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Abstract: Use of manufactured sand to replace natural sand is increasing in the last several decades.
This study is devoted to the assessment of using Principal Component Analysis (PCA) together
with Teaching-Learning-Based Optimization (TLBO) for enhancing the prediction accuracy of
individual Adaptive Neuro Fuzzy Inference System (ANFIS) in predicting the compressive strength
of manufactured sand concrete (MSC). The PCA technique was applied for reducing the noise in the
input space, whereas, TLBO was employed to increase the prediction performance of single ANFIS
model in searching the optimal weights of input parameters. A number of 289 configurations of MSC
were used for the simulation, especially including the sand characteristics and the MSC long-term
compressive strength. Using various validation criteria such as Correlation Coefficient (R), Root Mean
Squared Error (RMSE), and Mean Absolute Error (MAE), the proposed method was validated and
compared with several models, including individual ANFIS, Artificial Neural Networks (ANN) and
existing empirical equations. The results showed that the proposed model exhibited great prediction
capability compared with other models. Thus, it appeared as a robust alternative computing tool or an
efficient soft computing technique for quick and accurate prediction of the MSC compressive strength.

Keywords: manufactured sand concrete; adaptive neuro fuzzy inference system; compressive
strength; teaching-learning-based optimization; mixture proportion; principal component analysis

1. Introduction

In recent years, manufactured sand has been progressively used to replace natural sand in
building materials [1]. This new type of material, produced by crushing rock depositions, exhibits
some morphology features that are unique and cannot be found in natural sand, such as the angular
and rougher texture [2,3]. Unlike manufactured sand, the common negative characteristic while
using natural sand in concrete is the alkali-silica reactions between the reactive silica components and
the alkali hydroxides derived from the cement. Such reactions lead to the expansion, deterioration
and even failure of concrete structural elements [4]. On the contrary, using manufactured sand is
advantageous with the possibility of preselection of low silica content rocks as to avoid such alkali-silica
reactions. Besides, manufactured sand could positively influence the strength and durability of concrete,
mainly due to better interlocking between highly irregular particles [2] or a better bonding between
steel bar and concrete [5]. Indeed, as demonstrated by Li et al. [6] in an experimental investigation,
machine-made sand particles exhibit usually a higher degree of angularity than river sand particles
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(i.e., in terms of morphology). The same conclusion was also achieved by Li et al. [6] in terms of
surface texture. Logically, they found that the compressive and flexural strengths of pavement cement
concrete, as well as its abrasion resistance, have been largely improved compared to conventional sand
concrete. Various other comparative studies have been introduced in the literature in proving the
performance of machine-made sand such as Gonçalves et al. [7], Yamei et al. [8] or Mundra et al. [9].
Therefore, manufactured sand has currently caught great attention from researchers, as well as the
whole construction industry [10,11].

In the literature, many works have focused on the quantification of how the concrete workability
and durability could be influenced by using manufactured sand [6,12], especially its compressive
behavior [1,11,13–15]. In a series of papers, Shen et al. [3,13] have identified the influence of the shape
of manufactured sand and roughness on the concrete compressive strength based on digital image
analysis and experimental compression tests. The authors have also pointed out that the stone powder
of manufactured sand exhibited a considerable effect on the performance of concrete. In another study,
Li et al. [6] have prepared manufactured sand concrete (MSC) samples from different petrographic
sands such as limestone, quartzite, granite, basalt and granite gneiss, respectively. The authors
discovered that morphology and texture characteristics of manufactured sand hugely influenced the
performance of concrete. As an example of results, the flexural strength and abrasion resistance of MSC
were better than natural sand concrete if the crushing value of manufactured sand particles is less than
26.5%. It was also proven in many other experimental studies that MSC exposed better compressive
behavior than that composed of natural river sand [16,17].

One of the most important parameters of MSC is the compressive strength, which is often
obtained by experimental laboratory tests. However, these laboratory investigations were generally
complexes, cost and time consuming. Moreover, the laboratory tests were often limited within 90–180
days periods [18]. Despite all the efforts, it was not often possible to perform too many variations
of ingredients (i.e., proportion of cement, water and machine-made sand as well as stone powder
content in sand). Recently, Artificial Intelligence (AI) based methods have been successfully employed
in the field of materials [19], especially for predicting compressive strength of concrete [20–24].
Dao et al. [25,26] have proposed a comparative study between Adaptive Neuro Fuzzy Inference System
(ANFIS), Artificial Neural Networks (ANN) and Support Vector Machine (SVM) in predicting the
compressive strength of geo-polymer concrete based on mixture inputs. Similarly, Golafshani et al. [27]
has optimized the mix design of silica fume concrete in order to obtain desired compressive strength
using Biogeography-based programming. In another study, Bingöl et al. [28] has shown that the
ANN model provided more accurate results than traditional regression in predicting compressive
strength of lightweight concrete under heat treatment. Mishra et al. [29] has used ANN and ANFIS
for investigating the compressive strength of brick–mortar masonry. In combining AI methods with
global optimization techniques, Bui et al. [30] have implemented whale algorithm in order to better
optimize the weight of a ANN model when predicting compressive strength of concrete. In another
attempt, Behnood et al. [31] have also predicted compressive strength of silica fume concrete based on
a hybrid model involving ANN and multi-objective grey wolves technique. Based on these mentioned
studies, it can be stated that the AI based methods could be able to analyze the nonlinear relationship
between ingredients and compressive strength of various types of concrete for better prediction and
assessment [32–36].

In this study, the main objective is to improve the performance of individual ANFIS model,
which is one of the effective AI models, by using two optimized techniques namely Principal
Component Analysis (PCA) and Teaching-Learning-Based Optimization (TLBO) for better prediction
of the compressive strength of MSC. Out of these optimized techniques, PCA technique was applied
for reducing the noise in the input space whereas TLBO was employed to increase the prediction
performance of single ANFIS model in searching the optimal weights of input parameters. A number of
289 compression tests of MSC were gathered from the available literature, including inputs parameters
such as mixture proportions, cement’s compressive strength, water content, as well as manufactured
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sand’s characteristics. The target response of the present study is the long-term compressive strength
of MSC, ranging from 3 to 388 days of curing age. Correlation Coefficient (R), Root Mean Squared
Error (RMSE) and Mean Absolute Error (MAE) were employed to validate and test the effectiveness of
the proposed model, as well as to compare with other AI models such as individual ANFIS and ANN.

2. Research Significance

As indicated in the introduction part, the estimation of the compressive strength of MSC is
important in civil engineering applications. Although miscellaneous experimental investigations
have reported this problem, it is difficult to deduce a generalized formulation, taking into account all
the parameters that affect compressive strength of MSC, especially in terms of sand’s characteristics.
The employment of AI approaches could help to look into the (nonlinear or not) relationships between
the desired outputs and the corresponding inputs. That way, the influence on the MSC’s compressive
strength of input variables, particularly sand’s characteristics, could be fully achieved and quantified.
Moreover, pre-processing data technique such as PCA and optimization technique namely TLBO could
be applied to improve the performance of a popular ANFIS model for better accurate prediction of the
compressive strength of MSC. Thus, it can be a great approach which could help engineers and/or
researchers to decrease cost and time in laboratory experiments for determination of the compressive
strength of MSC.

3. Materials and Methods

3.1. Adaptive Neuro Fuzzy Inference System (ANFIS)

Early introduced in the 1990s by Jang [37], ANFIS is well-known as a hybrid AI model in merging
ANN [38–41] and Fuzzy Logic (FL) [42]. The ANFIS architecture consists of five principal layers
such as fuzzification, rule, normalization, defuzzification and aggregation [37,43–46]. Based on such
construction, the neural network exhibits the ability to identify the parameters of FL algorithm [47–49].
In ANFIS, the Takagi–Sugeno if–then rules and appropriate membership function are employed for
the fuzzy inference system [50,51]. Similar to ANN, hybrid ANFIS technique has also an ability to
identify the nonlinear relationship between inputs and outputs [43,52,53]. It is worth noticed that
ANFIS exhibits a better prediction efficiency than individual ANN or FL, as demonstrated in several
investigations, such as in the works of Mukerji Aditya et al. [54] or Nayak et al. [55]. However, there are
several limitations in ANFIS model such as ANFIS is not powerful in searching the best firing strength
(i.e., weight) [56,57], which greatly impact the prediction effectiveness [47]. Various investigations
have employed different optimization methods to find the weighs of parameters in a better way,
for instance using Genetic Algorithm, Particle Swarm Optimization, Grey Wolf Optimizer or Invasive
Weed Optimization [58–63]. In this paper, we proposed the Teaching-Learning-based Optimization
(TLBO) to optimize the parameter’s weights in ANFIS.

3.2. Teaching-Learning-Based Optimization (TLBO)

TLBO is an optimization technique that is recently introduced for solving scheduling
problems [64–66]. As the name indicated, TLBO includes two main phases: the “Teacher Phase”,
where the model learns something from a teacher and the “Learner phase”, where the model learns
itself by interacting with other learners. The structure of TLBO can be divided in three main steps as
the followings [67–70]:

3.2.1. Initialization of the Population

In this step, a population of size N is generated along with the initial parameters such as number
of jobs or number of machines. Each element in the population is considered as a student in a class.
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3.2.2. Teacher Phase

In this step, the main objective of the teacher is to increase the mean result of the class in a subject
based on each student’s capability. Let us define “kbest” is the best learner in the class and Xkbest is the
highest overall result in the entire class in all subjects. The mean result of the class can be improved
using the difference between the current mean result and the result given by the teacher such as:

Di f f = ri
(
Xkbest − TFM j,i

)
, (1)

where ri is a random number chosen between 0 and 1, TF is the teaching factor and Mj,i is the mean of
all learner’s results in subject j at iteration i.

The current solution is then updated using the following equation:

X′i = Xi + Di f f , (2)

where Xi is the current solution at iteration i and Xi
’ is the updated solution. If the updated solution

gives a better function value, then accept it, otherwise keep the current solution.

3.2.3. Learner Phase

In this step, the learners increase their results by interacting between themselves. Considering
two learners A and B, the solution is updated using the following relations:

X”
j,i,A = X′j,i,A + ri

(
X′j,i,A −X′j,i,B

)
if X′j,i,A,total < X′j,i,B,total, (3)

X”
j,i,A = X′j,i,A + ri

(
X′j,i,B −X′j,i,A

)
if X′j,i,A,total ≥ X′j,i,B,total (4)

If the updated solution gives a better function value then it is accepted. When the number of
generations is completed, then the algorithm is stopped.

3.3. Principal Component Analysis (PCA)

In multi-variable problems, particularly in the case of applying AI models, PCA exhibits many
advantages in the step of pre-processing data. PCA could help the training phase of AI models
in: (i) assessing the feasibility of space reduction when the problem has too many inputs [71,72],
(ii) preventing the overtraining, as recommended in the work of Defernez et al. [73], and (iii) reducing
the noise in the input data [74–76]. Using PCA technique, important statistical information in the
data has been conserved without dropping any typical characteristics [77,78]. The main steps of PCA
technique are given below [71,79,80]:

• Preparation and normalization of inputs;
• Calculation of the covariance matrix;
• Calculation of the eigenvalues and eigenvectors;
• Estimation of the proportion of total variance of each principal component;
• Identification of the loading of principal components and contribution of inputs.

In this study, PCA was applied in order to reduce noise in the input space for training the models.
Two datasets were prepared: one with raw inputs and the data with PCA pre-processed. These two
datasets were used as inputs for the training and testing phases of the models as to demonstrate the
effectiveness of PCA technique.

3.4. Collection of Data

In this study, the target output is the compressive strength (both cubic and cylinder) of MSC
at different curing ages ranging from 3 to 388 days. The database was collected from experimental
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tests in the available literature [14,81–83]. A number of 289 MSC samples have been mixed by raw
materials such as: (i) ordinary silicate cements; (ii) admixture consisted of fly ash, slag and silica
fume; (iii) crushed stone and (iv) manufactured sand. The properties of the mentioned materials
(i.e., compressive strength and tensile strength of cement at 28 days), the mix proportions as well
as MSC’s compressive strength were detailed in the database, as summarized in Table 1. A factor
of 0.82 was used to convert the cylinder and cubic compressive strength of MSC as suggested by
Zhao et al. [83]. As indicated, the cubic compressive strength of MSC, denoted by Y, ranges from 19 to
96.3 MPa, with an average value of 55.80 MPa, a standard deviation of 1670 MPa (corresponding to a
coefficient of variation CV of 29.93%). The characteristics of sand such as stone powder content and
fineness modulus are also indicated. As reported by Shen et al. [13], stone powder content in sand was
most influenced factor on the compressive performance of MSC.

Initial data analysis (histogram) was performed and showed that most inputs, except I3, I4 and
I9, are well distributed and suitable for the training of the models (i.e., the histogram is close to a
Gaussian distribution). For that reason, PCA was performed in this study to reduce the noise in the
11-dimensional input space. As mentioned above, two datasets were prepared for training the models
using the raw and PCA pre-processed inputs. The detailed analysis of PCA technique are indicated in
the results and discussions section.

Table 1. Statistical analysis of inputs and output used in this study.

Parameter Compressive
Strength of Cement

Tensile Strength
of Cement

Curing
Age

Dmax of
Crushed

Stone

Stone Powder
Content in

Sand

Fineness Modulus
of Sand

Unit MPa MPa Days mm % [-]

Notation I1 I2 I3 I4 I5 I6

Min 35.50 6.90 3.00 16.00 0.00 2.20

Average 47.95 8.25 80.93 28.31 7.54 3.06

Median 46.80 8.00 28.00 31.50 6.60 3.15

Max 63.40 10.20 388.00 31.50 20.00 3.50

Std 4.29 0.60 102.36 3.68 4.48 0.27

CV (%) 8.95 7.29 126.48 12.99 59.42 8.98

Parameter Water to Binder
Ratio

Water to Cement
Ratio Water Sand Ratio Slump

Cubic Compressive
Strength of
Concrete *

Unit [-] [-] kg/m3 % mm MPa

Notation I7 I8 I9 I10 I11 Y

Min 0.25 0.31 120.00 28.00 11.00 19.00

Average 0.43 0.46 175.49 37.23 98.34 55.80

Median 0.45 0.45 180.00 36.00 70.00 56.45

Max 0.69 0.69 291.00 44.00 260.00 96.30

Std 0.09 0.07 15.16 4.00 66.64 16.70

CV (%) 20.81 14.42 8.64 10.74 67.77 29.93

* Cylinder compressive strength = 0.82 × Cubic compressive strength.

3.5. Quality Assessment Criteria

In this study, three common-used quality assessment criteria such as R, MAE and RMSE were
calculated to evaluate the prediction performance of the models. Detailed information and formulations
of these criteria could be found in the literature [84–91].
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4. Results and Discussions

4.1. PCA’s Results

Table 2 indicates the results of PCA, including: (i) the contribution of 11 inputs to 11 principal
components (denoted by PCk with k = 1:11); (ii) the explained variance (EV) of each PCk and (iii) the
cumulative sum (CS) of explained variance, respectively. It can be seen that PC1 exhibits 29.71% and
the first 9 PCs expose 98.94% of total variance. The higher explained variance, the more statistical
information of the input space is propagated. The PCA pre-processed dataset was then created for
training the models together with raw inputs.

Table 2. Principal Component Analysis (PCA’s) results. Principal Component Analysis (PCA).

Input PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11

I1 14.02 5.43 17.64 0.92 12.21 0.24 0.18 2.43 2.92 8.73 35.28

I2 11.81 4.96 26.94 0.00 5.63 1.38 0.00 0.05 2.70 12.69 33.85

I3 3.57 1.07 3.60 40.88 36.66 0.86 0.34 10.97 1.84 0.21 0.00

I4 18.43 1.64 0.81 1.73 5.55 2.68 1.27 61.74 2.57 0.05 3.53

I5 10.04 0.58 3.31 10.17 2.96 57.17 6.72 0.42 5.69 2.93 0.00

I6 0.09 1.55 10.78 42.35 33.39 3.42 4.56 0.22 2.40 1.05 0.19

I7 18.97 10.34 4.49 0.01 1.73 0.16 0.93 0.18 11.30 31.64 20.26

I8 6.48 31.74 0.04 0.06 0.35 0.91 1.91 0.07 15.77 37.60 5.07

I9 9.87 1.82 15.68 0.04 0.51 0.17 57.86 12.10 0.08 1.80 0.06

I10 1.70 34.07 2.63 0.85 0.02 0.96 0.28 2.83 51.88 3.23 1.54

I11 5.03 6.79 14.08 3.00 0.99 32.05 25.95 9.00 2.84 0.07 0.21

EV 29.71 19.71 14.32 9.80 7.57 6.60 5.25 3.69 2.30 0.90 0.16

CS 29.71 49.42 63.73 73.54 81.10 87.70 92.95 96.64 98.94 99.84 100.00

EV: explained variance (%); CS: cumulative sum (%).

4.2. Optimization Procedure: Determination of Optimal Population Size

In this section, a parametric study for optimizing the number of populations of TLBO is presented.
Simulations were performed using the number of populations ranging from 10 to 200 with a step of
10. Quality criteria, i.e., Correlation Coefficient (R), RMSE and MAE, were employed to identify the
optimal number of population size, as shown in Figure 1a,b for R and RMSE, respectively. It should be
noticed that a maximum number of iterations of 1000 was applied in the parametric study. As can be
seen, an optimal number of population size of 40 was obtained, based on two assessments: (i) the values
of R and RMSE at population size of 40 and (ii) the time consuming. Indeed, the higher population size
used, the more computer processing time needed. Figure 2 shows the convergence of optimization cost
with respect to R and RMSE using the optimal population size of 40. It is shown that 1000 iterations
were relevant as the stopping criterion in order to obtain optimized results with respect to both R
and RMSE.
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4.3. Prediction Capability: Improvement of Single ANFIS

In this section, the prediction capability of the proposed models is analyzed thanks to statistical
error criteria such as R, RMSE and MAE. A linear fitting line, defined as “Predicted = Slope *Actual
+ C” is also used for the prediction capability analysis of these models. The statistical results of the
ANFIS model optimized by TLBO and using PCA, denoted as ANFIS-TLBO/P, including the values of
R, RMSE, MAE, error mean, error standard deviation and slope are summarized in Table 3, for the
training and testing data sets. The correlation between actual and predicted compressive strength of
ANFIS-TLBO/P was also plotted in Figure 3. For the training part, it can be noted that the correlation
coefficient of ANFIS-TLBO/P was R = 0.92 with a slope of 0.86. For the testing part, the correlation
coefficient was R = 0.96 with a slope of 0.94. In addition, the comparison of these criteria between
ANFIS-TLBO/P and other models is also shown in Table 4. Let ANFIS/R and ANFIS/P are defined as
the single ANFIS model using raw data and the processed data using PCA technique, respectively.
Besides, the ANN model using PCA technique is designed as ANN/P, whereas ANFIS-TLBO/R is the
ANFIS optimized with TLBO without the PCA treatment. In comparison with other techniques for the
testing dataset, it can be seen that ANFIS-TLBO/P had the highest values of R and slope. Indeed, the
value of R for ANFIS/R, ANFIS/P and ANFIS-TLBO/R was 0.86, 0.88 and 0.93, respectively. On the
other hand, the value of slope for these three models was 0.78, 0.76 and 0.89, respectively.
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Table 3. Summary information of ANFIS-TLBO/P model after using PCA. Adaptive Neuro Fuzzy
Inference System (ANFIS). Teaching-Learning-Based Optimization (TLBO). Principal Component
Analysis (PCA). Mean Absolute Error (MAE).

Criteria Training Dataset Testing Dataset

R 0.92 0.96

RMSE 6.62 4.93

MAE 4.77 4.09

Error mean −0.08 0.26

Error Std 6.64 4.95

Slope 0.86 0.94Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 15 
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Figure 3. Regression graphs of ANFIS-TLBO/P model for (a) training and (b) testing dataset, respectively.

Considering now RMSE and MAE, it can be seen that the values of RMSE, MAE, error mean and
error standard deviation of ANFIS-TLBO/P were 6.62, 4.77, −0.08 and 6.64, respectively for the training
part; and 4.93, 4.09, 0.26 and 4.95, respectively, for the testing part. In comparison with other models
with respect to the testing part, ANFIS-TLBO/P produced the highest performance, meaning the lowest
values of RMSE, MAE and error standard deviation. In particular, the values of these criteria were 8.58,
6.24 and 8.63 for ANFIS/R; 7.65, 5.02 and 7.59 for ANFIS-TLBO/R; and 6.46, 5.28 and 6.49 for ANFIS/P,
respectively. In addition, ANN/P was also applied to check the performance of the ANFIS-TLBO/P
model and the results show that ANFIS-TLBO/P outperforms ANN/P (Table 4).

Table 4. Comparison of prediction capability of different models using raw and pre-processed data,
respectively. Correlation Coefficient (R), Root Mean Squared Error (RMSE).

Model Data Used Designation R RMSE MAE Error Std Slope

Individual ANFIS raw ANFIS/R 0.86 8.58 6.24 8.63 0.78

Individual ANFIS pre-processed ANFIS/P 0.93 6.46 5.28 6.49 0.89

Individual ANN pre-processed ANN/P 0.90 7.67 5.06 7.67 0.77

ANFIS+TLBO raw ANFIS-TLBO/R 0.88 7.65 5.02 7.59 0.76

ANFIS+TLBO pre-processed ANFIS-TLBO/P 0.96 4.93 4.09 4.95 0.94
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For conclusion, firstly, PCA technique helped increasing the prediction performance of the AI
models by reducing noise in the input space. Secondly, TLBO technique well optimized the parameters
of individual the models. Finally, out of all tested models, ANFIS-TLBO/P was the best model for the
prediction of MSC compressive strength, in taking into account sand’s characteristics.

4.4. Sensitivity Analysis

In this section, the influence of Principal Components (PCs) as well as inputs on the prediction
of compressive strength of MSC is analyzed. The influence is characterized by the sensitivity index
(in %), which was calculated based on various levels of variables from quantiles 0 to 100%. Details
of the calculation could be found in the literature [61,92]. Figure 4a, 4b show the sensitivity index of
11 PCs and inputs, respectively, in a descending order. All explicit values are indicated in Table 5.
It should be noticed that the contribution of each inputs on PCs was indicated in Table 2.
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Table 5. Sensitivity index of Principal Components (PCs) and Inputs, respectively.

PCs PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11

Sensitivity index (%) 12.48 17.04 10.53 17.41 15.16 1.80 0.72 11.68 4.37 3.85 4.95

Inputs I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11

Sensitivity index (%) 9.04 8.32 15.07 11.36 5.41 14.12 7.61 8.71 5.19 9.27 5.89

Figure 4b shows that the most three distinguished important input are curing age (I3), following
by fineness modulus of sand (I6) and maximum diameter of crushed stone (I4). The sand ratio (I10),
compressive strength of cement at 28 days (I1), water to cement ratio (I8), tensile strength of cement at
28 days (I2) and water to binder ratio (I7) form the second group of degree of importance. The last
three inputs, such as slump (I11), stone powder content in sand (I5) and water (I9), each contributes at
least 5% for the compressive strength of MSC.

4.5. Comparison with Existing Models in the Literature

In this section, the prediction performance of ANFIS-TLBO/P model is compared with existing
formula in literature. In the work of Ding et al. [14], an empirical equation has been proposed in
order to estimate the MSC compressive strength based on the cement compressive strength at 28 days,
the cement density and the water to cement ratio. Table 6 indicates the value of performance indicators
such as R, RMSE, MAE, Error standard deviation and slope, using ANFIS-TLBO/P and the formula
proposed by Ding et al. [14]. The comparison is presented for 7, 28, 56 and all curing age, respectively.
For other curing ages such as 14, 60, 70, 84, 90 and 180, the number of samples is lower than 10 and thus
not be considered in the comparison. In Table 6, ∆ is the deviation (in %) of performance indicators
between the present work ANFIS-TLBO/P model and Ding et al. [14]. Noting that the values of ∆
with respect to R and slope were calculated based on the deviation around 1, whereas the values
of ∆ corresponding to RMSE, MAE and Error Std were computed based on changes regarding zero,
as indicated by the following equation:

∆ =


(
(λour-model

− 1) − (λoriginal-model
− 1)

)
× 100 in case of : R, Slope(

(λour-model
− λother-model)/λoriginal-model

)
× 100 in case of : RMSE, MAE and Errorstd

(5)

Table 6. Comparison between ANFIS-TLBO/P and existing formula in the literature.

Curing Age Model R RMSE MAE Error Std Slope

7 days

Ding et al. [14] (Equation (6) in [14] *) 0.61 14.42 10.25 10.41 1.77

Our model 0.90 7.43 5.22 6.06 0.99

∆ (%) +29.00 +48.49 +49.03 +41.78 +76.00

28 days

Ding et al. [14] (Equation (5)) 0.92 5.31 4.44 5.32 0.94

Our model 0.95 5.20 4.08 5.18 0.87

∆ (%) +3.00 +2.07 +8.11 +2.63 −7.00

56 days

Ding et al. [14] (Equation (6) in [14] *) 0.91 6.36 3.90 5.38 0.68

Our model 0.87 5.94 5.43 4.46 0.83

∆ (%) −4.00 +6.53 −39.23 +17.01 +15.00

3–388 days

Ding et al. [14] (Equation (6) in [14] *) 0.77 12.82 9.96 12.54 0.66

Our model 0.93 6.16 4.57 6.17 0.88

∆ (%) +16.00 +51.92 +54.11 +50.76 +22.00

* a coefficient of c = 0.3 was used according to [82].
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In cases of curing age of 7 and 28 days, the developed ANFIS-TLBO/P model provided better
performance indicators than the proposed exponential functions in Ding et al. [14]. In case of curing age
of 56 days, negative effects were observed regarding to R and MAE. However, in terms of RMSE, error
Std and slope, the proposed model gave the better prediction performance. Overall, from 3–388 days of
curing age, the proposed ANFIS-TLBO/P model outperforms the empirical formulas in Ding et al. [14],
with respect to R, RMSE, MAE, error Std and slope. It is worth noticed that Ding et al. [14] have
optimized their equations based on only three variables, such as cement compressive strength at
28 days, cement density and water to cement ratio. Other factors have not been considered in the
exponential equation form. Consequently, the influence of sand’s characteristic, especially stone
powder content, have not been investigated. In addition, it is worth mentioned that as reported
in Shen et al. [13], stone powder content in sand had a major effect on the compressive strength of
MSC. Moreover, the impact of other sand’s characteristics on the compressive behavior of MSC is
also discussed in the works of Nanthagopalan et al. [1] and Ji et al. [2]. In short, the ANFIS-TLBO/P
model developed in this study provided better prediction capability of compressive strength of MSC
than other approaches and models in taking into account the variation of sand’s characteristics in
the simulation.

5. Conclusions

In this study, two optimized soft computing techniques such as PCA and TLBO were applied
to improve the performance of individual ANFIS model for predicting the compressive strength of
MSC. A number of 289 experimental tests of MSC were used as dataset for the simulation including
inputs parameters such as mixture proportions, cement’s compressive strength, water content as well
as manufactured sand’s characteristics. Various validation criteria such as R, RMSE and MAE were
employed to validate and test the performance of the proposed model, as well as to compare with other
AI models such as individual ANFIS and ANN with or without PCA treatment. Based on the results
of this study, several conclusions could be deduced: (i) data pre-processing technique such as PCA
is indispensable in order to improve the prediction capability of the AI models; (ii) TLBO algorithm
exhibited a strong efficiency in finding the optimal parameters of individual ANFIS model; (iii) hybrid
ANFIS-TLBO/P model is the best model for predicting compressive strength of MSC in compared to
other models; and (iv) sand’s characteristics should be integrated in the input space for the simulation
of the AI models for predicting the MSC compressive strength.

In terms of perspectives, uncertainty quantification should also be addressed for quantifying the
confidence interval of MSC’s compressive behavior in the presence of input variability.
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Abbreviations

Designation Explanation
MSC Manufactured Sand Concrete
ANFIS Adaptive Neuro Fuzzy Inference System
ANN Artificial Neural Networks
SVM Support Vector Machine
FL Fuzzy Logic
TLBO Teaching-Learning-Based Optimization
PCA Principal Component Analysis
PCk (k = 1:11) Principal components
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Designation Explanation
EV Explained variance
CS Cumulative sum
AI Artificial Intelligence
R Correlation Coefficient
RMSE Root Mean Squared Error
MAE Mean Absolute Error
Std Standard deviation
Ii (I = 1:11) Designation of inputs
Y Designation of target
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