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Featured Application: This paper provides a feasible method for modulation format identification
and OSNR monitoring. The application of KNN reduces complexity.

Abstract: In this study, a joint modulation format identification and optical signal-to-noise ratio
(OSNR) monitoring algorithm is proposed and experimentally demonstrated using the k-nearest
neighbor algorithm for intensity modulation and direct detection (IMDD) orthogonal frequency
division multiplexing (OFDM) systems. A modified amplitude histogram of received signal is
employed to serve as the classification feature to simplify the computation. Experimental results show
that five common quadrature amplitude modulation (QAM) modulation formats, including 4-QAM,
16-QAM, 32-QAM, 64-QAM and 128-QAM, can be identified under 100% accurate estimation at the
received optical power of −11 dBm. Robustness of the proposed scheme to constellation rotation is
also experimentally assessed. At the same time, system OSNR monitoring also can be achieved and
the average prediction mean square error (MSE) is 0.69 dB2, which is similar to that using an artificial
neural network. Computational complexity assessment demonstrated that similar performance but
less computing resource consumption can be achieved by using the proposed scheme rather than the
artificial neural network-based scheme.

Keywords: k-nearest neighbor algorithm; modulation format identification; OSNR monitoring

1. Introduction

The elastic optical networks [1] (EONs), as one of the solutions of the next-generation fiber-optic
communication network, have recently attracted a great deal of attention. Optical orthogonal frequency
division multiplexing (OOFDM) is considered a promising alternative to the EONs because of its
advantages, including its high spectral efficiency, good resistance to chromatic dispersion, as well as
its provision of hybrid dynamic bandwidth allocation in both frequency and time domains. IMDD
realizations, e.g., directly modulated laser (DML) based OOFDM transceivers [2], are usually applied in
cost-sensitive systems, e.g., optical access networks or data centers, because of their simple structure and
DSP (digital signal processing) [3]. With adaptively modulated optical orthogonal frequency division
multiplexing (AMOOFDM) [4–9], systems can maximize capacity and achieve flexible bandwidth
allocation simultaneously. However, to achieve the bandwidth on demand (BoD) approach, the EONs
are expected to be able to dynamically adjust various transmission parameters, e.g., modulation
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formats, OSNR, spectrum assignments, etc., depending on the adjusting traffic demands and network
condition. Negotiations between the transmitters and receivers are vital for adjusting the modulation
format or other parameters before resetting the bit rate. To achieve the flexible bandwidth provision,
one of the critical functional requirements for intelligent receivers in EONs is the ability to identify the
modulation formats and monitor OSNR of received signals without any prior information through the
negotiations between transmitters and receivers.

Modulation format identification has aroused growing attention from researchers in recent years.
Bo investigated and characterized a blind modulation format recognition method by projecting partial
received data in Stokes space onto a 2-D plane to plot a converted binary graph [10]. Based on
the evaluation of the peak-to-average-power ratio of the incoming data samples, Bilal presented a
simple novel digital modulation format identification scheme for coherent optical systems after some
independent DSP processing at the receiver [11]. Liu proposed a modulation format identification
technique based on the extraction and identification of specific features of received signal power
distributions in digital coherent receivers, which successfully identified six modulation formats [12].
However, the method described in [10] requires the approximate OSNR and the carrier frequency of
the received signals, the method in [11] requires additional hardware components as well as the OSNR
of received signals, and the scheme in [12] requires the computation of the received signal power
distributions for digital coherent receivers.

In recent years, several machine learning-based modulation format identification (MFI) techniques
have been proposed both in digital coherent and directly detected receivers [13–22] for optical
communications systems because of their excellent learning ability from data, which can avoid the
requirement of pre-information. Khan proposed a deep machine learning method to identify three
modulation formats at an accuracy of 100% in a wide optical signal-to-noise ratio range [13]. A simple
and cost-effective MFI technique was also proposed by his teams using an artificial neural network
based on asynchronous amplitude histogram (AAH) [14]. Guesmi experimentally demonstrated
a cost-effective technique to achieve optical performance monitoring functionalities and enable
simultaneous symbol rate and modulation format identification based on artificial neural networks [15].
Jiang introduced a novel modulation format identification method based on intensity fluctuation
features using support vector machines [16]. Zhang utilized an artificial neural network to identify
modulation format and a genetic algorithm to simplify the structures of an artificial neural network for
directly detected receivers [17]. However, these methods focus merely on identifying the modulation
format of the received signal and do not provide any information about the quality of signal in terms
of OSNR. Joint OSNR monitoring and modulation format identification in digital coherent receivers
using deep neural network (DNN) was performed in [18]. The excellent experimental effect of DNN
was considered, but the problem of high complexity was neglected.

In this study, a joint modulation format identification and OSNR monitoring algorithm is proposed
and experimentally demonstrated using the k-nearest neighbor (KNN) algorithm for IMDD OFDM
systems. A modified amplitude histogram (AH) of received signal is employed to serve as the
classification feature to simplify the computation. Experimental results show that five common QAM
modulation formats including 4-QAM, 16-QAM, 32-QAM, 64-QAM and 128-QAM can be identified
under 100% accurate estimation at the received optical power of −11 dBm. Robustness of the proposed
scheme to constellation rotation is also experimentally assessed. At the same time, system OSNR
monitoring can also be achieved with an average prediction MSE of 0.69 dB2, which is similar to what
is achieved using an artificial neural network. Computational complexity assessment demonstrated
that similar performance but less computing resource consumption can be achieved by using the
proposed scheme rather than the artificial neural network (ANN)-based scheme. AMOOFDM without
transceiver negotiations can also be achieved using the proposed scheme, showing its good potential
for intelligent transceivers in elastic optical networks.
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2. Operation Principle of Proposed KNN Based Scheme

The KNN algorithm [23] was first proposed by Cover and Hart, which is commonly employed for
text categorization, a process of identifying the class to which a text document belongs. The KNN
algorithm is considered a simple and intuitive algorithm: comparing the features of a testing data set
with a training data set and finding the k instances closest to the instance in the training dataset under
a given training dataset, for the new input testing instances. Moreover, the category corresponding to
testing data is the one with the largest number of occurrences in k instances. The operation procedure
of the KNN algorithm is described as follows:

Firstly, the input dataset is written as:

T =
{
(x1, y1), (x2, y2), . . . , (xN, yN)

}
, i = 1, 2, . . . , N (1)

where xi ∈ χ ⊆ Rn denotes the feature vector of the instance; yi ∈ Y = {c1, c2, . . . , ck} is the category of
the instance. The distance L between input training data and testing data is calculated as Equation (2):

L
(
xi, x j

)
=

(∑2

l=1

∣∣∣xi
l
− x j

l
∣∣∣2) 1

2
=

√∣∣∣xi
(1) − x j

(1)
∣∣∣2 + ∣∣∣xi

(2) − x j
(2)

∣∣∣2 (2)

where i and j denote the instance of training data and testing data, l denotes the dimension.
Subsequently, the distance is sorted according to the rising relation of distance.
Next, following the given distance measurement, the k nearest points to x are found in the training

set T before determining the occurrence frequency of the categories of the preceding k points. And the
neighborhoods of x covering the k points are expressed as Nk(x), which is used in Equation (3).

Finally, the category with the highest frequency in the preceding k points is returned as the
prediction classification of testing data. The majority voting strategy is selected as the decision criteria:

y =
argmax

c j

∑
xi∈Nk(x)

I
(
yi = c j

)
, i = 1, 2, . . . , N; j = 1, 2, . . . , K (3)

where I denotes the indicator function. When yi = c j, I is 1, otherwise 0.
As shown in Figure 1, the green dot represents the test data, blue squares represent category

A of the training set, and red triangles represent category B of the training set. If the value of k
is set to 3, the number of red triangles will be 2 greater than the blue squares, of which there is
1. Thus, the category of green dot is red triangle. However, when the value of k increases to 5,
the category of green dot belongs to blue square since the number of blue squares is greater than the
red triangles. The special case of the k-nearest neighbor algorithm is k = 1, which is named as the
nearest neighbor algorithm.
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There are two situations dealing with the complex data. One is the training stage in which
modulation format of training data is known, and the other is the testing stage, which is the unknown
data waiting for identification with the KNN classifier obtained in the training stage. For the training
data, the KNN algorithm is utilized to process the feature vector to build a model which is virtually
the KNN classifier. For the unknown data, the feature vector is fed into the KNN classifier, and the
modulation format of this data can be obtained. It is worth mentioning that KNN does not have an
explicit learning process. In fact, it is a well-known representative of lazy learning. This kind of learning
technology only saves samples at the training stage. After receiving the test sample, the subsequent
processing is carried out, including comparing the test data with the stored data.

In the receivers of the noted OOFDM systems, fast Fourier transform (FFT) processing is first
performed on the received signal to obtain the complex signal data, and then the features of the data
can be abstracted from the complex signal data. The AH is introduced in the proposed scheme in
which only the real part of the received signals is involved to abstract features. In this study, 30 samples
are selected as a training data set, of which every sample is a subcarrier transmission data of OFDM
signals. Subsequently, for every subcarrier, 3000 data points are selected from whole 20,400 data points
to obtain features. Accordingly, for the 4-QAM, 16-QAM, 32-QAM, 64-QAM and 128-QAM, 2, 4, 6, 8
and 12 peaks should be observed in corresponding AHs. The clustering degree of peaks represents
different OSNR. Obviously, when the peak is prominent, the value of OSNR is large.

To simplify the computation complexity and improve the robustness of the algorithm, a data
preprocessing scheme is first implemented. The real part of the complex data is divided into 100
intervals from −1.5 to 1.5, after taking real part operations for each data point. The number of points
falling in different intervals is used as input feature vector data for KNN. To reduce the effect that
computational overhead increases with the increase in data size, each interval is processed as follow:

(a) If the number of points in an interval ≥256, the value of this interval will be set to 32.
(b) If the number of points in an interval ≤32, the value of this interval will be set to 0.
(c) If the number of points in an interval is between 32 and 256, the value of this interval will be set

to an integer obtained by using the number divided by 8, which can be conveniently performed
by a commercial processor in the future.

Then, the final features of each interval can be obtained.

3. Experimental Verification and Discussions

An IMDD OFDM transmission system over an SSMF (standard single mode fiber) as illustrated in
Figure 2 is employed to experimentally evaluate the performance of the proposed scheme [24]. Detailed
transceiver and system key parameters can be found in Table 1. In this system, all DSP procedures for
both transmitter and receiver are achieved by an offline approach. At the transmitter side, the input
pseudo random data (PRBS15) is first mapped into parallel complex data with five modulation formats
from 4-QAM to 128-QAM. A 64-point inverse fast Fourier transform (IFFT) module is then applied for
the generation of OFDM time-domain symbols, in which 30 of them can be used to allocate user data to
satisfy the Hermitian symmetry for a real-valued IMDD signal approach. Next, an arbitrary waveform
generator (AWG) is employed to generate analog signals at a sampling rate of 2 GSa/s. The analog
OFDM signals are then fed into the preamplifiers to adjust the signal amplitude before directly driving
a DFB laser at 1550 nm with bandwidth of 2 GHz. Subsequently, the DFB laser converts the electrical
signals to optical signals and sends them to the 25 km SSMF.
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Figure 2. The experimental setup of intensity modulation and direct detection (IMDD) orthogonal
frequency division multiplexing (OFDM) system.

Table 1. Transceiver and system parameters.

Parameter Value

Modulation format 128/64/32/16/4-QAM
IFFT/FFT size 64 points

CP length 16 points
Bit rate 4.28 Gb/s

OFDM symbols per frame 100 symbols
SSMF length 25 km

DFB modulation bandwidth 2 GHz
DFB wavelength 1550 nm

PIN detector bandwidth 12 GHz
AWG sampling rate 2 GS/s
DSO sampling rate 10 GS/s

DSO/AWG resolution 8 bit
Training set sample size 30 sample
Data points per sample 3000 points

At the received side, a 12 GHz PIN (positive intrinsic-negative) with trans-impedance amplifier
(TIA) is utilized for O-E conversion by directly detecting the optical OFDM signals. The received
optical power (RoP) can be adjusted by a variable optical attenuator (VOA). The received signals are
then captured by the digital storage oscilloscope (DSO) with 10 GSa/s sampling rate ADC to convert
analog signals to digital signals for offline DSP processing.

During the offline DSP processing, the received data is converted to complex data after symbol
synchronization, cyclic prefix (CP)/training sequence (TS) removal, FFT, and channel equalization,
as shown in Figure 2. The model of KNN is obtained by training, and then the modulation format
is predicted by this model. Once the modulation format is realized using the proposed scheme,
the complex data can be decoded to get the original transmit data and to calculate the BER (bit error
rate). Meanwhile, OSNR is predicted based on the corresponding modulation formats. The specific
recognition and prediction algorithm based on KNN is explained in detail in Section 2.

To investigate the feasibility of the proposed scheme, subcarrier bit loading profiles corresponding
to a total bit rate of 4.28 Gb/s shown in Figure 3 are employed for the measurements, including five
different mixed QAM modulation formats from 4-QAM to 128-QAM. In this paper, we intentionally
chose the bit loading profiles to ensure that every type of modulation format was introduced in the
experiment. In fact, in practical application, the proposed algorithm will certainly be used with
an adaptive bit-and-power-loading algorithm. The constellations and corresponding abstracted
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representative AHs when the RoP is −11 dBm are shown in Figure 4a. The Figure suggests that
different peak profiles can be observed for different modulation formats. We can see from Figure 4a
that the constellation maps of 4-QAM and 16-QAM have good performance, and that the modulation
formats can be easily distinguished. When it comes to 32-QAM, the constellation becomes blurred,
but obvious peak value can be seen by the AH method, which means that the modulation format can
be well recognized, as shown in Figure 4b. When the modulation formats are 64-QAM and 128-QAM,
not only the constellation map is blurred, but also there is no obvious peak value in the AH map.
Therefore, KNN is used to process data to get the correct modulation format. As shown in Figure 4b,
the shape of AH when RoP is −11 dBm is different from that when RoP is −6 dBm. Thus, as long
as the corresponding OSNR under each RoP is known, OSNR value can be predicted according to
different AH under different RoP. Consider that KNN has the function of regression prediction [25,26],
which can be used in achieving OSNR monitoring [18].Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 12 
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Figure 3. Subcarrier bit allocation profile for orthogonal frequency division multiplexing (OFDM) signals.

Since identification accuracy is affected by the number of training samples and the k value of
the KNN algorithm, two different sets of samples and k value, being 30, 1 (case 1) and 60, 3 (case
2) are introduced in the construction of the classifier. The accuracy identification for 4 different sets
of bit loading profiles while maintaining the same bit rate under case 1 and case 2 are shown in
Figure 5. In general, the accuracy increases with the increase in the number of samples and the k value.
Besides, there is no exception in this measurement. However, the improvement in accuracy is not
significantly obvious as the performance of case 2 (dotted line) is only slightly improved at the RoP of
<−12 dBm and cannot reach 100%. Once the RoP reaches −12 dBm or higher, the performance of the
two mentioned cases will be the same. This suggests that the number of training samples and the k
value are not the main influencing factors of the proposed algorithm. To increase the transmission
efficiency, the number of training samples is 30, and the k value is 1 in the proposed KNN training
model during the measurements. As shown in Figure 4, when RoP is −11 dBm, the constellation map
is already blurred. However, the identification accuracy of this algorithm can reach 100%, which shows
that the algorithm also has a good recognition effect in the case of a relatively high error rate.

Subsequently, the above measurement is repeated under different RoP for both optical back to
back (OBTB) and 25 km SSMF configurations. The experimental results involving the mentioned 4 sets
of different bit loading profiles are shown in Figure 6, in which the BERs under each bit loading profile
is also plotted. Note that the identification accuracy of proposed MFI increases with the increase in RoP.
Almost the same performance is obtained for 25 km SSMF transmissions compared to the BTB case,
which shows that fiber dispersion does not significantly affect BER and the proposed MFI for current
system configuration. This is mainly because our focus in this paper is on the algorithm verification
for different types of modulation format, the signal rate involved in our experiment is not very high,
and the chromatic dispersion induced system degradation is relatively small. For both 25 km SSMF
and OBTB cases, 100% accurate identification can be achieved when the RoP is higher than −11 dBm.
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For the RoP >−10 dBm, the BER performance of OBTB and 25 km SSMF can be lower than the adopted
HD-FEC limit of 3.8 × 10−3 and power penalty is <0.5 dB for 4 different bit loading profiles. System
performance with longer distance and higher signal rate will be studied in future works.
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From Figure 6, identification accuracy depends on the receiving optical power, that is, the signal-
to-noise ratio. Employment of a stronger equalization algorithm can improve the BER performance and
also should improve the identification accuracy at low optical power regions. In practical deployment,
the appropriate algorithm can be selected according to the requirements to achieve a balance between
performance and complexity.Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 12 
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In practical application, constellation rotation after equalization affects the performance of MFI
performance. Further experimental investigation is undertaken to assess the effects of constellation
rotation. The bit loading as shown in Figure 3 is employed, and additional constellation rotation of
π/64, π/48, π/32 and π/28 is added during the measurements by adjusting the initial phase of the QAM
constellation in offline DSP procedures of transmitter. The identification accuracies under different
additional phase rotations are shown in Figure 7. It is noteworthy that the identification accuracy
increases with the increase in RoP. For the additional phase rotation of π/32, 100% accuracy cannot
be achieved until the RoP meets −6 dBm for the 25 km SSMF case and −7 dBm for the OBTB case.
However, for the additional phase rotation of π/28, 100% accuracy cannot be achieved even under RoP
of −6 dBm. For the additional phase rotation of <π/32, identification accuracy is nearly unchanged
compared with the configuration without additional phase rotation, suggesting good robustness to
residual constellation rotation.
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Figure 7. The identification accuracy under different residual phase rotation for (a) OBTB and (b) 25 km
SSMF configurations. 4-QAM rotated constellation diagram for the additional phase rotation of π/32 at
a specific RoP (−11 dBm) is embedded.

When it comes to OSNR monitoring, the k value should also be determined first. As shown in
Figure 8a, as the k value increases, the difference between the estimated and true OSNR increases in
general. Specifically, when the k value is small, the estimated OSNR is approximately proportional



Appl. Sci. 2019, 9, 3892 9 of 12

to the true OSNR. However, when the k value is large, the estimated OSNR is almost unaffected by
the true. The MSE between estimated and true OSNR is then calculated to determine the value of k.
The result is as shown in Figure 8b. When k = 2, MSE is the smallest, so k is set to 2 when performing
OSNR monitoring.
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Figure 8. (a) Estimated versus true OSNRs with different k values and (b) MSE versus k values for 128
QAM (OBTB).

The OSNR monitoring results for five signal types are shown in Figure 9. It is clear from the figure
that OSNR estimates are quite accurate for both OBTB and 25 km SSMF configurations. Hence, the mean
OSNR estimation error for the three signal types considered in this work is 0.69 dB, which is similar to
the ones reported for the OSNR monitoring [18]. It is worth mentioning that the proposed algorithm
can also work for coherent optical systems and single-carrier modulation.
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Figure 9. Estimated versus true OSNRs for (a) OBTB and (b) 25 km SSMF configurations.

We also compared the complexity of the proposed KNN algorithm with artificial neural
network [13]. The complexity calculation of ANN [27,28] and KNN are listed in Table 2, in which the
complexity calculation involves two parts, namely the training part and the prediction part. For ANN,
Nep is the number of samples in a training set and ni, nhid and no are the number of neurons on the
input, hidden and output layers, respectively. For KNN, NTS is the number of samples in a training set
and n is the number of features. The identification accuracy results of both algorithms under the same
condition are shown in Figure 10 and the identification accuracy is similar. MSE of OSNR monitoring
for both algorithms when RoP is −11 dBm is listed in Table 3. The average MSE of KNN algorithm
is 0.69 dB2, and that of the ANN algorithm is 0.71 dB2. In general, compared to the ANN, the KNN
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algorithm can effectively reduce multiplication operations. However, the KNN algorithm has similar
performance to the ANN algorithms.

Table 2. The complexity comparison between KNN and ANN.

Algorithm Multiplications MFI OSNR Monitoring

ANN
Ctrain = Nep(ninhid + nhidno)
Cpredict = ninhid + nhidno
CANN = Ctrain + Cpredict

Ctrain = 100× (101× 4 + 40× 5) =
424, 000
Ctest = 101× 40 + 40× 5 = 4240
CANN = 428, 240

Ctrain = 100× (101× 40 + 40) =
408, 000
Ctest = 101× 40 + 40 = 4080
CANN = 412, 080

KNN CKNN = Ctrain + Cpredict =
2Ctrain = 2NTSn CKNN = 2× 30× 101 = 6060 CKNN = 2× 30× 101 = 6060
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Table 3. The MSE of KNN and ANN algorithm.

MSE 4-QAM 16-QAM 32-QAM 64-QAM 128-QAM

KNN(dB2) 0.66 1.3 0.77 0.3 0.42
ANN(dB2) 0.87 0.65 0.69 0.84 0.49

4. Conclusions

In this study, a joint modulation format identification and OSNR—monitoring algorithm is
proposed and experimentally demonstrated using the KNN algorithm for IMDD OFDM systems.
A modified AH of received signal is employed to serve as the classification feature to simplify the
computation. According to the experimental results, five common QAM modulation formats can be
identified with a 100% accurate estimation at the RoP of −11 dBm. At the same time, system OSNR
monitoring also can be achieved with an average prediction MSE of 0.69 dB2, which is similar to that
using artificial neural network. Robustness and computational complexity of the proposed scheme are
also experimentally assessed.
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