaning the CuLM2 spectrum is necessary to further
investigate the valence state of copper. In all cases, there are two deconvoluted peaks of Cu2p 3/2 at
different binding energies (Figure 6a). The interpretation of the peaks is different as the reaction taking
place on the alloy surface is not same in the blank and Cys-inhibited solutions. In the blank solution,
the corrosion products may exist as the form of oxides by reactions with the dissolved oxygen. While in
the presence of inhibitors, the inhibitor particles have the opportunity to participate in surface reaction.
In blank 3.5 wt.% NaCl solution, the deconvoluted Cu2p peaks at 932.99 and 934.83 eV (Figure 6a)
may be assigned to Cu/Cu+ and Cu2+, respectively. In addition to the XPS result, the Auger spectrum
obtained in the blank solution shows an Auger peak at 570.11 eV, which is a typical characteristic
of cuprous ion (Cu+), with a band broadening to the lower binding energy. The band broadening
is an indication of the presence of metallic copper, which may be attributed to the uncovered alloy
surface. Generally, the XPS and Auger results of the blank solution show the presence of Cu, Cu+, and
Cu2+ species on the alloy/solution interface, which may be attributed to the uncovered alloy surface.
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With regard to the Cu2p 3/2 obtained after immersion in solution with 10−4 M Cys, the deconvoluted
peaks are located at 932.53 and 934.41 eV, respectively. Similarly, when the surface is inhibited with
10−2 M Cys, the Cu2p 3/2 peak is deconvoluted into peaks located at 932.62 and 934.10 eV. The peaks
may be assigned to Cu/Cu+ and Cu2+ ions, respectively, in both cases [39–42]. In the solution containing
different concentrations of cysteine (10−4and 10−2 M), the Auger peaks obtained at 571.05 and 571.02 eV
may both be assigned to Cu+. The binding energy of the Cu+ peak on the Auger spectra increases
in the presence of Cys, which may be associated with the formation of a film containing organic
inhibitor molecules typically centered at higher binding energies than the binding energy for the oxide
species [43–47]. Both in the absence and presence of Cys, the Cu2p XPS spectra demonstrate the Cu (II)
satellite peaks attributed to the presence of copper (II). Furthermore, there is no Auger peak related
to Cu2+ other than a band broadening in the blank solution, which may be ascribed to the lower
content of the Cu2+ species. The uninhibited alloy surface and that of the inhibited one with lower Cys
concentration (10−4 M) have a higher peak intensity, which could be attributed to the poor coverage
area of corrosion products and the metal/inhibitor film, respectively [48].
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High resolution XPS Zn2p spectra (Figure 7a) show two peaks for the alloy surface, both without
and with different concentrations of Cys, which may be assigned to Zn2p 3/2 and Zn2p 1/2. The Zn2p
3/2 peak at 1021.75 and 1021.76 eV in the blank and 10−4 Cys inhibited surfaces may be assigned
to Zn2+, which is associated with the presence of corrosion product [49–51]. However, the peak
observed on the surface inhibited with 10−2 M Cys is almost negligible due to low Zn2+ species on
the alloy surface. This phenomenon indicates that the alloy surface is not fully protected by inhibitor
molecules in the presence of lower cysteine concentration. Obviously, the dezincification rate of the
Cu5Zn5Sn1Al alloy is strongly bounded by the surface film/inhibitor film of the alloy surface. A more
dense/integrated surface film leads to a lower dezincification rate. It can also be deduced that the
formed inhibited film may rise from other alloying metals of the Cu5Zn5Sn1Al alloy, which will
probably be a copper-cysteine film.

The Sn3d peak may be deconvoluted into two different peaks: Sn5/2 and Sn3/2. The peaks centered
at 486.65 eV, 486.77 eV, and 486.58 eV correspond to the Sn5/2 peaks, which were obtained in blank
solution, with 10−4 M Cys and with 10−2 M Cys, respectively (Figure 7b). In all cases, the peak values
correspond to ionic tin (Sn4+) [39,52–56], which may indicate the formation of the compound of Sn
on the alloy surface, meaning, therefore, the contribution of Sn2+ to the surface film should not be
ignored. In addition to the main Sn3d peaks, satellite peaks at higher binding energies of 499.05 and
499.08 eV appear for the blank and the surface-inhibited surface with lower Cys concentration (10−4 M),
respectively, which may be attributed to the presence of more tin ion contents on the alloy surface [57].
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In the meantime, the atomic ratio shown in Table 3 reveals that the inhibitor free alloy surface contains
a greater amount of tin. On the other hand, the alloy surface inhibited with 10−2 M Cys contains an
almost insignificant amount of SnO2, which may result in the development of the inhibitor film and
prevent the formation of the corresponding metal oxide.
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Table 3. Composition (atomic %) of the surface of Cu5Zn5Al1Sn alloy samples before and after the
addition of inhibitors in a 3.5 wt.% NaCl solution.

Element
Atomic %

Blank Blank + 10−4 M Cys Blank + 10−2 M Cys

C1s 37.9 33.54 49.4
N1s 2.77 4.52 7.78
O1s 36.99 37.07 29.38
S2p 0 2.1 3.29

Cu2p 13.22 14.42 9.36
Zn2p 7.98 7.26 0.63
Sn3d 1.14 1.08 0.16

The deconvoluted C1s spectrum illustrated in Figure 8a for the golden alloy in the absence of
cysteine may be attributed to three peaks which indicate three chemical forms of the C element present
on the alloy surface. The three peaks described above are located at 284.75, 285.73, and 288.59 eV.
The component at 284.6 eV is assigned to the non-oxidized carbon containing (C–C) composition.
Moreover, the features at BE values of 285.73 eV and 288.59 eV can be assigned to the groups containing
a carbon–oxygen bond, i.e., a C–O group like ether or hydroxyl, and adventitious carbon which is
usually found on the metal surfaces and results from adsorbed oxidized carbonaceous species from the
atmosphere, respectively [44,45,58]. For the case involving the presence of 10−4 M cysteine, the C1s
spectrum (Figure 7a) also shows three peaks at 288.54, 286.38, and 284.88 eV, and the three deconvoluted
peaks for the case of 10−2 M Cys are located at 288.68, 286.21, and 284.66 eV, which match with the
COO−, C−NH2, and C− SH groups, respectively [39,40]. The increment of the atomic ratio of carbon
(Table 3) of the 10−2 M Cys inhibited surface can be ascribed to the existence of the high amount of
cysteine on the alloy surface.
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The deconvoluted O1s spectra of the Cu5Zn5Al1Sn alloy in the 3.5 wt.% NaCl solution without
and with the Cys inhibitor are shown in Figure 8b. There are three distinct peaks for the blank alloy
surface in 3.5 wt.% NaCl solution, with the first peak located at 530.74 eV being attributed to O2−,
which could be related to oxygen atoms bound to the constituent metal oxides [48,59,60]. Since the
major corrosion product on the outermost part of the alloy is derived from copper, the dominant
metal oxide relies on copper [8], whereas the contribution of other constituent metals (Zn, Sn, and Al)
cannot be ignored. The presence of Zn and Sn oxides are confirmed by their respective XPS spectrum.
On the other hand, it is impossible to obtain peak analysis for Al (neither Al2p nor Al2s can be used)
because of the peak overlapping with Cu3p and Cu3s [8]. The second peak observed at 531.57 eV
may be ascribed to OH−, which can be associated with the occurrence of hydrous copper, zinc, tin,
and aluminum oxides.

The third peak at 532.33 eV may be assigned to atmospheric oxygen, which is similar to the
carbon contamination [42]. With the addition of 10−4 M of Cys, the O1s peak is deconvoluted into
three peaks located at 530.74, 531.48, and 532.09 eV, which could be assigned to metal oxides, hydrous
metal oxides, and C=O or –CON arising from cysteine molecules, respectively. The presence of metal
oxide can be ascribed to partial coverage of the metal surface by the inhibitor film [42,61,62]. The O1s
spectrum of the sample containing 10−2 M Cys may be deconvoluted into three peaks at 531.12, 531.87,
and 532.79 eV, which can be attributed to C-O from carboxyl and C=O or -CON, respectively [39].
In contrast to the uninhibited and the 10−4 M Cys inhibited alloy surface, the alloy inhibited with the
high Cys (10−2 M) concentration shows no peak associated with the presence of metal oxide. It is
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indicated that the alloy surface is fully covered by the inhibitor film after the addition of 10−2 M
cysteine [63].

Figure 8c shows the deconvoluted S2p spectrum of Cu5Zn5Al1Sn alloy in the absence and
presence of cysteine. There is no peak found on the S2p spectrum of the blank Cu5Zn5Al1Sn alloy
in 3.5 wt.% NaCl attributed to the nonappearance of any sulfur species. In the presence of 10−4 M
Cys, two peaks located at 162.95 and 167.95 eV can be recognized, and for the case of 10−2 M Cys,
the three deconvoluted peaks are located at 162.45, 163.42, and 168.1 eV. The lower binding energies
(162.95 and 162.45) may be assigned to the metal–sulfur interaction and the upper ones (167.95 and
168.10) are ascribed to the -SH group of the cysteine molecule [42,61,63,64]. The deconvoluted peaks at
162.45 and 163.42 eV obtained from the 10−2 M Cys inhibited surface result from band broadening
and because of the presence of more sulfur content they are considered to be peaks derived from the
same component [43,65]. The intensity of S2p peaks and percentage ratio of S (Table 3) increases with
cysteine concentration, suggesting that the efficiency of cysteine is concentration-dependent and more
Cys molecules are adsorbed on the Cu5Zn5Al1Sn alloy surface at the higher inhibitor concentration.

The N1s spectrum for the uninhibited/inhibited surface has only one deconvoluted peak, as shown
in Figure 8d, for all cases. The peak at 400.02 eV obtained from the blank solution can be assigned to N
raised from the atmosphere during sample preparation. The peaks at 399.65 and 399.37 eV are obtained
from 10−4 M and 10−2 M, respectively, can be assigned to the secondary nitrogen (–NH) attributed to
the presence of organic matrix belonging to cysteine [39]. The peak beyond 400 eV in the N1s spectra of
the inhibited surfaces is absent, which shows that there is no -N+H− group [66]. Therefore, the above
phenomenon indicates that the adsorption site of cysteine on the surface of the studied alloy does
not rely on the N group. An atomic ratio of nitrogen (Table 3) in a surface inhibited with 10−2 M Cys
confirms that the greater amount of inhibitor species are adsorbed on the alloy surface, and hence a
better protection effect is displayed.

4. Discussion

The corrosion characteristics of the Cu5Zn5Al1Sn alloy in 3.5 wt.% NaCl solution were examined
by different electrochemical and surface analysis techniques. It has been proven from electrochemical
tests that the corrosion of the Cu5Zn5Al1Sn alloy in 3.5 wt.% NaCl solution decreases on the addition
of the cysteine inhibitor ( Figure 1; Figure 2). The effect of cysteine concentration was also investigated
and the highest inhibition efficiencies of 97.2% and 96.44% were obtained at a cysteine concentration of
10−2 M based on potentiodynamic and EIS investigations, respectively. Morphological analysis based
on SEM shows a better protected alloy surface in the presence of the highest concentration (10−2 M)
of cysteine. Furthermore, composition and the inhibition mechanism were further determined by
carrying out elemental analysis using XPS techniques.

From potentiodynamic testing it was determined that the current density decreases upon addition
of the inhibitor, which can be accredited to the inhibitive effect of cysteine. In addition, the corrosion
potential was observed to shift to the negative direction for the inhibited samples, with a potential
difference between the blank and inhibited samples of less than 85 mV, which can be ascribed to
the mixed inhibitive effect of cysteine for the Cu5Zn5Al1Sn alloy in 3.5 wt.% NaCl solution and
which has a greater effect to retard cathodic reaction [33,67]. A diversity of adsorption isotherms
like Langmuir, Temkin, Freundlich, and Frumkin are often used to model experimental results to
understand surface reactions [23,37]. An adsorption model to describe the inhibition mechanism of
cysteine of the Cu5Zn5Al1Sn alloy in 3.5 wt.% NaCl with different concentrations of cysteine was
generated using the data obtained by PDP and EIS experiments. In this paper, the Langmuir and
Tamkin adsorption isotherms (Figure 4) have been used to find out the most appropriate model to
describe the inhibition mechanism of cysteine for the copper alloy. The Langmuir adsorption isotherm
is proposed as a suitable model to describe the inhibition mechanism of cysteine on the Cu5Zn5Al1Sn
alloy surface, which can be accredited to the adsorption of inhibitor particles on the active site of the
Cu5Zn5Al1Sn alloy substrate [68,69].
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In the blank solution, the appearance of Warburg impedance in the simulated circuit of the EIS
result (Figure 3) reflects the diffusion process of the ionized alloy molecules from the alloy surface
to the bulk solution, or the diffusion process of dissolved oxygen from the wholesale solution to the
superficial of the alloy [70,71]. Composition analysis does help to study the corrosion phenomena of
the Cu5Zn5Al1Sn alloy in 3.5 wt.% NaCl solution. A Cu2p 1/2 peak at 932.79 eV and Auger CuLMM
peak at 570.11 eV with band broadening to low BE direction are observed and may be attributed to the
presence of both metallic and ionic copper as corrosion products. There are other alloying elements
present on the alloy surface which illustrate their involvement in the corrosion process. As can be
seen from Table 3, the ionic ratio of Zn and Sn ions in the blank solution are higher than that for the
inhibited surface. This can be ascribed to the ionization of Zn and Sn species in blank solution; they
become bounded by the inhibiter film after the addition of cysteine. The damaged surface can also be
observed from the SEM image (Figure 5b), which strengthens the results of the electrochemical and
XPS experiments.

A relatively protected surface appears after the addition of a small amount of cysteine.
The electrochemical experiments (PDP and EIS) show the inhibitive effect of cysteine (Figures 1
and 2), which is confirmed by the decrease in current density and an increase in impedance in the
potentiodaynamic polarization and EIS curves, respectively. On the other hand, the inhibition efficiency
obtained by electrochemical parameters of both potentiodynamic polarization and EIS is seen to
increase with the increase in inhibitor concentration. There are S and N constituents in the inhibited
surfaces, indicating the presence of the inhibitor film. However, the atomic ratio of this species is lower
compared to a surface which has a high cysteine concentration. As for the alloying elements, the atomic
ratio of Cu2p increases and the atomic ratio of Zn and Sn decreases in the presence of 10−4 M cysteine,
inferring the bounding of the alloy surface by the Cu-inhibitor film.

The atomic ratio of alloying elements other than Cu decreases with the addition of cysteine and
becomes negligible at higher cysteine concentration (10−2 M), which shows that the inhibitor film is
mainly formed by the dominant alloy constituent (Cu) [8] and the inhibitor. In addition, the surface
inhibited with 10−2 M cysteine concentration shows an almost similar morphology, with an unexposed
polished surface surmising a good and almost full coverage of the alloy by cysteine molecules by
forming a metal/inhibitor film. It is difficult to obtain XPS data for Al due to peak overlap with Cu3s
and Cu3p. Schematic representation of the probable corrosion mechanism of Cu5Z5Al1Sn alloy in
3.5 wt.% NaCl solution with and without the Cys inhibitor is illustrated in Figure 9. As mentioned
above, the existence of alloying elements on the blank surface can be attributed to the ionization of
these metals in 3.5 wt.% NaCl forming the respective metal oxide and hydroxide (Figure 9a) [11].
On the other hand, the removal of some alloying elements, especially Zn and Sn in the presence of low
concentration of the inhibitor, indicates the alloy surface is partially protected by an adsorption film
between the dominant metal ion (Cu+, Cu2+) and inhibitor molecules (Cu(I)-Cys, Cu(I)-Cys-Cu(II)-Cys).
With the increase of Cys concentration to 10−2 M, the main alloying element existing in the surface film
is copper (Table 3), and it is believed that the continuous surface inhibited film formed between the
copper ion and Cys molecules has existed on the Cu5Zn5Al1Sn alloy surface (Figure 9c). Therefore,
better corrosion efficiency is obtained when 10−2 M Cys is added into the 3.5 wt.% NaCl solution.
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Figure 9. Schematic representation of the corrosion mechanism of the Cu5Zn5Al1Sn alloy in 3.5 wt.%
NaCl solution before (a) and after addition of 10−4 M (b) and 10−2 M (c) cysteine.

5. Conclusions

In this work, the corrosion behavior of a Cu5Zn5Al1Sn alloy was examined in a 3.5 wt.% NaCl
solution in the absence and presence of cysteine. Potentiodynamic polarization studies showed that
cysteine acts as a mixed-type inhibitor during the corrosion process. The inhibition efficiency increased
with an increase in the concentration of cysteine and reached 97.2% in the presence of 10−2 M cysteine.
Copper was the main corrosion product formed on the Cu5Zn5Al1Sn alloy in 3.5 wt.% NaCl solution.
The outermost surface also contained to a small extent Zn- and Sn-rich constituents, as confirmed
by XPS investigation. The content of alloy constituents other than Cu decreased in the presence of
cysteine and became negligible at a cysteine concentration of 10−2 M. The inhibition mechanism relies
on the formation of a binding Cu(I)-Cys film and/or Cu(I)-Cys-Cu(II)-Cys film on the alloy surface,
which protect the alloy from corrosion attack.
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