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Featured Application: Plasma-aerosol systems open new potential opportunities in a wide range of
applications including agriculture, combustion control, nanotechnology, medicine and cosmetics.

Abstract: The interaction of plasmas and liquid aerosols offers special advantages and opens new
perspectives for plasma–liquid applications. The paper focuses on the key research challenges
and potential of plasma-aerosol interaction at atmospheric pressure in several fields, outlining
opportunities and benefits in terms of process tuning and throughputs. After a short overview of the
recent achievements in plasma–liquid field, the possible application benefits from aerosol injection in
combination with plasma discharge are listed and discussed. Since the nature of the chemicophysical
plasma-droplet interactions is still unclear, a multidisciplinary approach is recommended to overcome
the current lack of knowledge and to open the plasma communities to scientists from other fields,
already active in biphasic systems diagnostic. In this perspective, a better understanding of the high
chemical reactivity of gas–liquid reactions will bring new opportunities for plasma assisted in-situ
and on-demand reactive species production and material processing.

Keywords: plasma–liquid interaction; aerosol; droplet; plasma diagnostic; plasma medicine; material
processing; plasma agriculture; plasma cosmetics; nanotechnology

1. Plasma-Liquid as a Bench of Emerging Applications from 2010

Plasmas in/above/with liquids [1] science and technology at atmospheric pressure have been
reawakened these last few years, partly due to the very active research activity in the field of plasma
medicine and the requirement to account for liquid layers covering in vitro cell culture or organs
during in vivo or clinical studies. Grown from the pioneering works of Gubkin [2] and Cavendish [3],
and accounted as the origin of life on Earth [4,5], the investigation of plasma–liquid interaction at
atmospheric pressure became a fruitful and multidisciplinary research field [6,7]. Focus was drawn,
in particular, to the crucial role of so-called reactive oxygen and nitrogen species (RONS) [8] in various
biomedical applications, ranging from biomaterials to therapeutics. The use of plasma-treated liquids
has also been proposed where a direct contact between target and plasma needs to be avoided or
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is not possible. The combination of extensive efforts devoted to both plasma action on animal cells
and the chemical analysis of plasma-treated solutions, together with the development of dedicated
plasma sources for such applications, were between the key reasons why new emerging fields
have been recently introduced, such as plasma agriculture, plasma catalysis, plasma nanomaterial
synthesis/functionalization, plasma cancer, and plasma for skin treatment and cosmetics [9–15]. In this
framework, many scientific works and reviews [1,16] provided insights into the non-equilibrium
chemistry created at the plasma–liquid interface and addressed the role of liquid and gas reaction
pathways. The most common experimental setups, involving the direct contact of a narrow gas
discharge with a batch solution, limit the production of reactive species and, thus, process throughput.
While direct contact with a flowing liquid film has been proposed as an alternative to increase
the plasma–liquid interface [17,18], some recent works have proposed the use of plasma-droplet
interactions with the aim of overcoming the limit of batch process enabling in in-situ and on-demand
dispensing [19–21]. The large number of reaction pathways and available plasma parameters, already
challenging for batch processes, bring even more complexity to the analysis and investigation of
plasma–liquid interaction but open new possibilities for technological applications.

2. Plasma and Aerosols: Opportunities, Economical and Societal Benefits

All these recent advances should, in our opinion and as has already been documented in the
literature [19,20,22], result in a strong effort and a specific interest in the development, optimization
and applications of plasma in interaction with liquid droplets and aerosols in various fields of
technology over the next decade. The topic of this paper is to summarize the opportunities for
generating and delivering plasmas into aerosols and sprays, as a specific branch of plasma–liquid
science and technology.

The term “plasma-aerosol”, where “aerosol” means a dynamic suspension of liquid droplets
dispersed in a gas, encompasses a wide range of scenarios that can involve a range of options, from
single microscopic droplets up to dense sprays and jets, while atmospheric pressure plasmas may vary
from the low temperature and non-equilibrium family of devices to extremely hot plasmas.

The plasma–aerosol configuration offers special beneficial advantages, not only in furthering the
development of plasma–liquid applications, but also enabling greater scientific insights into what
is an extremely complex problem involving potentially thousands of transient and non-equilibrium
chemical reactions. Moreover, the incorporation of large surface-to-volume ratio media into cold
plasma creates new opportunities, correlated to highly demanding societal and technological needs, in:

• Enhancing the transfer of activation energy from the plasma to the liquid. Batch processes are often
limited by the transport of species through the liquid surface. This limit is overcome in the
plasma–aerosol configuration thanks to a large surface-to-volume ratio and the production of
species in close proximity to the droplet surface.

• Controlling reactivity in the liquid. The droplets can act as individual microreactors, enabling a range
of conditions that cannot otherwise be achieved in batch processes.

• In-flight production and on-demand delivery of designed micro/nanomaterials associated with the
generation of clusters and/or liquid evaporation. Aerosol droplets could be employed as
micro-carriers, able to deliver particles and molecules in the discharge region opening, for example,
for the use of low-volatility liquid compounds.

• Delivery of short-lived species. Plasma-aerosol driven by high velocity sprays may represent a new
and unique way to generate and deliver significant amounts of short-lived species (sub-second
lifetime) together with solvated electrons away from the plasma itself on millisecond timescales.

Dealing with economic benefits, in the synthesis of high value chemicals, drugs and nanomaterials,
there is an increasing trend to move away from batch processing, which is expensive, difficult to
control, and has an unwelcome environmental impact. Efficient green process research is looking to
develop micro reaction technology. Plasma and aerosols offer many further advantages with regard to
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cross-contamination, throughput, chemical recovery and waste generation. In addition, the ability to
generate high value chemicals, locally and on-demand, offers tremendous potential. This includes,
for example, pristine or drug-coated nanoparticle generation and delivery to patients for nanomedicine
applications (e.g., wound healing and cancer treatment) and size-controlled nanoparticles for volume
catalytic processes. Alternatively, the encapsulation of biomolecules, drugs, and nanocarriers in
liquid droplets seems to prevent possible plasma-induced damage during the deposition of bioactive,
nanostructured and functional coatings, allowing the retention in the deposited coating of important
chemical functionalities [23–26].

On the side of energy saving, the valuable work of Locke and Shih [27] on energy yields for
H2O2 generation by plasma-water processes reported how the highest efficiency is achieved by
adopting liquid droplets that sequester H2O2 and hinder its decomposition by radicals in the gas
phase. One would expect that optimizing the energy transfer from plasma to liquid as an aerosol
will also broaden opportunities for on-demand, in-situ plasma activated aerosols, likely to be used in
developing countries where electricity availability is still a challenge, together with the specific design
of battery operated and solar energy powered devices. Such development would be of key importance
and highly beneficial for new agriculture, medicine and decontamination solutions [28]. The use
of plasma aerosols will also consist in a water/high value solution-saving technology, matched for
applications like indoor cultivation and large surface material deposition, thus keeping plasma as an
almost dry technology, preventing from huge effluent volumes to be treated as byproducts. As detailed
further in the following sections, plasma and aerosols could also help to prove our understanding of the
climate impact and significance of streamer discharges in the atmosphere [29]. Moreover, introducing
plasma and aerosols as a new alternative in 3D or ink printing technologies has been very recently
discussed [30] and should be an objective for large-scale dissemination of plasma processes, even in
today’s unexplored applications.

3. Plasma and Aerosols: Challenges

Compared to plasma discharges in and over liquids, biphasic aerosol–plasmas have been far less
investigated, and many aspects of their nature are still unknown. The generation of plasma in such
finely dispersed biphasic media is very challenging for physical and chemical diagnostics and modeling
studies, where very local, transient and fast dynamic behaviors, and long-distance effects should be
accounted for. Nowadays, the significant lack of basic understanding concerning the mechanisms
governing these plasmas hinders the optimization of their applications. The scientific questions that
need to be addressed to improve our knowledge on plasma–aerosol interactions can be ideally sorted
into three main categories (see Figure 1):

• Modification of the plasma due to liquid droplets
• Modification of the liquid droplets due to plasma
• Multiphase species transport between plasma and liquid droplets

In the first category all the phenomena governing the plasma discharge propagation and
intersection with the droplets in a biphasic environment can be found. Based on this, some pioneering
studies [31,32] highlighted how the propagation of streamers can be significantly disturbed by the
presence of droplets due to the local modification of the electric field that results from the droplets
polarization and charging [33]. This local modulation of the electric field in turn modifies the local rate
of ionization.
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Other possible effects include charge removal from the streamer and shadowing of the
photoionization behind the droplets; both mechanisms strongly depend on liquid characteristics
(e.g., permittivity) and droplet size. Small droplets (tens of µm or less) of moderate permittivity are
expected to be enveloped by the streamer and do not significantly perturb its propagation, while
larger drops, with a big enough capacitance, can intercept and reinitiate the streamer or stall its further
propagation. Droplets may thus be considered as controlling and tracing the path where the discharge
energy is deposited [31]. Other mechanisms that can possibly play a role and that deserve further
investigation include: droplets induction of streamer branching; extraction of electrons from the droplet
surface owing to photons emitted from the streamer head; alteration of the streamer propagation
velocity. Besides, arising from surface evaporation, the interfacial layer in proximity of the droplet
surface is suspected to contain a cocktail of positively and negatively charged clusters with a large size
range, along with a very high localized vapor density, possibly up to tens of times that possible in
a normal plasma before extinction. We can speculate that this may lead to amplified non-equilibrium
gas-phase chemistry, the products of which may be sequestered by the droplet boundary. Even if the
analysis of transient phenomena (streamer propagation, streamer droplet interaction) at the microscale
requires a great deal of effort, a combined simulative and experimental approach to the subject greatly
benefits the community in addressing the role of different phenomena in the plasma–droplet interaction.
In particular, a better understanding of the effect of liquid (conductivity, droplet dimension, colloidal
state) and gas (electron density, electron temperature, electric field) properties will help researchers to
optimize the design of plasma processes and sources.

Concerning droplets modifications due to the interaction with plasma, a droplet entering a plasma
region is subjected to charging and subsequently experiencing deformation and possibly splitting
due to Coulombic fission as a result of exposure to a plasma-related electric field [20]. In addition,
the rate of evaporation of such droplets could be enhanced by additional factors other than those
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encountered in non-reactive gases, such as irradiation by ultra-low energy electrons [34]. In fact,
these electrons can have energies much lower than is achievable by any other technique, such as
radiolysis. Irradiation, however, may also lead to other processes, such as electron–ion or anion–ion
recombination, Auger and UV emission, which have received very little attention to date in this context.
Moreover, droplets introduced in atmospheric plasma are also susceptible of being accelerated by the
combined effect of the drag forces, ionic wind and electrostatic forces and this could result in various
effects including size segregation. While it is generally believed that the weak magnetic field produced
by atmospheric pressure plasma discharge [35] cannot be accounted for, for the direct modification
of a droplet’s properties (Moses effect [36], evaporation and modification of surface energy), the
application of an external field can be employed to modify the plasma discharge characteristics and
droplet properties [37–40], inducing breakdown [41] or colloid segregation [42]. Precise control over
these mechanisms by means of plasma technology would open new perspectives from the point of
view of droplet manipulation, from millimetric to nanometric scales, from a single droplet to an aerosol.
From this perspective, a deeper investigation of droplet evaporation, taking into account both thermal
and physical effects, can strongly influence the use of plasma for on-demand and in-situ synthesis of
chemicals and reactive species. Further efforts should be devoted to the fundamental study of droplet
charging and electron impaction, with an important focus on the roles of electron density, temperature
and droplet size.

Concerning multiphase species transport, in the last ten years, considerable advancements have
improved our knowledge on the subject [1]. It is considered that plasma–aerosol droplets act as efficient
microreactors where reaction rates, mixing and surface/volume ratio are considerably enhanced, posing
new unique challenges in the understanding of transport of a species in this configuration [27,43].
Computational studies [43–46] showed the importance of the synergy between the plasma and
the liquid, including evaporation and the solvation of ions, electrons and neutral particles. They
also investigated the plasma treated water chemical and transport processes. They highlighted the
importance of the water microdroplet size (or thin water film thickness) on the transport processes
of plasma reactive species. While extremely challenging, devoting additional efforts to the analysis
of convection and reaction pathways inside a droplet microreactor would be valuable, as well as
comparing results with scientific works already published for batch processes. The achievement
of better knowledge on this issue will result in the possibility to tune the chemical and physical
characteristics of an effluent. Future applications will also take advantage of a better understanding of
droplet transportation for the in-situ delivery of chemicals.

The understanding of the aforementioned mechanisms is still at an early stage and certainly
deserves more attention from the scientific community. The operative ranges for biphasic plasma
generation based on aerosol density and granulometry are widely uncharted; the influence of various
and numerous process parameters (e.g., pulse repetition frequency, aerosol density) and most of
the proposed hypotheses still need to be validated for a wider number of conditions and plasma
source architectures. Future studies will have to face the challenges of identifying and validating
diagnostic methods able to allow in-situ characterization of this multiphase environment, despite the
intrinsic inhomogeneity and transient nature. The measurement of a microdroplet thermal, electrical
and chemical characteristics presents a significant challenge that has, to date, seriously limited our
understanding of this important system. Recent advances in spectroscopic techniques, from UV
to infra-red, and with high spatial and temporal resolution now offer the possibility for accurate
study of this system, aided by recent developments in plasma control and in precision microdroplet
generation [34,47,48]. Considering, for example, the range of available gases, liquids or colloids and
the choice of plasma parameters, droplet sizes and exposure time, this experimental and simulation
environment offers very fertile ground for future discoveries.

Nevertheless, the most important challenge in the study of complex multiphase plasmas probably
comes from accounting for the strong coupling that links the above mentioned phenomena. For example,
a droplet entering a plasma region locally modifies the electric fields, but may in turn be deformed by
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the electrostatic forces up to the point of splitting into smaller droplets, characterized by a higher rate
of evaporation that will modify the liquid vapor content in the gas phase and therefore the plasma
discharge. The acknowledgment of this coupling will demand a considerable effort and the adoption
a multi-diagnostic approach combining techniques for the characterization of the plasma, the aerosol,
the fluid dynamic mixing and the liquid properties together with advanced numerical models able
to account for droplet surface modification. The design of new experiments aimed to “decouple”
these phenomena, for example considering the interaction between a single drop with a single pulse
discharge, will also be essential to further improve our knowledge on these mechanisms.

New plasma source architectures, best coupled with aerosol nebulizers, will need to be developed
and customized to ensure a precise control of droplet dimension distribution and residence time. The
optimization of existing applications based on the interaction of plasma-droplets (e.g., plasma-assisted
coating deposition [23], wastewater treatment and decontamination [49]) will promptly benefit from
research effort on biphasic plasmas while numerous new applications (e.g., plasma aerosol catalysis,
plasma assisted printing [50]) are expected to rapidly develop and gain interest. With a precise
control of the plasma and microdroplet parameters we could engineer a unique non-equilibrium
multiphase structure comprised of gas, plasma, liquid and, importantly, a dynamic interfacial layer.
This enhanced transport, combined with a fine control of the droplet trajectories and residence time
in the plasma region, opens new opportunities in the control of the treatment time and potentially
in the use of solvated electrons and short-lived reactive species. With this control, not possible with
any other steady-state system, we may gain insight into the transport and mass accommodation of
radical species before the onset of Henry’s Law [51]. This is of critical importance in the study of
atmospheric chemistry, pollution and climate change [29]. With the introduction of solid and polymer
materials, or their precursors, into a liquid droplet, the scope for new materials and new diagnostics
appears immense.

4. Bridges to Other Communities

Great help in tackling the presented new challenges may come from closely related research
fields and communities that have already been addressing effects of interest for biphasic plasmas.
As an example, there are multiple studies, some of them over 100 years old, on electrospraying
(electrohydrodynamic atomization) of liquids by applying strong electric fields, i.e., high voltages on
the nozzle [52,53]. The electrospray community has produced a huge amount of valuable literature on
the mechanisms implied in droplets charging, deformation and fissioning in the presence of strong
electric fields and eventually in the presence of plasma discharges when operating with liquids with
high surface tension (e.g., water) that require the use of high voltages [54]. However, in most of
electrospray applications, the occurrence of plasma discharge is undesired, as the discharge typically
perturbs the stability and homogeneity of the spray (see Figure 2).
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Figure 2. Photographs of the electrospraying of water in an 8-mm gap, water flow rate 0.5 mL min−1:
(a) droplet without a high voltage, (b) electrospray with a high voltage applied, 5.5 kV, (c) electrospray
combined with streamer corona, 6.5 kV, (d) electrospray with transition streamer corona-transient
spark, 7.8 kV. Reproduced from Machala et al. [55]. All rights reserved.



Appl. Sci. 2019, 9, 3861 7 of 10

There were a few studies, which investigated the interactions of the sprayed charged aerosol
droplets and the discharge, especially with respect to the space charges and ion mobility effects [56–58],
or even studies that intentionally employed these complex interactions, e.g., for water treatment or
surface decontamination [59–61]. Valuable information, methods, techniques and models can be
extracted from these studies or reviews [54,62] and used for a deeper investigations of plasma-aerosol
interaction. Other fields that probably deserve attention from the plasma community are fuel injection
for combustion engines [62], low pressure dusty plasmas [63], aerodynamic [64], thermal plasma
spray [65], space plasmas and once again atmospheric plasma phenomena [29]. Far from being trivial,
the scouting of these domains’ literature and the instauration of efficient collaborations with the
relative researchers will be a key factor to support the advancement of the research in biphasic plasmas.
Certainly, the benefit will be mutual and the collaboration will provide new perspectives and tools to
the cited domains (e.g., enhanced evaporation and introduction of reactive species in fuel droplets to
increase flame control and reduce pollutant production).
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