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Abstract: High-resolution episcopic microscopy (HREM) is an imaging technique that permits the
simple and rapid generation of three-dimensional (3D) digital volume data of histologically embedded
and physically sectioned specimens. The data can be immediately used for high-detail 3D analysis of
a broad variety of organic materials with all modern methods of 3D visualisation and display. Since its
first description in 2006, HREM has been adopted as a method for exploring organic specimens in
many fields of science, and it has recruited a slowly but steadily growing user community. This review
aims to briefly introduce the basic principles of HREM data generation and to provide an overview
of scientific publications that have been published in the last 13 years involving HREM imaging.
The studies to which we refer describe technical details and specimen-specific protocols, and provide
examples of the successful use of HREM in biological, biomedical and medical research. Finally,
the limitations, potentials and anticipated further improvements are briefly outlined.
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1. Introduction

Imaging plays a central role in all areas of modern science and is one of the most expanding fields
of biomedical research. Therefore, a plethora of highly sophisticated imaging methods spanning from
ground-penetrating radar to Brillouin microscopy were developed in the last century [1–3].

In particular, the life sciences had a massive benefit from the availability of novel imaging
modalities designed for 3D visualisation of living humans and animals, harvested embryos and tissue
samples. Techniques such as single-photon emission computed tomography (SPECT) and positron
emission tomography (PET), micro-computed topography (µCT) and optical coherence tomography
(OCT) are already used as routine tools for the diagnosis of pathologies in the clinical routine [4–9].
Others, such as micromagnetic resonance tomography (µMRI), atomic force microscopy (AFM) and
optical projection tomography (OPT), are still restricted to the scientific analysis and characterisation
of biological samples [10–16]. Their focus rests on the interpretations of the three-dimensional (3D)
arrangement of organs, tissues, cells and molecules in healthy and diseased organisms, which is the
basis for understanding the genetic, epigenetic and functional aspects of developmental processes,
the genesis of pathologies and the effect of strategies to treat diseases.

Each imaging method has unique advantages for a small field of applications. But due to technical
constraints, most are restricted to highly specific research fields and a narrow selection of specimen
types. A method that is highly potent, especially in structural 3D visualisation of embryos of biomedical
models and biopsy material, is high resolution episcopic microscopy (HREM).
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HREM [17] is an episcopic imaging method which generates a series of inherently aligned digital
images of histologically processed and embedded specimens. The images are virtually stacked to
be analysed by scrolling through the original or virtual resections and to lend themselves to volume
rendering or segmentation and surface rendering. Thus, HREM is in line with other episcopic imaging
techniques, such as serial block-face scanning electron microscopy (SBFSEM) [18], serial reconstruction
technique [19–21], Epi-3D [22], surface imaging microscopy [23,24], imaging cryomicrotome [25],
serial block-face imaging [26] and episcopic fluorescent image capturing (EFIC) [27], although it is
optimised for a low microscopic level of resolution.

In a nutshell, materials are harvested and processed as for traditional histology. During dehydration,
they are stained with eosin red mixtures, and resin (JB4) dyed with eosin or eosin/acridine orange
is used for infiltration and as an embedding material. The resulting resin blocks are sectioned
on a microtome, while digital images of subsequently exposed block surfaces are captured in
fluorescence-mode using yellow fluorescent protein (YFP) (excitation 500/20 nm, emission 535/30 nm)
or green fluorescent protein (GFP) (excitation 470/40, emission 525/50) filter sets for visualising
eosin-contrasted structures. Cells and tissues specifically stained with LacZ or NBT/BCIP (nitro-blue
tetrazolium and 5-bromo-4-chloro-3’-indolyphosphate) appear heavily contrasted when also using
a Texas Red filter system as shown in Figure 1. Several protocol variations optimised for various
materials are already published and extensively discussed [28–32].Appl. Sci. 2018, 8, x FOR PEER REVIEW  3 of 14 
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HREM data typically have a voxel size of 2 × 2 × 2 µm3 and are created from specimens with
a volume of 6 × 6 × 6 mm3, although larger and smaller samples and higher or lower resolutions
are possible. Data contrasts fit for identifying cells and nuclei, nerve fibres, capillaries and collagen
bundles in the context of overall morphology and tissue architecture. Data generation varies according
to specimen size, but it takes approximately 4–5 h for data comprised of 2000 single section images.
Since numerous publications comprehensively describe the method [33–36] and ready-to-go HREM
apparatuses are already commercially available (OHREM, Indigo Scientific Ltd., Baldock, England),
this paper will not provide protocols or technical descriptions, but will focus on discussing published
scientific results and potential applications.

2. Applications of HREM

HREM has been employed in various areas of the life sciences and for visualising a number of
different organic materials. Its chief domains of application are phenotyping of embryos of biomedical
model organisms and structural analysis of human biopsy material. Besides those, there are a number
of unconventional applications.

2.1. HREM in Embryo Research

HREM was used for analysing whole embryos or embryonic organs and tissues of various
species, including humans. However, the highest impact in this field was gained from phenotyping
mouse embryos and from the selection of HREM as the tool for phenotyping mouse mutants
harvested at embryonic day (E) 14.5 in the Deciphering the Mechanisms of Developmental Disorders
(DMDD) program.

2.1.1. Mouse Embryos

Moderate breeding costs, short generation times and the existence of sophisticated molecular tools
to manipulate the mouse genome facilitate efficient engineering of mutant mouse lines by random or
targeted disruption of specific genes. Due to the conservation of basic developmental mechanisms and
gene function, such lines are then used for studying normal mammalian gene function and the genetic
components of diseases.

Identifying morphological defects of mouse embryos of genetically engineered mouse lines is an
important step to characterise the function of the disrupted gene during embryo development and
to define its role in the genesis of hereditary diseases and malformations. HREM was developed to
permit the production of 3D volume data of whole E14.5 mouse embryos in a resolution and quality
to fit for a holistic qualitative and quantitative analysis of embryo morphology, organ, blood vessel
and nerve topology and tissue architecture as shown in Figure 2. In the scope of DMDD [37], which
was linked with the International Mouse Phenotyping Consortium (IMPC), HREM was employed to
build a virtual resource of fully annotated phenotype data of over 200 normal and over 500 mutant
mouse embryos harvested at E14.5 stemming from 87 individual single knock-out or knock-down lines
producing lethal or subvital homozygous offspring.
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Figure 2. 3D visualisation of embryo material. (A–E). Embryos harvested at embryonic day 14.5 in the 
scope of the Deciphering the Mechanisms of Developmental Disorders (DMDD) project. Opaque and 
semitransparent volume models from ventral view (A–D). Note the intrinsic contrast of the blood-
filled liver vasculature inferior vena cava (ivc) and the atria (at) in (B) and (C). In (D), the opaque 
volume model is coronally sectioned and the stapedial artery (sa) penetrating the developing stapes 
(st) is zoomed in on in the inlay to the top. The bottom inlay provides the aortic valve as detailed as 
it appears in the coronal 2D resection used as a sectioning plane. (E) shows a sagittally sectioned 
semitransparent volume model from lateral, integrating surface models of the urogenital tract. 
Choroid plexus (cp) and commissural fibres (cf) are detailed in the zoom-in displayed as an inlay to 
the top right. The bottom inlay shows a cranial and oblique view of the surface models of the ovaries 
(violet), ureter, urinary bladder and urethra (yellow), Müller duct (light blue) and Wolff duct (blue). 
(F–H). Chick embryo at developmental stage 18 according to Hamburger and Hamilton. Opaque 
volume model from the ventrolateral in (F) and (G) with a zoom-in on the virtually sectioned heart 
tube (ht) in (G). (H) shows the virtual 2D resection of the cutting plane in (G). ve, ventricles; li, liver; 
hb, hindbrain; co, cochlea; sv, semilunar valves; rlu, right lung; llu, left lung; te, telencephalon; di, 
diencephalon; sc, spinal chord; ns, nasal septum; to, tongue; la, larynx; uv, umbilical vein; I, intestine; 
pa, pharyngeal arches; le, lens; ub, bud of upper limb; lb, bud of lower limb; ec, endocardial cushion. 
Scale bars: 500 µm. 

Figure 2. 3D visualisation of embryo material. (A–E). Embryos harvested at embryonic day 14.5 in the
scope of the Deciphering the Mechanisms of Developmental Disorders (DMDD) project. Opaque and
semitransparent volume models from ventral view (A–D). Note the intrinsic contrast of the blood-filled
liver vasculature inferior vena cava (ivc) and the atria (at) in (B) and (C). In (D), the opaque volume
model is coronally sectioned and the stapedial artery (sa) penetrating the developing stapes (st) is
zoomed in on in the inlay to the top. The bottom inlay provides the aortic valve as detailed as it appears
in the coronal 2D resection used as a sectioning plane. (E) shows a sagittally sectioned semitransparent
volume model from lateral, integrating surface models of the urogenital tract. Choroid plexus (cp) and
commissural fibres (cf) are detailed in the zoom-in displayed as an inlay to the top right. The bottom
inlay shows a cranial and oblique view of the surface models of the ovaries (violet), ureter, urinary
bladder and urethra (yellow), Müller duct (light blue) and Wolff duct (blue). (F–H). Chick embryo
at developmental stage 18 according to Hamburger and Hamilton. Opaque volume model from the
ventrolateral in (F) and (G) with a zoom-in on the virtually sectioned heart tube (ht) in (G). (H) shows
the virtual 2D resection of the cutting plane in (G). ve, ventricles; li, liver; hb, hindbrain; co, cochlea; sv,
semilunar valves; rlu, right lung; llu, left lung; te, telencephalon; di, diencephalon; sc, spinal chord; ns,
nasal septum; to, tongue; la, larynx; uv, umbilical vein; I, intestine; pa, pharyngeal arches; le, lens; ub,
bud of upper limb; lb, bud of lower limb; ec, endocardial cushion. Scale bars: 500 µm.



Appl. Sci. 2019, 9, 3826 5 of 14

In the scope of this program, a standardised and ergonomic protocol for the comprehensive scoring
of the morphologic phenotype of E14.5 embryos [38], a novel system for defining developmental
substages of E14.5 mouse embryos [39], and reference data for the correct interpretation of phenotype
abnormalities and for distinguishing variations from abnormalities [40] were created. Approximately
200 novel mouse phenotype (MP) terms were added to the MP ontology list as a result of HREM
allowing for the detection of details that could not be detected with alternative imaging techniques.
Numerous publications in highly ranked journals were produced based on HREM data generated in
DMDD [38–48].

DMDD independent stand-alone studies researching genetic regulation of mouse development
include the analysis of: normal and abnormal cardiovascular development [49–61]; the development
of the limbs, cloaca and pancreas [42,62–64]; ciliopathies [65]; and the characterisation of cardiac
defects in Down syndrome mouse models [66,67]. Despite its value for analysing such processes in
embryos between embryonic day E8.5 and E14.5, when organogenesis is already finished, HREM
also proved its value for analysing developmental processes in very early embryos immediately after
implantation [68].

HREM has proved an excellent fit for pure descriptive but also metric analysis, which will
have a great impact on researching the influence of biomechanical forces on prenatal tissue and
organ formation and remodelling. Simple descriptive studies allowed, for example, the visualisation
of pharyngeal arch artery development, proved the transitory existence of a 5th pharyngeal arch
artery in the mouse and defined the dimensions of large arteries in mouse embryos bred on various
genetic backgrounds [69–74]. Precise visualisation of septation and cardiac cushion, the outflow
tract and valve development were used as a basis for learning the concepts underlying associated
malformations [75–86]. Besides its importance for research, digital 3D models are of course eagerly
anticipated teaching aids, as they can exemplify complex developmental remodelling processes.

Simple metric data were produced for defining the dimensions of the great intrathoracic arteries
of embryos bred on various genetic backgrounds. However, based on HREM data, more sophisticated
models could be calculated, which could mathematically define the description of the heart looping
process [52] or use 3D fractal analysis for defining the complexity of trabeculation during ventricular
development of the heart [87–89].

2.1.2. Chick Embryos

Chick embryos of very early to late developmental stages were already examined, as shown
in Figure 2. Embryos of the blastoderm stage [90,91] were used for researching the effect that the
storage of eggs has on embryonic development and viability. Embryos of late developmental stages
have been successfully used for analysing the effect of hemodynamic alterations on the topology and
remodelling of the cardiac outflow [72], and for producing metric definition of the dimensions of the
great intrathoracic arteries to serve as reference data for such studies [73]. In addition, HREM analysis
of an embryo with cephalothoracopagus malformation was successfully conducted, which permitted
the formulation of a novel concept explaining the genesis of this abnormality [92].

2.1.3. Embryos/Fetuses of Other Species

HREM is not restricted to research mouse and chick embryos. It also has been shown to work on
a broad variety of embryos of biomedical models. This includes quail and Xenopus embryos, where the
proof of principle was published [17,28], but also includes the zebrafish, for which HREM was shown
to fit for visualisation and mathematical characterisation of complex developmental processes, such as
dentation and cardiac jogging [17,93].

Yet, HREM is not restricted to small biomedical models. 3D visualisation of voluminous fetal
material is also possible. In particular, joint development was visualised in horse fetuses [94].
Furthermore, the potential of HREM to analyse the heart morphology of human fetal hearts in the
first trimester has been shown [95,96]. Also, other (data not yet published) fetal materials fit as well
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for HREM imaging, but due to restricted availability of human embryos for morphological studies,
collecting such materials is rather problematic and limited to highly specific scientific projects.

2.2. HREM for Visualising Adult Material

Though originally developed for imaging embryonic samples, protocols are already available for
preparing biopsy material from adult individuals of various species for HREM imaging, as shown in
Figure 3. Examples are materials stemming from rodents, zebrafish, turquoise killfish, ferrets and the
fruit fly, for which there are preliminary data, but no publications yet exist.Appl. Sci. 2018, 8, x FOR PEER REVIEW  7 of 14 
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Figure 3. HREM data created from material harvested from adult human (A–C) skin biopsies. Virtual
resection perpendicular to the original HREM section plane (A). (B) shows details from the original
HREM sections to demonstrate HREM’s ability to visualize small dermal nerves (ne) and a Suquet-Hoyer
canal (sh) in the top image and small dermal blood vessels (bv) in the bottom image. (C) shows a
semitransparent 3D volume model of the sample combined with surface models of the lumina of the
dermal arteries (red) and veins (blue). (D,E) show metastatic material (tu) in a liver (li) biopsy. Original
2D HREM section in (D). Boxed areas are zoomed-in views provided as inlays to the right. (E) shows a
3D volume model. ed, epidermis; de, dermis; hd, hypodermis; ca, fibrous tumour capsule; sd, sweat
duct. Scale bars 500 µm in (A), (C), (D), (E); 150 µm in (B).

Published data does exist for the pig and the mouse, in which vascularisation in wound healing
was researched [97,98], and for humans. In humans, HREM was successfully employed to develop a
novel concept for dermal vascularisation in thick [99,100] and thin skin [101] and to analyse the topology
of arteries and nerves in the auricle [102]. Besides this, it recently permitted the characterisation of
plaques in the coronary arteries [103].

HREM could also show the structure of dermal matrix skin substitutes with and without
seeded keratinocytes, and the effect of dermal matrix skin substitutes in combination with skin graft
transplants on vascularisation in a porcine wound model. Recently, HREM was an integral part of a
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multimodal imaging pipeline for comprehensively characterising the vascularisation of murine tumour
models [104].

2.3. HREM for Other Organic Materials

The materials primarily subjected to HREM imaging are sourced from animals. However,
very recently, HREM expanded its application into the realm of plant sciences. More concretely,
the morphology of wild-type and genetically altered tomato plants were visualised in order to
study abnormal leaf axil patterning [105]. In pilot studies, the capacity of HREM for testing
paper quality [28,106] and the fibre arrangement and the formation of keratinocytes seeded on
skin replacement material [107] were evaluated. These experiments demonstrated that HREM is not
restricted to biomedical research, but has yet-unknown capacities to aid research in many other fields
of modern science.

3. Conclusions and Further Perspectives

HREM was developed in 2006, and for about a decade, operated on self-assembled apparatuses.
In 2015, a fully operable, all-inclusive HREM machine became commercially available under the trade
name of 3D Optical HREM imaging (OHREM). This increased the number of projects using the HREM
technique, which was illustrated by a quadruplication of publications based on HREM data over the
last ten years, and it boosted the development of new protocols and technical advancements. However,
HREM is still to be considered as a technique in its beginnings with great potential for refinement and
improvement. As pilot data has shown, it has a yet-unexplored high potential for visualising a broad
variety of organic materials in unmatched resolution and data quality.

3.1. Stitching

One of the strengths of HREM is its ability to image volumes of up to 6 × 6 × 12 mm3 in a numeric
resolution of 3 × 3 × 3 µm3. Increasing the numeric resolution is possible, but requires focusing on
a smaller volume to be scanned [34,108]. First prototypes of HREM machines, which scan several
images of the same block-surface and incorporate stitching algorithms for combining them, overcome
these limitations and are already in use. It is to be expected that this promising approach will soon
advance to become the HREM routine.

3.2. Pipelines

Even by using block scanning and stitching, the use of HREM is limited to exploring the
microanatomy of specimens of a relatively small size. For large specimens, HREM imaging has to
be combined with other imaging modalities to gain HREM detail in the context of overall specimen
information. Since this is quite simple with techniques such µMRI, the first imaging pipeline that
includes HREM dates back to the very early phase of HREM imaging [51]. Large batches of embryos
were scanned with high-throughput µMRI in moderate resolution. Interesting specimens or specimen
parts were then identified, selected and subjected to HREM imaging for providing tissue detail.
This approach was modified and expanded in the last years [109], and the first publications providing
protocols and demonstrating the benefits of high complex multimodal, multiscale imaging pipelines
integrating HREM with imaging modalities such as µMRI, US, µCT, OCT, PAT and histopathology are
already in preparation [104].

3.3. Specific Stainings

HREM data volumes comprise thousands of digital images, each resembling a greyscale image of a
hematoxylin–eosine-stained histological section. Thus, HREM offers 3D information of morphological
details of organic materials in a straightforward and simple way. Attempts to expand HREM to permit
3D visualisation of specifically labelled structures and molecular signals as well are as old as the HREM
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technique itself. Even the first publication included an example for visualising LacZ-stained tissues in
mouse embryos and NBT/BCIP signals after whole-mount in situ hybridisation in zebrafish embryos [17].
However, despite these efforts, visualising specific stained tissues is still experimental and restricted
to small specimens and specimens composed of loose and easy-to-penetrate tissues [103,110,111].
Protocols for late embryos and dense tissues are eagerly anticipated and will open new fields of
applications for HREM. We are confident that with the growing community of HREM developers and
users, solutions for this problem will be presented within the next few years.
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