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Abstract: The measurement of in-plane displacement in two orthogonal directions is of considerable
significance for modern industries. This paper reports on a spatial carrier phase-shift digital speckle
pattern interferometry (DSPI) for the simultaneous measurement of in-plane displacement in two
orthogonal directions. The object is illuminated from a single direction and observed from four
symmetrical directions simultaneously. One pair of the four observation directions is sensitive to
in-plane displacement in one direction, and the other pair is sensitive to in-plane displacement
in the perpendicular direction, resulting in the displacement in two directions being measured
independently. The polarization property of light is used to avoid cross-interference between the
two pairs of beams. Spatial carrier frequencies are generated by aperture misalignment, and the
displacement in two directions is modulated onto the same interferogram. With a spatial carrier
phase-shift technique, the displacement can be separated in the frequency domain and the phase
can be evaluated from a single interferogram in real time. The capability of DSPI is described by
theoretical discussions and experiments.
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1. Introduction

Owing to the rapid development in the manufacturing industry, such as automobile and aerospace
applications, measuring the surface displacement of complex mechanical structures and new materials
is important. The surface displacement can be further translated into strain and stress, which is the
key parameter for design, manufacturing, and quality control [1]. A dynamic full-field and highly
sensitive measurement of displacement is the foundation of rapid and optimization design.

The measurement of a three dimensional displacement, along three mutually orthogonal directions,
can be classified as out-of-plane and in-plane displacements. However, the in-plane displacement
component is more important than the out-of-plane displacement component in many practical
problems [2]. Information on in-plane displacement is helpful in determining Young’s modulus and
Poisson’s ratio of materials [3,4]. In-plane rotations, which can be determined by in-plane displacement,
is an essential component of the geometrical metrology [5–7]. Under similar testing conditions, residual
stress, obtained from in-plane displacements, has higher precision than that obtained from out-of-plane
displacement [8].

Optical measurement techniques have been widely used in displacement measurements because
they are non-contact, full-field, and highly sensitive. Advanced optical methods include, digital
image correlation (DIC) [9,10], Moiré interferometry [11], and digital speckle pattern interferometry
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(DSPI) [3,12]. The sensitivity of Moiré interferometry and DSPI is higher than that of DIC, and the set-up
of DSPI is simpler than that of Moiré interferometry. Because of the high sensitivity and flexibility
of DSPI, it has been well-accepted in experimental mechanics, displacement and displacement
measurements, and strain measurements.

In DSPI, in-plane displacement is measured by evaluating the phase difference of two recorded
speckle interferograms under load. The surface under the test is illuminated from two symmetrical
directions with a single direction of observation [13], or is observed from two symmetrical directions with
a single direction of illumination [14]. The measurement of a surface displacement in two orthogonal
directions is often required for the complete characterization of displacement. In traditional DSPI,
in-plane displacement is measured in the single direction, depending on the illumination or observation
direction. For example, if the surface is illuminated from two symmetrical directions, the measured
displacement is in the vector direction, which is the subtraction of the vector directions of the two
illumination beams. To measure the displacement in the perpendicular direction, the illumination beams
must be rotated 90 degrees around the viewing axis. To make a system sensitive to displacement in
two orthogonal directions, two pairs of beams, with different directions, should sequentially illuminate
the surface. Thus, two separate interferograms can be recorded and combined vectorially [1,3,8,15].
To avoid cross-interference between the two pairs of beams, they should not illuminate the surface
at the same time. Sequential measurement takes more time than usual, making the simultaneous
measurement of transient or non-repeatable events, that require displacement in two orthogonal
directions, unsuitable. Therefore, an interferometer, capable of measuring two in-plane displacements
at the same time, is needed.

By using two cameras and two orthogonal polarized dual-beam illumination sets, cross-interference
between the two pairs of beams can be avoided, allowing the measurement of the two interferograms
at the same time [2]. However, the effectiveness of this method depends on the surface not changing
the polarization of the incident beams, which is not always the case [16].

The spatial coherence of the laser can also be used to avoid cross-interference [12]. If the optical
lengths are equal for each pair of beams, and the optical length difference between two pairs is longer
than the coherent length, the two pairs of beams can illuminate the surface at the same time without
cross-interference [17]. However, the temporal phase-shift method is used in this research, making
the real-time measurement impossible to conduct. The temporal phase-shift technique solves the
phase distribution from multi-interferograms in a time series [1,18]. Given that the phase may vary
dramatically while acquiring multi-interferograms, the temporal phase-shift technique is mainly
suitable for displacement measurement with a static or quasi-static loading.

By employing the Fourier transformation method, the phase distribution can be calculated from a
single interferogram [19,20]. By using three illuminating sources, three interference fringe patterns can
be recorded in a single interferogram, and are spatially separated in the Fourier domain, allowing the
simultaneous measurement of two in-plane displacement components from one image [21]. However,
in this study, the spatial carrier is not introduced, making the measurement of complex displacement
unsuitable. By following particular procedures to generate the spatial-carrier frequency, the phase
map can be obtained from a single interferogram on the basis of the Fourier transformation procedure,
which is named the spatial carrier phase-shift method [22–24].

Many researchers have recently proposed digital speckle pattern interferometry, which can measure
three-dimensional (3D) displacements by using spatial carrier phase-shift method. Multi-directions of
illumination [24,25] or observation [26,27] are used to generate three different sensitivity vectors. Then,
the three orthogonal displacement components can be evaluated. The two in-plane displacements can be
derived from three-dimensional displacement, which is measured in real time simultaneously. The post
calculation of three-dimensional displacement enlarges the uncertainty of measurement. The two
in-plane displacements are not independently measured, leading to the coupling of measurement
errors, yielded from speckle noise and optical misalignment.
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This paper reports a DSPI for the simultaneous and independent measurement of in-plane
displacement in two orthogonal directions. Spatial carrier phase-shift technique is used to perform
dynamic measurement: only one camera is used, image registration is not needed, and polarization
property of light is used to solve the problem of cross interference. Theory derivation, spectrum
analysis, and experiment results are shown in detail.

2. Materials and Methods

The optical configuration of the proposed DSPI system is illustrated in Figure 1. A coherent laser,
with a wavelength of λ, is expanded to illuminate the object surface. The object is observed from four
directions simultaneously and symmetrically around the z-axis. The four imaging beams are denoted

as x1, x2, y1, and y2, and the corresponding wave vectors are
→

K1
x,
→

K2
x,
→

K1
y, and

→

K2
y.
→

K1
x and

→

K2
x are located

in the XZ plane, whereas
→

K1
y and

→

K2
y are located in the YZ plane. The angle between each of observation

directions and the z-axis is θ.
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Figure 1. Schematic diagram of digital speckle pattern interferometry (DSPI) to simultaneously measure
two in-plane displacements.

After being reflected by the single mirror and the four-sided mirror, each image passes through
the corresponding aperture stop and polarizer, and is imaged onto the image surface by the same lens.
The four aperture stops are spatially offset from each other, and a polarizer is placed in front of each
aperture stop. The polarization directions of each beam, passing through four polarizers, are illustrated
in Figure 2. After passing through the polarizers, the polarizing directions of imaging beams x1 and
x2 are the same, and the polarization directions of the imaging beams y1 and y2 are perpendicular
to those of beams x1 and x2. Therefore, imaging beam x1 interferes with x2, and imaging beam y1

interferes with y2. No cross interference occurs between the two pairs of beams.
As shown in Figure 3, (ξ, 0), (−ξ, 0), (0, η), (0,−η) are the center coordinates of the four apertures

of imaging beams x1, x2, y1, and y2, respectively. The phases of the waves, which pass through the
apertures, have a spherical part plus a speckled part [28]. The four beams that pass through each
aperture and reach the image plane have amplitudes given by Equation (1) [29–31]:

ux1(x, y) =
∣∣∣ux1(x, y)

∣∣∣ exp
[
iφx1(x, y) + 2πi

λD (ξx)
]

ux2(x, y) =
∣∣∣ux2(x, y)

∣∣∣ exp
[
iφx2(x, y) + 2πi

λD (−ξx)
]

uy1(x, y) =
∣∣∣uy1(x, y)

∣∣∣ exp
[
iφy1(x, y) + 2πi

λD (ηy)
]

uy2(x, y) =
∣∣∣uy2(x, y)

∣∣∣ exp
[
iφy2(x, y) + 2πi

λD (−ηy)
] , (1)
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where D is the distance from the image plane to exit pupil plane [32]. 2πi
λDξx and 2πi

λDηy are the spatial
carrier frequencies introduced by aperture misalignment.
Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 11 

 

Figure 2. Polarizing directions of the four imaging beams passing through polarizers. 

As shown in Figure 3,        ,0 , ,0 , 0, , 0,      are the center coordinates of the four 

apertures of imaging beams x1, x2, y1, and y2, respectively. The phases of the waves, which pass 

through the apertures, have a spherical part plus a speckled part [28]. The four beams that pass 

through each aperture and reach the image plane have amplitudes given by equation (1) [29–31]: 

       

       

       

       

1 1 1

2 2 2

1 1 1

2 2 2

2
, , exp ,

2
, , exp ,

2
, , exp ,

2
, , exp ,

x x x

x x x

y y y

y y y

i
u x y u x y i x y x

D

i
u x y u x y i x y x

D

i
u x y u x y i x y y

D

i
u x y u x y i x y y

D


 




 




 




 



 
  

 

 
   

 

 
  

 

 
   

 

, (1) 

where D is the distance from the image plane to exit pupil plane[32]. 
2 i

x
D





 and 

2 i
y

D





 are the 

spatial carrier frequencies introduced by aperture misalignment. 

 

Figure 3. Schematic diagram of the relative positions of the four apertures in the exit pupil plane. 

The interferogram on the imaging plane can be expressed as follows: 

     
**

1 2 1 2 1 2 1 2x y x x x x y y y yI I I u u u u u u u u       
 

(2) 

Figure 2. Polarizing directions of the four imaging beams passing through polarizers.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 11 

 

Figure 2. Polarizing directions of the four imaging beams passing through polarizers. 

As shown in Figure 3,        ,0 , ,0 , 0, , 0,      are the center coordinates of the four 

apertures of imaging beams x1, x2, y1, and y2, respectively. The phases of the waves, which pass 

through the apertures, have a spherical part plus a speckled part [28]. The four beams that pass 

through each aperture and reach the image plane have amplitudes given by equation (1) [29–31]: 

       

       

       

       

1 1 1

2 2 2

1 1 1

2 2 2

2
, , exp ,

2
, , exp ,

2
, , exp ,

2
, , exp ,

x x x

x x x

y y y

y y y

i
u x y u x y i x y x

D

i
u x y u x y i x y x

D

i
u x y u x y i x y y

D

i
u x y u x y i x y y

D


 




 




 




 



 
  

 

 
   

 

 
  

 

 
   

 

, (1) 

where D is the distance from the image plane to exit pupil plane[32]. 
2 i

x
D





 and 

2 i
y

D





 are the 

spatial carrier frequencies introduced by aperture misalignment. 

 

Figure 3. Schematic diagram of the relative positions of the four apertures in the exit pupil plane. 

The interferogram on the imaging plane can be expressed as follows: 

     
**

1 2 1 2 1 2 1 2x y x x x x y y y yI I I u u u u u u u u       
 

(2) 

Figure 3. Schematic diagram of the relative positions of the four apertures in the exit pupil plane.

The interferogram on the imaging plane can be expressed as follows:

I = Ix + Iy = (ux1 + ux2)(ux1 + ux2)
∗ +

(
uy1 + uy2

)(
uy1 + uy2

)∗
. (2)

By applying Fourier transformation to the interferogram, Equation (2) can be transformed into
the Equation (3),

FT(I) = Ux1 ⊗U∗x1 + Ux2 ⊗U∗x2 + Uy1 ⊗U∗y1 + Uy2 ⊗U∗y2

+Ux1 ⊗U∗x2 + U∗x1 ⊗Ux2

+Uy1 ⊗U∗y2 + U∗y1 ⊗Uy2

, (3)

where ⊗ is the convolution operation, Ux1 = FT(ux1), Ux2 = FT(ux2), and Uy1 = FT
(
uy1

)
, Uy2 =

FT
(
uy2

)
.

The schematic diagram of the spectrum after Fourier transformation is illustrated in Figure 4.
The term Ux1 ⊗U∗x1 + Ux2 ⊗U∗x2 + Uy1 ⊗U∗y1 + Uy2 ⊗U∗y2 contains background information, which is
located at the center of the spectrum. The terms Ux1 ⊗U∗x2 and U∗x1 ⊗Ux2 contain the information of

in-plane displacement in the x-axis, and they are located at
(

2ξ
λd , 0

)
and

(
−

2ξ
λd , 0

)
, respectively. The terms

Uy1 ⊗U∗y2 and U∗y1 ⊗Uy2 contain the information of in-plane displacement in the y-axis, and they are

located at
(
0, 2η
λd

)
, and

(
0,− 2η

λd

)
respectively.
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By properly selecting aperture diameter and distance, the five spectrums on the Fourier domain
can be separated. By selecting the term. Ux1 ⊗U∗x2, located at

(
2ξ
λd , 0

)
and performing the inverse Fourier

transformation, ux1u∗x2 can be obtained. In the same way, uy1u∗y2 can also be obtained. The phase term
can be calculated by the following relation:

ψx +
4π
λdξx = arctan

Im(ux1u∗x2)
Re(ux1u∗x2)

ψy +
4π
λdηy = arctan

Im
(
uy1u∗y2

)
Re

(
uy1u∗y2

) , (4)

where Im and Re denote the imaginary and real parts, respectively. ψx = φx1(x, y) − φx2(x, y),
and ψy = φy1(x, y) −φy2(x, y) are the phase differences of the two pairs of mutually interfering beams.

After displacement, the phase difference can be calculated using Equation (5):

ψ′x +
4π
λdξx = arctan

Im(ux1u∗x2)
Re(ux1u∗x2)

ψ′y +
4π
λdηy = arctan

Im
(
uy1u∗y2

)
Re

(
uy1u∗y2

) , (5)

Through subtraction, the displacement can be evaluated from the relative phase difference.
The relationship between the phase change and the displacement is given by [21],

∆x = ψx −ψ′x =
→

Sx·
→

d

∆y = ψy −ψ′y =
→

Sy·
→

d
, (6)

where
→

d = u
→

i + v
→

j + w
→

k represents the displacement vector of the surface. u and v are the in-plane

displacements in the x and y direction, respectively; and w is the out-of-plane displacement.
→

i ,
→

j ,

and
→

k are the unit vectors along the positive x-, y-, and z-axis, respectively.
→

Sx and
→

Sy are the sensitivity
vectors, defined as functions of the illumination and observation directions. For the DSPI proposed in
this study, the sensitivity vectors can be expressed by Equation (7):

→

Sx =

(
→

K1
x −

→

Ki

)
−

(
→

K2
x −

→

Ki

)
=
→

K1
x −

→

K2
x = 4π sinθ

λ

→

i

→

Sy =

(
→

K1
y −

→

Ki

)
−

(
→

K2
y −

→

Ki

)
=
→

K1
y −

→

K2
y = 4π sinθ

λ

→

j
, (7)

The phase difference that corresponds to the two observation vectors, with a common illumination
vector, does not depend on the illumination directions because the observation vector is removed.
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From Equations (6) and (7), in-plane displacement in two directions can be calculated by
Equation (8):

u =
∆xλ

4π sinθ
, v =

∆yλ

4π sinθ
. (8)

3. Results

The experiments in this study have been designed to verify the DSPI. A 532 nm laser (Changchun
New Industries Optoelectronics Technology Co., Ltd., continuous wave, 200 mW) is used as the laser
source. A high-resolution camera (Basler ace, acA1600-20um, 4.4 µm × 4.4 µm pixel size, 1626 pixels ×
1236 pixels) is used to record the speckle pattern images. The focal length of the imaging lens is 150 mm.
The angle between each wave vector of observation direction and the z-axis is 4◦. The diameter of each
aperture stop is 4 mm, and the distance of two aperture stops, through which light interferes, is 8 mm.
This setting of aperture diameter and distance makes the different terms, shown in Figure 4, separates
from each other. If the aperture is too large, or if the distance is too close, the different terms will alias.
If the aperture is too small, the amount of light passing through will also be small, and the speckle
noise will be large. By choosing an aperture size and distance appropriately, the different terms are
evenly distributed to achieve better results.

The object under test is a metal plate with a diameter of 130 mm, which can be precisely rotated
in-plane by a micro-head, as illustrated in Figure 5. In-plane displacement is produced by the
rigid-body rotation.Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 11 
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Figure 5. Object capable of rotating in-plane by a micro-head.

A magnified portion of the recorded speckle pattern image is displayed in Figure 6, which reveals
the two orthogonal spatial carrier fringes within the speckle.
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Figure 7 shows the spectrum distribution of the speckle pattern image after Fourier transformation,
which is similar to that obtained theoretically as illustrated in Figure 4. The spectrum shown in
Figure 7 is the logarithm of the original spectral intensity to make the figure clearer. The different
terms, schematically presented in Figure 4, can be clearly separated in Figure 7. The two terms marked
by a red circle and labeled with A and B are corresponding to Ux1 ⊗U∗x2, and Uy1 ⊗U∗y2, respectively.
According to Equation (3) and Figure 4, the lower terms should be the conjugate of the upper ones.
The negative displacement would be determined form the lower terms.
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For both interferograms before and after rotation, by selecting the terms A and B, shown in
Figure 7, and applying a windowed inverse Fourier transformation to each term, phase differences ∆x

and ∆y, according to Equation (6), can be extracted. Only two interferograms are needed to evaluate
the phase by using spatial carrier phase-shift technique. The phase map is smoothed by a low-pass
filter algorithm as displayed in Figure 8(a1,a2). After phase unwrapping, the in-plane displacement in
two directions, calculated using Equation (8), is displayed in Figure 8(b1,b2).
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Figure 8. The smoothed phase and in-plane displacement extracted by the DSPI: (a1) and (a2) are
the phase differences ∆x, and ∆y, respectively; (b1) and (b2) are in-plane displacements in the x-axis
direction and y-axis direction respectively; (c1) and (c2) are in-plane displacements errors in the x-axis
direction, and y-axis direction, relative to the fitted value, respectively.
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Generally speaking, the measurement accuracy and sensitivity of DSPI are mainly determined
by the phase map quality and number of times the images are smoothed. Speckle interference is
usually able to reach a measuring sensitivity of about 2π/20 to 2π/10 (2π corresponds one fringe)
and a measuring accuracy of about 2π/5 to 2π/2. A detailed discussion regarding this topic can be
found in reference [33]. In this research, the in-plane displacement is produced by the rigid-body
rotation, which follows certain rules demonstrated by Sijin Wu [7]. The displacement reference value
is obtained by fitting the measured in-plane displacements according to the rules. Then, the errors of
the measured displacements, relative to the reference value are calculated, as shown in Figure 8(c1,c2).
The root-mean-square (RMS) errors of in-plane displacements in the x-axis direction and y-axis direction
are 0.071 µm, and 0.072 µm respectively, which exhibits high accuracy.

Because the displacement, shown in Figure 8, is produced by an in-plane rotation, the contours
of the absolute in-plane displacement are essentially a set of concentric circles around the rotation
center. The synthetic in-plane displacement vectors are illustrated in Figure 9, with the contours of the
absolute in-plane displacement. The vectors are tangent to the corresponding displacement contours,
satisfying the law of displacement introduced by rigid body rotation. The direction of rotation can be
easily distinguished from the directions of the in-plane displacement vectors.Appl. Sci. 2019, 9, x FOR PEER REVIEW 9 of 11 
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Figure 9. Synthetic in-plane displacement vectors and contours of the absolute in-plane displacement.

Because only one interferogram is needed to measure the phase in this experiment, the interferogram
can be continuously acquired during the displacement of the object. Thereby, the displacement at
any acquisition time can be evaluated. Therefore, dynamic measurements can be made, and the
measurement speed depends on the frame rate of the camera.

4. Discussion

This work presents a spatial carrier phase-shift DSPI for the simultaneous measurement of
in-plane displacement, in two orthogonal directions, by using a single camera. The carrier frequency
is generated by aperture misalignment. Two pairs of observation beams are used to make the DSPI
sensitive to in-plane displacement in two directions. Considering that the beams, whose polarization
directions are perpendicular, do not interfere with each other, cross-interference between the two pairs
of beams is avoided. Using the Fourier transformation procedure, the phase can be evaluated from a
single interferogram by the spatial carrier phase-shift technique. Only two interferograms are required
to simultaneously measure the displacement in two directions: The first image is acquired before
the load and the second image is acquired after the load. The displacements in two directions are
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measured independently, dynamically, and simultaneously, making the DSPI suitable for dynamic and
high-accuracy testing.

Author Contributions: Conceptualization, P.Y.; data curation, S.Z.; funding acquisition, Y.W.; investigation, P.Y.;
methodology, X.L.; software, F.S.; supervision, Y.W.; validation, X.L.; visualization, F.S. and Q.Z.; writing—original
draft, P.Y.; writing—review and editing, P.Y.

Funding: This research was funded by National Natural Science Foundation of China (No. 51805137); Natural
Science Foundation of Anhui Province (No. 1808085QE129); the Fundamental Research Funds for the Central
Universities of China (JZ2019HGTB0076); the open project of Anhui Province Key Laboratory of Non-Destructive
Evaluation, Hefei ZC Optoelectronic Technologies Ltd. (No. CGHBMWSJC04); and the open project of Key
Laboratory of Micro Opto-electro Mechanical System Technology, Tianjin University, Ministry of Education (No.
MOMST2015-6).

Acknowledgments: The authors would like to express their sincere thanks to Mingzhai Sun from University of
Science and Technology of China, who made careful correction of the English for the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yang, L.; Xie, X.; Zhu, L.; Wu, S.; Wang, Y. Review of electronic speckle pattern interferometry (ESPI) for
three dimensional displacement measurement. Chin. J. Mech. Eng. 2014, 27, 1–13. [CrossRef]

2. Moore, A.J.; Tyrer, J.R. Two-dimensional strain measurement with ESPI. Opt. Lasers Eng. 1996, 24, 381–402.
[CrossRef]

3. Francisco, J.B.P.; Michtchenko, A.; Perez, O.B.; Huerta, O.S. Measurement of Young’s modulus and Poisson’s
ratio of metals by means of ESPI using a digital camera. Eur. J. Phys. 2016, 37, 11. [CrossRef]

4. Michtchenko, A. Application of Electronic Speckle Pattern Interferometry Method for Simultaneous
Measurement of Young’s Modulus and the Poisson’s Ratio of Metals. Proceedings 2018, 2, 521. [CrossRef]

5. Lu, M.; Wang, S.J.; Aulbach, L.; Jakobi, M.; Koch, A.W. Non-phase unwrapping interferometric approach for
a real-time in-plane rotation measurement. Opt. Lett. 2017, 42, 1986–1989. [CrossRef]

6. Wang, S.; Lu, M.; Bilgeri, L.M.; Jakobi, M.; Bloise, F.S.; Koch, A.W. Temporal electronic speckle pattern
interferometry for real-time in-plane rotation analysis. Opt. Express 2018, 26, 8744–8755. [CrossRef] [PubMed]

7. Wu, S.; Yang, J.; Li, W.; Wu, F.; Dong, M. Precision roll angle measurement based on digital speckle pattern
interferometry. Meas. Sci. Technol. 2019, 30, 045005. [CrossRef]

8. Asundi, A.K.; Zhang, J. Industrial applications of residual stress determination using 2D in-plane sensitive
fiber ESPI and hole drilling. In Proceedings of the Optical Engineering for Sensing and Nanotechnology
(ICOSN ′99), Yokohama, Japan, 16–18 June 1999; p. 4.

9. Shadmehri, F.; Hoa, S.V. Digital Image Correlation Applications in Composite Automated Manufacturing,
Inspection, and Testing. Appl. Sci. 2019, 9, 18. [CrossRef]

10. Blenkinsopp, R.; Roberts, J.; Harland, A.; Sherratt, P.; Smith, P.; Lucas, T. A Method for Calibrating a Digital
Image Correlation System for Full-Field Strain Measurements during Large Deformations. Appl. Sci. 2019, 9,
2828. [CrossRef]

11. Mohammadi, F.; Kofman, J. Multi-Wavelength Digital-Phase-Shifting Moiré Based on Moiré Wavelength.
Appl. Sci. 2019, 9, 1917. [CrossRef]

12. Gao, X.; Yang, L.; Wang, Y.; Zhang, B.; Dan, X.; Li, J.; Wu, S. Spatial phase-shift dual-beam speckle
interferometry. Appl. Opt. 2018, 57, 414–419. [CrossRef]

13. Leendertz, J.A. Interferometric displacement measurement on scattering surfaces utilizing speckle effect.
J. Phys. E Sci. Instrum. 1970, 3, 214–218. [CrossRef]

14. Duffy, D.E. Moiré Gauging of In-Plane Displacement Using Double Aperture Imaging. Appl. Opt. 1972, 11,
1778–1781. [CrossRef] [PubMed]

15. Bowe, B.; Martin, S.; Toal, V.; Langhoff, A.; Whelan, M. Dual in-plane electronic speckle pattern interferometry
system with electro-optical switching and phase shifting. Appl. Opt. 1999, 38, 666–673. [CrossRef]

16. Viotti, M.R.; Albertazzi, A.; Kaufmann, G.H. Measurement of residual stresses using local heating and a
radial in-plane speckle interferometer. OPTICE 2005, 44, 9. [CrossRef]

17. Fan, H.; Wang, J.; Tan, Y. Simultaneous measurement of whole in-plane displacement using phase-shifting
ESPI. Opt. Lasers Eng. 1997, 28, 249–257. [CrossRef]

http://dx.doi.org/10.3901/CJME.2014.01.001
http://dx.doi.org/10.1016/0143-8166(95)00097-6
http://dx.doi.org/10.1088/0143-0807/37/5/055708
http://dx.doi.org/10.3390/ICEM18-05396
http://dx.doi.org/10.1364/OL.42.001986
http://dx.doi.org/10.1364/OE.26.008744
http://www.ncbi.nlm.nih.gov/pubmed/29715838
http://dx.doi.org/10.1088/1361-6501/ab026a
http://dx.doi.org/10.3390/app9132719
http://dx.doi.org/10.3390/app9142828
http://dx.doi.org/10.3390/app9091917
http://dx.doi.org/10.1364/AO.57.000414
http://dx.doi.org/10.1088/0022-3735/3/3/312
http://dx.doi.org/10.1364/AO.11.001778
http://www.ncbi.nlm.nih.gov/pubmed/20119233
http://dx.doi.org/10.1364/AO.38.000666
http://dx.doi.org/10.1117/1.2050307
http://dx.doi.org/10.1016/S0143-8166(98)00028-1


Appl. Sci. 2019, 9, 3882 10 of 10

18. Qin, J.; Gao, Z.; Wang, X.; Yang, S. Three-Dimensional Continuous Displacement Measurement with Temporal
Speckle Pattern Interferometry. Sensors 2016, 16, 2020. [CrossRef]

19. Takeda, M.; Ina, H.; Kobayashi, S. Fourier-transform method of fringe-pattern analysis for computer-based
topography and interferometry. J. Opt. Soc. Am. 1982, 72, 156–160. [CrossRef]

20. Zhao, Q.; Dan, X.; Sun, F.; Wang, Y.; Wu, S.; Yang, L. Digital Shearography for NDT: Phase Measurement
Technique and Recent Developments. Appl. Sci. 2018, 8, 2662. [CrossRef]

21. Martínez, A.; Rayas, J.A.; Meneses-Fabián, C.; Anguiano-Morales, M. Simultaneous measurement with
one-capture of the two in-plane components of displacement by electronic speckle pattern interferometry.
Opt. Commun. 2008, 281, 4291–4296. [CrossRef]

22. Pedrini, G.; Zou, Y.; Tiziani, H. Quantitative evaluation of digital shearing interferogram using the spatial
carrier method. Pure Appl. Opt. J. Eur. Opt. Soc. Part A 1996, 5, 313. [CrossRef]

23. Xin, X.; Xiaona, L.; Xu, C.; Lianxiang, Y. Review of recent developments of spatial phase-shift digital
shearography. Proc. Spie 2015, 9302, 93020E. [CrossRef]

24. Gao, X.Y.; Wang, Y.H.; Li, J.R.; Dan, X.Z.; Wu, S.J.; Yang, L.X. Spatial carrier color digital speckle pattern
interferometry for absolute three-dimensional deformation measurement. OPTICE 2017, 56, 066107.
[CrossRef]

25. Fang, Y.; Wu, S.; Yang, L. Synchronous Measurement of Three-Dimensional Deformations Using Tri-Channel
Spatial-Carrier Digital Speckle Pattern Interferometry. Appl. Mech. Mater. 2017, 868, 316–322. [CrossRef]

26. Lu, M.; Wang, S.; Bilgeri, L.; Song, X.; Jakobi, M.; Koch, A.W. Online 3D Displacement Measurement
Using Speckle Interferometer with a Single Illumination-Detection Path. Sensors 2018, 18, 1923. [CrossRef]
[PubMed]

27. Wang, Y.; Sun, J.; Li, J.; Gao, X.; Wu, S.; Yang, L. Synchronous measurement of three-dimensional deformations
by multicamera digital speckle patterns interferometry. OPTICE 2016, 55, 091408. [CrossRef]

28. Sirohi, R.S.; Burke, J.; Helmers, H.; Hinsch, K.D. Spatial phase shifting for pure in-plane displacement and
displacement-derivative measurements in electronic speckle pattern interferometry (ESPI). Appl. Opt. 1997,
36, 5787–5791. [CrossRef]

29. Bhaduri, B.; Mohan, N.K.; Kothiyal, M.P. Simultaneous measurement of out-of-plane displacement and slope
using a multiaperture DSPI system and fast Fourier transform. Appl. Opt. 2007, 46, 5680–5686. [CrossRef]

30. Lu, M.; Wang, S.; Aulbach, L.; Koch, A.W. Simultaneous displacement and slope measurement in electronic
speckle pattern interferometry using adjustable aperture multiplexing. Appl. Opt. 2016, 55, 5868–5875.
[CrossRef]

31. Barrera, E.S.; Fantin, A.V.; Willemann, D.P.; Benedet, M.E.; Goncalves, A.A. Multiple-aperture one-shot
shearography for simultaneous measurements in three shearing directions. Opt. Lasers Eng. 2018, 111, 86–92.
[CrossRef]

32. Yan, P.; Sun, F.; Dan, X.; Zhao, Q.; Wang, Y.; Lu, Y. Spatial phase-shift digital shearography for simultaneous
measurements in three shearing directions based on adjustable aperture multiplexing. OPTICE 2019, 58,
054105. [CrossRef]

33. Steinchen, W.; Yang, L.X.; Kupfer, G.J.E.T. Digital shearography for nondestructive testing and vibration
analysis. Exp. Tech. 1997, 21, 20–23. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s16122020
http://dx.doi.org/10.1364/JOSA.72.000156
http://dx.doi.org/10.3390/app8122662
http://dx.doi.org/10.1016/j.optcom.2008.05.015
http://dx.doi.org/10.1088/0963-9659/5/3/008
http://dx.doi.org/10.1117/12.2075536
http://dx.doi.org/10.1117/1.OE.56.6.066107
http://dx.doi.org/10.4028/www.scientific.net/AMM.868.316
http://dx.doi.org/10.3390/s18061923
http://www.ncbi.nlm.nih.gov/pubmed/29899279
http://dx.doi.org/10.1117/1.OE.55.9.091408
http://dx.doi.org/10.1364/AO.36.005787
http://dx.doi.org/10.1364/AO.46.005680
http://dx.doi.org/10.1364/AO.55.005868
http://dx.doi.org/10.1016/j.optlaseng.2018.07.018
http://dx.doi.org/10.1117/1.OE.58.5.054105
http://dx.doi.org/10.1111/j.1747-1567.1997.tb00535.x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Results 
	Discussion 
	References

