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Abstract: In layered manufacturing (LM), slicers are employed to convert input geometric models
into G-codes. Conventional slicers accept only surface models as input data. Thus, volumetric
models have to be converted into polygonal representations to fit the data format of the slicers.
This results in extra computational costs and geometric errors. In this article, we present an efficient
slicer aiming to generate G-codes for volumetric models. At first, our slicer computes the printing
direction by exploring the inertia tensor of the input model to enhance the stability of the printed
part and to decrease the build time. Then, it detects and classifies overhangs in the input model
and generates necessary support structures by using a pattern-based method. Thirdly, the proposed
slicer divides the input model into the skin and internal regions and cuts the model into 2D images.
Subsequently, these images are transformed into toolpaths by utilizing texture mapping and graph
traversal methods. Finally, the resultant toolpaths are smoothed to reduce staircases and encoded
into G-codes. Test results verify that the proposed slicer produces decent G-codes for volumetric
models. Scanned objects hidden in volume data can be directly manufactured without generating
intermediate polygonal representations. LM processes become more efficient.

Keywords: G-code generator; layered manufacturing; volumetric modeling; 3D image processing;
volume visualization

1. Introduction

Compared with traditional subtractive manufacturing methods, layered manufacturing (LM)
techniques are more flexible, low-cost, and efficient in prototyping and object fabrication. Thus,
LM improves productivities and shortens development time in industries [1]. In an LM process,
an assistant software, the slicer, is responsible for converting the input geometry into the G-code
program, which guides the 3D printer to build the physical object [2]. Since the accuracy, build time,
and strength of the finished part are decided by the G-codes, the slicer is, thus, a vital component in
the LM process. In recent years, enormous efforts had been paid on developing efficient slicers for LM.
As a result, many decent slicers are currently available in the market and internet [3].

Conventionally, the input models of LM are expressed in polygonal representations, for example
stereolithography (STL) files. Thus, most slicers focus on translating models, formed by triangular
meshes, into G-codes. Though STL has become the de facto format in LM, not all geometric models are
defined by facets. For instance, tissues and organs segmented from medical data sets [4] and objects
created by using volumetric modeling methods [5] are composed of voxels. These geometries cannot be
converted into G-codes by using conventional slicers. One can transform these voxel-based models into
surface representations at first and then processes the intermediate geometries by using conventional
G-code generators [6,7]. However, this format transformation process increases computational costs
and induces extra geometric errors. In this article, we propose a slicer, which is capable of translating
volumetric models into G-codes without producing intermediate surface representations. Therefore,
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computational efforts are saved, and unwanted geometric errors are prevented. Consequently,
manufacturing volumetric models becomes more convenient and efficient.

The proposed slicer consists of several stages. At the first stage, the input model is oriented such
that its stability is maximized and its height is decreased. For some LM modalities, support structures
are needed to prevent the printed objects from collapsing during the printing process. At the second
stage, the proposed slicer detects and classifies overhangs and grows auxiliary structures to support
the input model. In the following computation, our slicer divides the input model into the skin and
internal regions and cuts the input model into a stack of 2D images. The skin region is then hatched by
using a contouring method to produce toolpaths that fabricate a high-quality surface. On the other
hand, the internal region is rasterized by using a texture-mapping method to speed up the printing
process and to reduce the weight of the printed object. Finally, the toolpaths for printing the skin and
internal regions are smoothed and encoded into G-codes, and the resultant G-code program is kept in
a disk file.

The principle methodology of our slicer is similar to that of the conventional ones [3]. Nonetheless,
as the input models of our slicer are expressed in volumetric data format, those algorithms, adopted by
the conventional G-code generators, cannot be employed to process the input models. Instead,
alternative methods have to be developed to fulfill the tasks. These innovative algorithms can be
summarized as follows:

1. We explore the mass distribution of the input model to calculate the printing direction. Hence,
the stability of the input model is maximized, and the volume of the support structures is
greatly reduced.

2. We design patterns to classify overhangs to avoid generating too much support structures while
necessary pillars are always created.

3. Thirdly, we treat the input model as a 3D image such that the skin region can be produced by
using image processing techniques. Contouring the skin region can be accomplished by using
erosion and graph traversal algorithms.

4. Our slicer adopts a texture mapping method in filling the internal region. Users can use
geometrical transformation operators to adjust the infilling pattern, and thus the hatching process
becomes more flexible.

5. As the input model is assembled by voxels, staircases prevail in the model surface. They may
deteriorate the quality of the finished part. Our slicer employs an encoding algorithm to smooth
the saw-tooth effect and to connect short toolpaths. Therefore, staircases are decreased in the
printed part.

6. When combined with a voxelization program, the proposed slicer is capable of processing
polygonal models too. It can serve as an ordinary slicer for polygonal models in LM processes.

The rest of this article is organized as follows: Related work are reviewed in the next section.
Section 3 contains the overview and details of the proposed slicer. We have carried out experiments to
verify the efficiency of the proposed G-code generator. The test results are presented and analyzed
in Section 4. Some implementation issues and future work are discussed and proposed in Section 5.
This article ends with conclusions in the last section.

2. Related Work

Slicers are essential tools in LM, and much research has been conducted to develop them. In the
work of [8], Brown and de Beer presented a practical G-code generation procedure. In the paper
of [9], Tata et al. proposed another efficient slicer. In these two works, the researchers divided the
G-code generation process into stages and designed specialized computational geometric algorithms
to gradually translate the input models into G-codes. The architectures of their slicers are similar to
ours. However, key computational algorithms in our system have to be revised or invented since our
slicer takes volumetric models as input data while their slicers deal with polygonal models. Besides



Appl. Sci. 2019, 9, 3868 3 of 15

the work of [8] and [9], many slicing methods have also been developed. A review paper on these
software tools was published in [2]. The authors categorized the slicers into various groups according
their methodologies and functionalities. The fundamental pipeline of G-code generation was also
presented in this review paper. In the article of [3], several popular commercial and free slicers were
introduced and briefly compared. These slicers aim at generating G-codes for 3D printers, ranging
from basic models to very advanced systems.

Voxel-based modeling is not new for LM applications. In [5], Chandru et al. used voxels to create
models dedicated for 3D printing. In the work of [10], a voxel-based method was proposed to assess
the manufacturability of 3D models in LM processes. In [11], Tedia and Williams developed a method
aiming to generate supporting structures and to find minimum features for voxel-based models. In the
paper of [12], Ueng et al. utilized voxel-based modelling techniques to develop a virtual manufacturing
system for previewing and debugging G-code programs. These aforementioned researches made
significant contributions to LM by using volumetric modeling methods. However, a solid and robust
G-code generation procedure for volumetric models is absent from their works.

LM is widely used in various medical applications. In the papers of [13,14], those areas that
have benefited from LM are presented, including surgical planning, tissue replacement, pathologic
assessment, education, and medical research. In [15], a practical LM procedure had been presented
to create a heart model and a fixation patch, which were used in a remedy operation in an infant’s
heart. In the procedure, the researchers used a segmentation software to extract the blood pools of
the heart and major vessels from the input computerized tomography (CT) scan data. Then, they
utilized a geometrical modelling program to grow the surfaces of the heart and major vessels from the
blood pools. At the following stage, they employed another computer aided design (CAD) software
to refine the heart model and to create the fixation patch. Finally, the heart model and fixation patch
were converted into G-codes by a slicer and manufactured by 3D printers. Similar procedures for
creating implants, bio-models, and related applications can be found in the work of [16]. In the work
of [7], Ueng et al. proposed a manufacturing method to fabricate scanned objects from magnetic
resonance imaging (MRI) and CT-scan data. Their method computes the iso-surface of the object at first.
Then, the resultant iso-surface is digitalized into a 3D image and converted into a distance field at the
following step. Finally, a surface model is extracted from the distance field and manufactured by using
a 3D printer. A similar approach can be found in the work of [6]. In the paper of [17], a geometrical
modelling procedure was proposed to build polygonal representations for scanned objects hidden in
medical image data. This procedure computes the 2D contours of the target object in all cross-sections
of the input volume data at first. Then the surface mesh of the target object is formed by connecting
these contours. The resultant surface mesh is a watertight solid geometry and feasible for LM.

In the research presented in [6,7,13–17], the scanned objects are contained in volume data sets.
Before the LM processes starts, they have to be converted into polygonal representations to match
the input data format of the slicers. Therefore, extra computation costs are consumed, and additional
modeling errors are inevitable. The need of a slicer dedicated for volumetric models is obvious. In the
paper of [18], Oropallo and Piegl regarded G-code generation for voxel-based models as one of the top
challenges in LM. The work of [6,7,13–17] and the proposition of [18] inspired us to develop a G-code
generator, aiming at translating voxel-based models into G-code programs to enhance the usefulness
of LM in medical and other industrial applications.

3. Materials and Methods

3.1. System Overview and Preprocessing

The architecture of the proposed G-code generator is shown in Figure 1. At first, the input model
is preprocessed to remove dangling parts and noises. Then, the slicer orients the input model to
maximize its stability, based on the inertia tensor of the input model. At the following computation,
support structures of the model are generated by using a pattern-based method. After completing
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these computations, the slicer applies image processing operators to divide the foreground voxels
into skin and internal regions. Then, the slicer cuts the model to create a 2D image; and this image is
hatched to generate toolpaths by using depth-first search and texture mapping rasterization. In the
following step, the resultant toolpaths are encoded into G-codes. The aforementioned slicing, hatching,
and G-code encoding tasks are repeated until all layers of the input model have been processed and
converted into G-codes.
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The proposed slicer aims at translating volumetric models into G-codes. If the input model
is expressed in a polygon-based representation, for example an STL file, a voxelization program is
invoked to convert the input model into a 3D image at the preprocessing stage. If the input model is a
volumetric one, image resampling may be required to synchronize the resolution of the input model
and the nozzle diameter of the 3D printer. Tissues and organs segmented from medical image data
sets may contain dangling fragments, small holes, narrow gaps, and broken structures, which are
impossible to fabricate by 3D printers. If so, morphological operations, for example closing and
opening, are performed to improve the quality of the volumetric model. After this preprocessing step,
the input data become a 3D binary image, in which the foreground voxels constitute the model and
the background voxels form the void space. Then, this 3D image is sent into the G-code generation
pipeline for further processing.

3.2. Orientation

In an LM process, selecting a good printing direction may improve the fabrication time, surface
quality, mechanical strength, and support structures of the finished part [19,20]. Hence, orientation
is important for LM. However, the aforementioned criteria are mutually conflicted [18]. Finding a
printing direction to optimize all these factors is, thus, impractical. In the proposed slicer, we oriented
the model to maximize its stability such that its height and build time were reduced. Intuitively,
a stable model needs less support structures than an unstable one. Thus, our orientation method may
also reduce the volume of support structures [20].

In dynamics, the moment of inertia is used to measure how large a torque is required to rotate
an object [21]. (The magnitude of the torque is linearly dependent on the moment of inertia.) In this
work, we explored the mass distribution of the input model to find a direction, in which the moment of
inertia of the input model is maximized. We treated this direction as the printing direction. Therefore,
the model will attend maximum stability during the printing process.

Besides using the moment of inertia to find the printing direction, we regarded the orientation
procedure as a coordinate system transformation process. In this work, we assumed that the origin of
the input model space was at (0, 0, 0), and the voxels were at the grid points of a 3D lattice and can be
indexed by (i, j, k). At first, the mass center, G, of the input model is computed:

G =
∑

i

∑
j

∑
k

ρi, j,kVi, j,k/M, (1)
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where M represents the mass of the input model, Vi,j,k is the coordinates of the voxel at grid point
(i, j, k), and ρi,j,k represents the mass of this voxel. If this voxel is a model voxel, then ρi,j,k is 1; otherwise,
ρi,j,k is 0. Once G has been computed, the origin of the model space is shifted to G, and then the mass
distribution of the input model is explored to calculate the new axes of the model space.

Since the input model may not be symmetric, its mass distribution should be expressed by an
inertia tensor I [21]. The component tensors of the input model about G are calculated by

Ixx =
∑
i, j,k

(y2 + z2)ρi, j,k, Iyy =
∑
i, j,k

(x2 + z2)ρi, j,k, Izz =
∑
i, j,k

(x2 + y2)ρi, j,k

Ixy = Iyx =
∑
i, j,k

xyρi, j,k, Ixz = Izx =
∑
i, j,k

xzρi, j,k, Iyz = Izy =
∑
i, j,k

yzρi, j,k
(2)

where x, y, and z stand for the shifted coordinates of the voxel indexed by (i, j, k). The inertia tensor of
the input model is represented by the following matrix:

I =


Ixx −Ixy −Ixz

−Iyx Iyy −Iyz

−Izx −Izy Izz

, (3)

Then, we diagonalize I by using the Jacobi method [22],

I = PDP−1, P =
[
→
e 0

→
e 1

→
e 2

]
, D =


I0 0 0
0 I1 0
0 0 I2

, (4)

where P is a column matrix of the principal axes of inertia, and D is a diagonal matrix of the principal
inertias of the input model [21].

Then, we searched the principal axis associated with the maximum principal inertia. About this
axis, we had to apply the largest torque to rotate the input model [21]. Hence, we chose this axis as the
z axis such that the input model achieved the maximum stability. The other two principal axes were
treated as the x and y axes of the new data coordinate system. Subsequently, we computed the extents
of the input model in both the positive and negative z directions. If the extent in the negative z axis
is longer than that in the positive z axis, we reverse the z axis to lower the vertical position of G to
increase the stability of the input model. Once the new axes have been calculated, a rotational matrix is
built by using the three axes to transform the positions of all voxels.

The example in Figure 2 shows the outcome of an orientation process. Part (a) shows the input
volumetric model, while the oriented model is displayed in part (b). In these two images, the z axis
is shaded in blue color and points vertically. Compared with the original model, the stability of the
oriented model is increased, and the height of the oriented model is reduced from 207 to 116 voxels.
(In this work, we measured the height and volume of a model in terms of voxels.) Thus, less layers
would be produced in the hatching stage, and the build time would be reduced [20].
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3.3. Support Structure Generation

In some LM processes, for example fused deposition modelling (FDM), support structures are
needed to prevent the printed objects from collapsing during the printing stage. Many support structure
generation techniques have been proposed for polygonal models [23,24]. Most of these methods
explore the angles between the z axis and surface normal of the input model to detect supporting points
and generate support structures. Since our input models are voxel-based, their support structures
cannot be built by using these conventional methods. In this research, we developed a pattern-based
method to produce support structures for volumetric models. At first, we found all the voxels in the
input model that had no neighboring voxel immediately beneath them. We called these voxels the
overhangs in this article. Secondly, we classified all overhangs into different types. Then, based on
their types, necessary support structures were produced below the overhangs.

Our overhang classification method works as follows: Assume that the target overhang is at
position (i, j, k). At first, we examined the 8 voxels residing at layer k − 1 and were adjacent to
the overhang by sharing an edge or a vertex. If two or more of these neighbors are model voxels,
this overhang would get enough support from them and this overhang is classified as supported.
No support structure will be grown below it at the following stage. Otherwise, we check the 8
neighboring voxels residing at layer k and classify the overhang as an end, corner, edge, or bottom
overhang according to predefined patterns. Some of these classification patterns are depicted in
Figure 3. If this overhang has no more than 1 neighboring model voxel at layer k, as shown in part (a),
it is classified as an end overhang. If it is on the boundary of the model and the acute angle around it
is less than or equal to 90 degrees, this overhang is classified as a corner overhang as shown in part
(b). If it is on the boundary and the acute angle is greater than 90 degrees, as depicted in part (c),
this overhang is an edge overhang. If this overhang does not meet any of the above conditions, it is
regarded as a bottom overhang as shown in part (d).
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Figure 3. Classification patterns of overhangs: (a) end, (b) edge, (c) corner, and (d) bottom overhangs.
The star represents the overhang to be classified, and the squares are its neighboring model voxels at
the same layer. This figure shows only some representative patterns. Other patterns can be obtained by
rotations or by analogy.

If the overhang is an end or a corner overhang, the cohesion between it and the neighboring
vertex may not be strong enough to support it, and a vertical bar is placed under it. The top end of the
bar reaches the overhang, and the other end of this pillar extends to the floor or the model’s surface.
If the overhang is an edge or a bottom overhang, it has some support from its neighbors (because of
cohesion). We do not have to create support structures for all of them. Instead, we select some of
them as supporting points and build support bars beneath them. The selected overhangs should be
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away from other model voxels at the same layer by at least d voxels, where d is a constant decided by
the users.

An example of support structure generation is shown in Figure 2. The support structures of the
input model and the oriented model are shown in parts (c) and (d). The model voxels are rendered
in red, while the support structures are shaded in dark green. The value of d is 4 voxels in this case.
The support structures of the original model contain 67,388 voxels, while the support structures of the
oriented model include only 50,390 voxels. In this case, our orientation program reduces the volume of
the support structures by more than 25%.

3.4. Skin Separation and Slice Generation

In an LM process, the skin of the input model should be densely printed to produce a smooth
surface, while the internal region is filled according to a predefined pattern to reduce the printing
time and the weight of the physical object [25]. Thus, it is necessary to separate the skin and internal
regions before carrying out the rest computations of the G-code generation process. To achieve this
goal, our G-code generator repeatedly erodes the foreground voxels to generate the skin region. The
number of erosions influences the skin region thickness [26]. More erosions result in a thicker skin
region. In this work, we let the users to decide the number of erosions.

When a foreground voxel is eroded, its intensity is changed to a predefined value, dedicated to
the skin region. Thus, the volume data set becomes a triple-valued 3D image after the skin region
is generated. In the following computations, the input model is divided into slices along the z axis.
The resultant slices are 2D images constituted by the void, skin, and internal pixels. The flowchart of
converting a slice into G-codes is depicted in Figure 4. The skin and internal pixels may form several
clusters in each individual slice, depending on the geometry of the input model. Thus, we have to
group the foreground pixels into clusters by using a connected-component labelling scheme [26]. Then,
these clusters are hatched one by one to generate toolpaths. As mentioned above, the skin and internal
regions would be printed in different ways. Thus, the skin and internal pixels of each cluster will be
rasterized by using different approaches. After the hatching process completes, the proposed slicer
encodes the resultant toolpaths into G-codes and stores the G-codes in a disk file.
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3.5. Skin Region Contouring

Since the skin region of the volume model would be thicker than one voxel, the skin region
in a cluster of a 2D slice may be wider than a pixel. Thus, the skin region could be divided into
multiple layers of contours. These contours are traced one after another to produce toolpaths for
printing the skin region. To generate the first layer of contour, our slicer erodes the skin region at first.
Then, the eroded pixels are treated as vertices, and an edge is drawn between two vertices if they are
8-connected [26] before the erosion. In such a way, a contour graph is built.

In the following step, a depth-first-search (dfs) [27] is performed to visit all vertices of the contour
graph. The dfs may produce a cycle, a tree, or multiple trees, depending on the shape of the contour
graph. The forward and backtracking paths of the dfs are recorded in linked lists. They are the
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toolpaths for printing the current contour. Once the first contour has been processed, the above
computations are repeated until all the skin pixels have been rasterized and included in toolpaths.

In the dfs, our slicer adopts a heuristic method to select marching directions to avoid generating
short branches and staircases. The direction selection principle is illustrated in Figure 5. In the contour
graph, a vertex has, at most, 8 neighbors. By ignoring the immediate predecessor in the dfs, our slicer
has, at most, 7 directions to march forward from the current vertex. The direction from the immediate
predecessor to the current vertex is regarded as the best direction to move forward, since it produces
a straight path. If no vertex exists in this direction, our slicer examines the two adjacent directions.
If any one of these two directions leads to an unvisited neighbor, the dfs continues in this direction
such that the turning angle is minimized. Otherwise, the next two unvisited directions, adjacent to
the previously examined two directions, are investigated. By following this principle, the searching
process repeats until a direction is found or all the 7 directions have been tried. If forward-marching
is impossible, our slicer backtracks to a vertex, in which a new branch can be grown, and starts to
integrate a new branch from there.
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3.6. Internal Region Hatching

The proposed G-code generator adopts a texture-mapping method [28] to hatch the internal
regions, as illustrated in Figure 6. Before hatching an internal region, an infilling pattern is selected
from a set of textures by the users. The infilling pattern contains two types of texels: the space (zero)
and the filling (nonzero) texels. Then, the axis-aligned bounding box (AABB) of the internal region is
computed, and each corner of the AABB is given a pair of texture coordinates: s and t. In the following
step, the AABB is rasterized in a scanline-by-scanline manner. During the rasterization, the texture
coordinates of each pixel are calculated by using bilinear interpolation. Then, the void and skin pixels
inside the AABB are ignored while the texture coordinates of each internal region pixel are used to
retrieve a texel value from the infilling pattern. If the retrieved texel value is zero, the internal region
pixel is converted into a void pixel. Otherwise, this internal region pixel is preserved. As the AABB has
been rasterized, the remaining internal region pixels are connected to form one, or multiple, graphs and
are traversed by using the dfs to produce toolpaths.
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In the rasterization process of an internal region, users can rotate, scale, and shift the texture
coordinates of the AABB to vary the orientation, repetition, and density of the infilling pattern. Thus,
the mechanical strength of the printed object could be improved, and the weight of the printed object
could be adjusted. Since the resolutions of the infilling pattern and the internal region may be different,
filtering is required to alleviate alias in the hatching process. In this work, we adopted the nearest-point
filter to compute the texel values of the pixels [28].

3.7. Toolpath and G-Code Generation

A toolpath produced by the dfs is a list of adjacent pixels. Unlike the toolpaths generated from a
polygon-based model, this toolpath is not necessarily a straight line. Instead, it may contain many
short zigzag segments of pixels. It should not be directly encoded into G-codes. Otherwise, too many
G-codes will be produced, and the LM process would generate staircases on the surface of the printed
part. An optimization algorithm is employed to smooth and encode the toolpath. The major goals of
this algorithm include: (1) generating longer straight segments from the toolpath and (2) reducing the
number of the zigzag segments. The proposed algorithm works as follows:

1. Assume the toolpath is c(x,y);
2. Create a straight line l(x,y) connecting the first and last pixels of c(x,y);
3. Compute the maximum distance from each pixel of c(x,y) to l(x,y);
4. If the maximum distance is greater than the threshold, break c(x,y) into c1(x,y) and c2(x,y) at the

pixel where the maximum distance occurs (i.e., the splitting point). Then steps 2–4 are repeated
upon c1(x,y) and c2(x,y) recursively;

5. Otherwise, generate a G-code by using the coordinates of the first and last pixels of l(x,y).

An example is shown in Figure 7 to illustrate the aforementioned encoding method. The blue
curve represents the toolpath c(x,y), the blue circles are the breakpoints, and the red lines represent the
straight lines l(x,y), which approximate the toolpath.
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4. Test Results

We implemented our slicer by using C-language and OpenGL libraries [28]. The resultant
slicer contained three subsystems: a preprocessor, a G-code generator, and a visualization module.
The preprocessor is responsible for voxelizing polygonal models into 3D images and filtering dangling
parts and narrow gaps in volumetric models. The G-code generator is employed to translate voxel-based
models into G-codes, while the visualization module is utilized to display the computational results of
all stages in the G-code generation process. Several experiments have been carried out to evaluate our
slicer. The results are presented and analyzed in this section.

4.1. Orientation and Support Structure Generation

At first, we conducted a test to verify the effectiveness of our orientation algorithm and support
structure generation method. Five volumetric models served as the input models in the test. We named
these models stick, bone, lung, mushroom, and bonsai in this work. Three of them are shown in
Figure 8a, including the stick, bone, and lung models (from the top to the bottom). The image of
the mushroom model can be found in Figure 2a. The stick model is created by using a constructive
solid geometry modeler. The bone and lung are segmented from a CT-scan data set. Originally, the
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mushroom is a polygonal model. We discretized it into a voxel-based representation by using the
preprocessor of our slicer. Then, these models were oriented by our slicer. Parts of the results are
shown in Figures 8b and 2b. At the following step, support structures are generated for both the input
and oriented models. The support structures of the stick, bone, and lung models are revealed in parts
(c) and (d) of Figure 8, and the support structures of the mushroom are shown in Figure 2c,d.
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To produce an objective comparison, the heights and the volumes of the support structures of
the original and rotated models were calculated and recorded during the computations. The results
are measured in voxels and are listed in Table 1. The first column contains the names of the models.
The heights of the input and oriented models are recorded in the second and third columns, while the
volumes of support structures of the input and oriented models are displayed in columns 4 and 5. As
the numbers in column 2 and 3 show, the orientation process reduced the heights of these models.
The height of the stick model was reduced by more than 72%, while the heights of other models were
reduced by 17.6%, 21.2%, 44%, and 34%, respectively. Since the heights of these models were reduced,
less slices will be produced in the following G-code generation process, and the build times of these
objects will be decreased [20].

Table 1. Heights and volumes of support structures of the test data (measured in voxels).

Data Sets
Height (in Voxels) Volume of Support Structure

Original Oriented Original Oriented

Stick 150 42 24,731 3632

Bone 324 267 499,806 405,050

Lung 316 249 239,469 202,182

Mushroom 207 116 67,388 50,390

Bonsai 256 169 1,311,485 1,026,258
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By maximizing their moments of inertia, the oriented models were more stable than the input
geometries. They needed less support structures, as shown in columns 4 and 5 of Table 1. The stick
model gained a significant improvement (more than 85%). The reductions of support structure for the
other models were 18.9%, 15.6%, 33.7%, and 21.7%, respectively. By examining the images of Figures 2
and 8, these improvements can also be visually verified. In these images, the x, y, and z axes of the data
space are rendered in red, green, and blue colors. The z axis is pointed vertically, while these other 2
axes are rotated to reveal more details of the models. These images are produced by our visualization
module using volume rendering.

4.2. The Printed Objects

These volumetric models were then converted into G-codes and manufactured by using an FDM
3D printer. The lung and bone models were much larger than the printing scope of the FDM printer.
We had to scale them down before sending them into the G-code generation pipeline. The settings of
the printing environment are depicted in Table 2. The nozzle diameter of the FDM printer was 0.4 mm.
The layer thickness was 0.1 mm. The raw material was polylactic acid (PLA).

Table 2. Settings of the 3D printer.

Parameters Parameter Values

Layered manufacturing (LM) modality Fuse deposition modelling (FDM)

Filament Polylactic acid (PLA)

Nozzle diameter 0.4 mm

Layer thickness 0.1 mm

Nozzle temperature 205 ◦C

The images of the printed parts are shown in Figure 9. The printed bone, mushroom, lung,
and stick models are shown in the images of the figure. The infilling pattern of internal region is a
regular grid. The gridline space was about 1 mm. The dimensions of the bone, mushroom, lung,
and stick models were 95 × 95 × 67, 97 × 84 × 46, 71 × 64 × 50, and 72 × 13 × 13 mm, respectively.
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The bone model contained long slender parts. It needed many support structures, as shown in
the second image of Figure 8d. As we removed the support structures, some parts of the printed object
were damaged, as shown in Figure 9. The input mushroom model was created from a smooth surface
model by using the voxelization program. Staircases prevailed in its surface, as shown in Figure 2a.
The printed mushroom model shared this feature, but the staircases were reduced, as displayed in
the right-most image of Figure 9. This verified that our toolpath encoding algorithm can alleviate
saw-tooth effects. The lung model was segmented from a medical data set. Its surface was relatively
smooth, as shown in Figure 8a. The printed lung model also possessed a high-quality outer appearance,
as revealed in Figure 9. However, we were unable to remove some of the support structures because of
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occlusion. The stick model was well printed since its structure is simple. We kept its support structures
to maintain its stability, as shown in the left-most image of Figure 9.

4.3. Visualization and User-Interferene

In an FDM LM process, removing the support structures from the printed part is sometimes
difficult if the model is highly complex and fragile. To alleviate this difficulty, human experiences are
superior to numerical and geometrical algorithms. Taking the bonsai model as an example, the oriented
model needed less support structures, but removing the support structures from the printed part
would be hard, as shown in the middle image of Figure 10b. If we chose the y axis as the printing
direction, the model needed more support structures, but the postprocessing became easier, as shown
in the right image of Figure 10b. Thus, we manually oriented the input model and selected the y axis
as the printing direction.
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Figure 10. Images of the bonsai model: (a) the raw, oriented, and manually oriented models; (b) support
structures of the raw, oriented, and manually oriented models.

For the purposes of debugging and previewing, we used our visualization module to render the
toolpaths of each slice in an image. In the image, the void pixels are shaded in black color, while the
toolpaths are represented by colorful lines. Eight slices of the bonsai model were retrieved from the
visualization process and shown in Figure 11. The bonsai model had a complicated geometry, including
the stem, branches, and leaves. Thus, it needed many support pillars, and each slice contained
numerous pixel clusters as shown in these images. These images also reflected the variation of internal
structure of the bonsai model along the z axis and helped us to comprehend the progression of the
printing process.

The printed results of the bonsai model are shown in Figure 12. The left image shows the physical
model before the support structures were deleted, while the right image displays the bonsai model
after some of the support structures have been removed. Since the bonsai model is very complicated,
some of the support structures are hidden inside the models and are unable to be deleted. Thus, we
kept them to avoid damaging the printed object.
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5. Discussion and Implementation Issues

The extents of the lung and bone models exceeded the printing range of the FDM printer. We had
to shrink these models in the LM processes. In a medical application, shrinking the input model
to fit the printer’s range may be impractical. Instead, we should subdivide the input model into
pieces to fit the printable scope of the printer. Besides fitting the printing range of the 3D printer, the
subdivision process possesses extra benefits, for example, parallel printing, better orientation, and
easier postprocessing.

In the future, we would like to conduct research to develop a subdivision algorithm for splitting
large volumetric models into parts. The subdivision method should meet the following conditions:

1. All the individual parts must fit the printable scope of the printer.
2. The interfaces between the parts must be smooth enough for gluing the parts together.
3. The interfaces must contain joints for connecting the parts.
4. The sizes of the parts should be approximately equal.

6. Conclusions

In this article, we proposed a slicer to transform voxel-based geometric models into G-codes.
Our slicer shares a similar G-code generation pipeline with conventional slicers. However, its major
computational algorithms are innovative. The preprocessing, orientation, and support structure
generation methods of our slicer are newly designed. Hatching each slice of a voxel-based model
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is very different from that of a polygonal model. Thus, innovative algorithms were developed in
the proposed slicer to fulfill the duties. Test results revealed the efficiency of the proposed slicer.
It successfully produced high-quality G-codes for both volumetric and polygonal models. But, the
postprocessing of the printed objects may pose difficulties to us if the input models are complicated.
Users’ interferences at the orientation stage can simplify the postprocessing task. The size of the
input model causes another problem if it is larger than the printing range of the 3D printer. A good
subdivision program can help our slicer conquer this obstacle in the future.
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