
applied  
sciences

Article

Method for Mid-Long-Term Prediction of Landslides
Movements Based on Optimized Apriori Algorithm

Wenhao Guo 1,2 , Xiaoqing Zuo 2, Jianwei Yu 1,3,* and Baoding Zhou 1,4

1 Key Laboratory for Geo-Environmental Monitoring of Coastal Zone of the National Administration of
Surveying, Mapping and GeoInformation & Shenzhen Key Laboratory of Spatial Smart Sensing and Services
& Research Institute for Smart Cities & Guangdong Key Laboratory of Intelligent Information Processing,
Shenzhen University, Shenzhen 518060, China

2 Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093,
China

3 College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
4 Institute of Urban Smart Transportation & Safty Maintenance, Shenzhen University, Shenzhen 518060, China
* Correspondence: jwyu@szu.edu.cn

Received: 31 July 2019; Accepted: 6 September 2019; Published: 11 September 2019
����������
�������

Abstract: In the study of the mid-long-term early warning of landslide, the computational efficiency
of the prediction model is critical to the timeliness of landslide prevention and control. Accordingly,
enhancing the computational efficiency of the prediction model is of practical implication to the
mid-long-term prevention and control of landslides. When the Apriori algorithm is adopted to
analyze landslide data based on the MapReduce framework, numerous frequent item-sets will be
generated, adversely affecting the computational efficiency. To enhance the computational efficiency
of the prediction model, the IAprioriMR algorithm is proposed in this paper to enhance the efficiency
of the Apriori algorithm based on the MapReduce framework by simplifying operations of the
frequent item-sets. The computational efficiencies of the IAprioriMR algorithm and the original
AprioriMR algorithm were compared and analyzed in the case of different data quantities and
nodes, and then the efficiency of IAprioriMR algorithm was verified to be enhanced to some extent
in processing large-scale data. To verify the feasibility of the proposed algorithm, the algorithm
was employed in the mid-long-term early warning study of landslides in the Three Parallel Rivers.
Under the same conditions, IAprioriMR algorithm of the same rule exhibited higher confidence than
FP-Growth algorithm, which implied that IAprioriMR can achieve more accurate landslide prediction.
This method is capable of technically supporting the prevention and control of landslides.
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1. Introduction

Geological disasters pose a serious threat to the safety of human life and private property, and
landslides are one of the commonest geological disasters. The occurrence of landslides not only
seriously threatens the safety of human life and private property, but also severely damages the
environment and ecology [1]. One of the feasible ways to comprehensively control landslide hazards
is to predict landslide hazards [2].

In accordance with system theory and nonlinear science, many novel techniques have been
employed to study the stability of landslides, a range of comprehensive prediction models have
been summarized, and landslide prediction criteria have been proposed, including decision tree [3,4],
generalized FLaIR model (GFM) [5], artificial neural network [6], object-oriented methods [7] and
support vector machine (SVM) [8]. The landslides of different causes were systematically summarized,
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and these landslides of different types were comprehensively analyzed to build prediction models for
different landslides [9]. However, these prediction models are not applicable to the mid-long-term
application of landslide hazards [10]. Furthermore, landslide occurrence is difficult to predict accurately,
and the mid-long-term early warning of landslides is hard to achieve [11].

Recently, the big data technology has been increasingly employed for landslide disaster early
warning [12,13]. Through the analysis of historical landslide data, the use of big data technology
becomes a hotspot for prompt and feasible landslide mid-long-term early warning. The distributed
landslide prediction model does not enhance the efficiency of the algorithm. In the study on
mid-long-term landslide warning, the operational efficiency of the prediction model is vital to the
timeliness of landslide prevention and control [14].

Association rule mining can be used to determine the levels of association among various
causes [15]. Association rule mining has been successfully applied to uncover such cause-and-effect
relationships in a variety of fields, including causes of occupational accidents [16] and prediction
landslide hazards [17]. When the Apriori algorithm runs based on the MapReduce framework, the
Apriori algorithm will generate numerous frequent item-sets, significantly affecting the efficiency [18].
To solve this problem, the Apriori algorithm runs based on the MapReduce framework [13,18], whereas
it does not optimize the algorithm for landslide data correlation analysis based on the MapReduce
framework. In the processing of large-scale landslide data, the algorithm has low efficiency since it
should generate many frequent items, which adversely affects the timely prevention and control of
landslides [18,19].

To enhance the computational efficiency of the prediction model, the Apriori algorithm was
optimized based on the MapReduce framework, and the IAprioriMR algorithm is proposed in this
paper. The Three Parallel Rivers area with frequent geological disasters was taken as the study area.
The relevant data of landslides in the study area were collected. The feasibility of the algorithm was
verified using the IAprioriMR for the mid-long-term early warning of landslide.

2. Method

2.1. IAprioriMR

Apriori is one of the commonest association rule algorithms, and several methods have been
derived using the Apriori algorithm [20]. The Apriori algorithm refers to a loop method that uses
hierarchical sequential search, also termed as an iterative method of layer-by-layer search to generate
frequent item-sets. However, a single host cannot handle a large number of operations. Processing
considerable data is now becoming a new trend. Recently, many algorithms have been proposed, which
apply the Apriori in the MapReduce computing framework [21]. This pattern is based on MapReduce,
which is hereinafter referred to as AprioriMR. AprioriMR produces all candidate items one time in
the Map task, and the form of each candidate itemset is a product with <k, v> form. Subsequently,
according to the differences of Key, the candidate items are classified and counted by Reduce with the
minimum support to screen the high frequency candidate item-sets [22].

The optimized conventional Apriori algorithm can fit the MapReduce framework for distributed
parallel computing. However, because it produces all candidate item-sets one time in the Map task,
there will be a large memory footprint, significantly decreasing the operating efficiency [23]. Thus, the
counting in the Map stage will be time-consuming, and valuable association rules are difficult to find.
The Apriori algorithm imposes a heavy burden to MapReduce [24].

In general, the association rules are expressed as X=>Y. The definition is as follows: in the presence
of X, Y, the large-scale item-sets are defined. I = {i1, i2, . . . , in} is a set of items, and a pattern P is
defined as {P = {ij, . . . , ik} ⊆ I, j ≥ 1, k ≤ n}. Given a pattern P, its length or size is expressed as |P|,
i.e., the number of the singletons it covers. Thus, for P = {i1, i2, . . . , ik} ⊆ I, its size is defined as |P| =

k. Besides, given a set of all transactions T = {t1, t2, . . . , tm} in a dataset, the support of a pattern P is
defined as the number of transactions that P satisfies, i.e., support(P) = |{∀tl ∈ T:P ⊆ tl}|. A pattern P is
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considered frequent if support(P) ≥ threshold [22], in this paper, the threshold of minimum support is
1%. Thus, for each pair (Pl, {supp(P)1, supp(P)2, . . . , supp(P)m}), the result is a {P, supp(P)}pair, so supp(P)
=
∑m

l=1 supp (p)l. This method, when dealing with big data, due to the large scale of the transaction,
will yield a huge candidate set.

This study aimed to enhance the computational efficiency of a novel algorithm (hereinafter
referred to as IAprioriMR). It does not yield the whole set of candidate item-sets C for each transaction
tl ∈ T, whereas the subset c ⊆ C consists of patterns of size |P| = s. Hence, a set of iterations are required,
one per different item-set-size (see Algorithm 1). Subsequently, the dataset is split into different chunks
of data, one per mapper, and each mapper is responsible for analyzing each single transaction tl ∈ T to
generate P, support(P)l pairs. Lastly, this algorithm also covers multiple reducers to scale down the
computational cost. The major difference between AprioriMR and IAprioriMR lies in the mapper, since
IAprioriMR obtains any pattern P of size |P| = s for each sub-database (see Figure 1). Thus, the number
of P, support(P)l pairs generated by each mapper is lower than that by the AprioriMR algorithm [22].

Algorithm 1. IApriori MR Algorithm

begin procedure IAprioriMapper(tl, s)
1: C = {∀P : P = {ij, . . . , in} ∧ P ⊆ tl ∧ |P| = s}

// candidate item-sets of size s in tl
2: ∀P ∈ C, then supp(P)l = 1
3: for all P ∈ C do
4: emit {P, supp(P)l} // emit the { k, v} pair
5: end for

end procedure
// In a grouping procedure values suppm are grouped for
each pattern P, producing pairs
{P, supp1, supp2, . . . , suppm}
begin procedure IAprioriReducer
({P, {supp(P)1, . . . , supp(P)m}})

1: support = 0
2: for all supp ∈ {supp(P)1, supp(P)2, . . . , supp(P)m} do
3: support += supp
4: end for
6: emit {P, support}

end procedure

2.2. Algorithm Performance Analysis

The frequent pattern (FP)-growth algorithm, designed to solve the problem of high number of
transactions and comparisons, is well-known in the association rule. FP-growth stores the frequent
item-sets into a tree structure, requiring data to be scanned just once. Nevertheless, it still faces
considerable candidate item-sets since either the larger number of I/O or the high memory requires to
store all sets. Based on the FP-Tree structure, many authors have extended the FP-Growth method [20].

Three algorithms were employed for test in the same hardware environment (DELL R730 dual 8
cores), and the Webdoc dataset was adopted as the experimental data, Webdoc dataset is considered
by the pattern mining community as the biggest one. Besides, AprioriMR and IAprioriMR operating
environments are three virtual nodes on the physical machine. In different instances, following the
same association rules, the performances of three algorithms differ significantly (see Figure 2). In
the same instances, the number of nodes in MapReduce significantly affects the performance of the
algorithm (see Figure 3).
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Figure 1. Diagram of the IAprioriMR algorithm.

Figure 2. Runtime of different algorithms on the dataset and a number of instances that varies from
2000 to 1,024,000.

Figure 3. Runtime of nodes from 8 to 20 for different algorithms in 128,000 instances.
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According to the results of comparison experiments, in the instance greater than 32,000, the
modified IAprioriMR algorithm mode will be significantly optimized as compared with the conventional
parallel AprioriMR and FP-growth. When the amount of data is above 1024 thousand, the efficiency
of the IAprioriMR algorithm increases by more than 50% compared with that of the AprioriMR
algorithm. With the rise in the number of instances, the computational efficiency of the IAprioriMR
algorithm increases more significantly. In the meantime, with the increases in the number of nodes,
IAprioriMR significantly shortens the processing time of MR and enhances the efficiency in processing
large-scale data.

3. Study Area and Data

3.1. Study Area

The Three Parallel Rivers cover the Nujiang River, the Lantsang River, the Jinsha River, and the
mountains in the basin at 26◦03′~29◦16′ N and 98◦7′~101◦19′ E (see Figure 4). The north and northwest
have temperate and cold temperate monsoon climate, and the south has a plateau monsoon climate.
From the Meili Snow Mountain at 6740 m above sea level to the Nu River at an altitude of nearly 700 m
(see Figure 5), the terrain height varies significantly, and the geological structure is complex. Thus, this
area is a geological disaster-prone area [25].

Figure 4. Three Parallel Rivers area location.

Figure 5. Topographical profile of the Three Parallel Rivers.

The occurrence of landslides has numerous factors. The landslide monitoring data generally
refers to the quantitative value of the induced factors (e.g., rainfall and water level) affecting the slope
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variation. During the landslide formation and occurrence, there are also many uncertain factors (e.g.,
human engineering and sudden earthquakes) [26], as well as numerous landslide monitoring data,
including graphical data (GIS data), image data (remote sensing data), and relevant geophysical data.
The spatial data (e.g., spatial location and spatial relationship) in landslide monitoring data takes up a
large proportion, so landslide monitoring data have close correlation.

The landslide monitoring data exhibit the following characteristics: the attributes of the landslide
monitoring data exhibit strong and continuous spatial correlation, and the use of the regression
algorithm and the fitting algorithm helps build the pattern for analysis; the effect of rainfall on the
displacement of landslide is certainly accumulated and delayed, and the occurrence of landslide may
be shortly affected by heavy rainfall or attributed to the rainfall accumulated over time.

3.2. Data

The landslide monitoring data from 2000 to 2013 in the Three Parallel Rivers were taken as
the experimental data. The total data is 19.6 G, covering a total of 175,000 instances. There are
three landslide displacement monitoring stations (the ShangQiaotou, XiangDuo and JuDian landslide
monitoring stations), representing the upstream, midstream and downstream areas of the Three Parallel
Rivers, respectively.

The Three Parallel Rivers have high rainfall and a clear climate. The rainfall peak in the Three
Parallel Rivers area appeared in 2004, and the rainfall has gradually decreased in recent years, as
suggested from the rainfall data from 2000 to 2013 (see Figure 6). The groundwater levels in the
upstream, midstream and downstream areas of the Three Parallel Rivers area were recorded by
ShangQiaotou, XiangDuo and JuDian landslide displacement monitoring stations, respectively. The
monitoring station measures the data once a month. Figure 7 shows the annual average rate of change
of groundwater level in the area of the Three Parallel Rivers.

Figure 6. Annual average rainfall in the Three Parallel Rivers from 2000 to 2013.

Figure 7. Annual average rate of change of groundwater level in the area of the Three Parallel Rivers.
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Because of the special geographical location, geological disasters frequently occur in the Three
Parallel Rivers area. Table 1 lists the types of landslide for each landslide hazard, the nature of the
landslide, and the maximum rainfall, etc.

Table 1. Information on some landslide disasters in the area of the Three Parallel Rivers.

Name Longitude Latitude Occurrence
Time

Elevation
Top (m)

Elevation
Foot (m) Landslide Type Substrate Stratigraphic

Age

Daily
Maximum

Rainfall (mm)

Maximum
Rainfall

(mm)

XTBG
Lanslide 104.449722 26.230278 2005/7/1 1688 1614 retrogressive

landslide soil slopes P2 120.4 78.3

ZJS Lanslide 104.446667 26.196667 2004/5/1 2032 1932 retrogressive
landslide soil slopes P1 120.4 78.3

DJB Lanslide 104.455278 26.226944 2007/6/1 2124 1980 retrogressive
landslide soil slopes P2 120.4 78.3

XTB Lanslide 104.448056 26.230556 2007/8/1 1937 1718 retrogressive
landslide Rock Slope P2 120.4 78.3

SLG Lanslide 104.373833 26.153056 2009/7/1 2215 2134 thrust load
caused landslide soil slopes P2 120.4 78.3

DCZ Lanslide 104.388778 26.167611 2009/7/1 2109 2038 retrogressive
landslide soil slopes P2 120.4 78.3

ZBZ Lanslide 104.380028 26.149194 2008/7/1 2144 2114 composite
landslide soil slopes P2 120.4 78.3

XBZ Lanslide 98.575417 25.184028 2001/4/1 1755 1715 retrogressive
landslide soil slopes Q4 94.7 47.5

4. Experiment and Analysis

Studies reported that the occurrence of landslide hazards has been associated with the geological
environment (e.g., rainfall, geological structure and groundwater distribution) [27]. In the experiment,
setting the groundwater level of the monitoring point, the rainfall, the water level of the parallel river
in the Three Parallel Rivers, and the cumulative displacement of the landslide monitoring point are the
antecedents of the landslide occurrence, and the landslide occurs, which is detectable. The landslide
monitoring data from 2000 to 2011 in the Three Parallel Rivers area were taken as the training pattern,
and the landslide monitoring data from 2012 to 2013 as the test data [28].

For the convenience of calculation, each group of data was standardized and split into averages
and low-value areas [29], covering Under_min (monitoring point low water table), Under_max
(monitoring point high water table)), Rain_min (small rainfall), Rain_max (large rainfall), River_min
(low water level), River_max (high water level), LS1_min (small displacement of the upper bridge
monitoring station), LS_max (large displacement of the upper bridge monitoring station), LS2_min
(small multi-monitoring station displacement), LS2_max (large multi-monitoring station displacement),
LS3_min (small displacement of Jiaodian monitoring station), LS3_max (large displacement of Judian
monitoring station), LanslideD_1 (Formation lithology is Gravel soil), LanslideD_2 (Formation lithology
is Slate), LanslideD_3 (Formation lithology is Conglomeratic clay), Lanslide1 = 1 (landslide near
ShangQiaotou), Lanslide2 = 1 (Landslide near XiangDuo), Lanslide3 = 1 (landslide near JuDian), etc.

Given the nature of the Apriori algorithm, to analyze the association rules of landslide monitoring
data, the association rules should be first formulated according to the algorithm logic. In this paper,
any elements in the former (X) were randomly combined to formulate a series of association rules
(see Table 2). The minimum support was set to 0.01 [29], and the confidence degree of each of the
mentioned association rules should be calculated by the algorithm.

Table 2. Description of some association rules (minsupp = 1%).

Rule Information

Rule 1 If Under_max and Rain_max and River_min and LS1-1 and LanslideD_1 then Lanslide1 = 1
Rule 2 If Under_max and Rain_max and River_min and LS1-1 and LanslideD_2 then Lanslide1 = 1
Rule 3 If Rain_min and River_min and LS1-0 and LanslideD_3 then Lanslide1 = 1
Rule 4 If Under_max and Rain_max and River_max and LS2-1 and LanslideD_3 then Lanslide2 = 1
Rule 5 If Under_max and Rain_max and River_min and LS2-1 and LanslideD_3 then Lanslide2 = 1
Rule 6 If Under_max and Rain_max and River_min and LS3-1 and LanslideD_2 then Lanslide3 = 1
Rule 7 If Rain_max and River_min and LS1-1 and LS3-1 and LanslideD_2 then Lanslide3 = 1
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On the whole, the association rule exhibiting a confidence above 0.7 is considered a strong
association rule [17,29,30]. Association rules with low confidence retain rules with a confidence
level above 0.7 are deleted, and a series of useful information is calculated, laying a basis for
landslide warning.

The value of confidence in association rules is critical to model prediction. The higher the
confidence, the more accurate the landslide prediction will be [29]. Thus, under the same experimental
conditions, the confidence of IAprioriMR algorithm and FP-Growth algorithm were compared, and
the IAprioriMR algorithm is was analyzed in mid-long-term early warning of landslides. According to
the experimental results, under the same conditions, the IAprioriMR algorithm (see Table 3) of the
same rule exhibits a higher confidence than FP-Growth algorithm (see Table 4), so IAprioriMR can
achieve more accurate landslide prediction.

Table 3. Pre-judgment results by IAprioriMR.

NO. Prejudgment Confidence Phenomenon

1 Rain_max and LS1-1 and LanslideD_2 73% Lanslide1 = 1
2 Rain _max and River_max and LS1-1 and LanslideD_2 85% Lanslide1 = 1

3 Rain_max and River_min and Under_max and LS2-1 and
LanslideD_2 90% Lanslide2 = 1

4 Rain _max and River_max and Under_max and LS1-1 and LS3-1
and LanslideD_2 95% Lanslide1 = 1 Lanslide3 = 1

Table 4. Pre-judgment results by FP-Growth.

NO. Prejudgment Confidence Phenomenon

1 Rain_max and LS1-1 and LanslideD_2 70% Lanslide1 = 1
2 Rain _max and River_max and LS1-1 and LanslideD_2 81% Lanslide1 = 1

3 Rain_max and River_min and Under_max and LS2-1 and
LanslideD_2 83% Lanslide2 = 1

4 Rain _max and River_max and Under_max and LS1-1 and LS3-1
and LanslideD_2 90% Lanslide1 = 1 Lanslide3 = 1

To verify the accuracy of the experimental results, test data were taken for analysis, and 21
landslide events were recorded. By calculating the rule with a confidence above 0.7, the pattern
successfully determines 16 landslide accidents based on the LS3-1 LS2-1 (see Table 5).

Table 5. Accuracy evaluation of landslide comprehensive prediction.

No. Input
Datasets Number of Predictions

1 LS3-1 LS2-1 16
2 LS3-1 LS1-1 15

3 LS3-1 LS2-1
LS1-1 15

The IAprioriMR algorithm successfully determines 16 landslide accidents between 2012 and
2013. Thus it is implied that the IAprioriMR algorithm proposed in this paper is feasible in landslide
prediction research, and it can technically support the prevention of landslide disasters.

5. Conclusions

During the mid-long-term early warning of landslides, the landslide monitoring data continuously
increases over time. The efficiency of the prediction model significantly affects disaster prevention and
control. To solve the Apriori algorithm, numerous frequent items are generated when the algorithm
runs in the MapReduce framework. The set problem, by simplifying frequent item operations, proposes
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the IAprioriMR algorithm. Performance test experiments reveal that the efficiency of the IApriorIMR
algorithm is enhanced with the rise in data volume in terms of computational efficiency. Under the
same conditions, the IAprioriMR algorithm exhibits a higher confidence than FP-Growth algorithm,
capable of achieving more accurate landslide disaster prediction. Thus, it is implied that IAprioriMR
algorithm has promising applications and a bright prospect of further development.

In the future work, we will consider comparing the performances of the Apriori algorithm
with classical intensity-duration (ID) schemes in a case study, in order to check the significant (or
insignificant) improvements for landslide prediction in early warning systems.

Author Contributions: Formal analysis: W.G., X.Z.; Methodology: W.G., X.Z., J.Y., and B.Z.; Writing—review &
editing: W.G., X.Z., J.Y., and B.Z.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhu, Y.; Zhou, L.; Deng, H.; Nan, X. Prediction of landslide displacement using EMD-PSO-ELM with multiple
factors. In Proceedings of the International Conference on Digital Home, Guilin, China, 2–6 December 2018;
pp. 230–235.

2. Fell, R.; Corominas, J.; Bonnard, C. Guidelines for landslide susceptibility, hazard and risk zoning for land
use planning. Eng. Geol. 2007, 102, 85–98. [CrossRef]

3. Althuwaynee, O.F.; Pradhan, B.; Park, H.J.; Lee, J.H. A novel ensemble decision tree-based CHi-squared
Automatic Interaction Detection (CHAID) and multivariate logistic regression models in landslide
susceptibility mapping. Landslides 2014, 11, 1063–1078. [CrossRef]

4. Saito, H.; Nakayama, D.; Matsuyama, H. Comparison of landslide susceptibility based on a decision-tree
model and actual landslide occurrence: The Akaishi Mountains, Japan. Geomorphology 2009, 109, 108–121.
[CrossRef]

5. De Luca, L.D.; Versace, P. A comprehensive framework for empirical modeling of landslides induced by
rainfall: The Generalized FLaIR Model (GFM). Landslides 2017, 14, 1009–1030. [CrossRef]

6. Ermini, L.; Catani, F.; Casagli, N. Artificial neural networks applied to landslide susceptibility assessment.
Geomorphology 2005, 66, 327–343. [CrossRef]

7. Wang, X.M.; Niu, R.Q. Landslide intelligent prediction using object-oriented method. Soil Dyn. Earthq. Eng.
2010, 30, 1478–1486. [CrossRef]

8. Zhou, C.; Yin, K.; Cao, Y.; Ahmed, B. Application of time series analysis and PSO-SVM model in predicting
the Bazimen landslide in the Three Gorges Reservoir. China Eng. Geol. 2016, 204, 108–120. [CrossRef]

9. Wang, G.; Sassa, K. Factors affecting rainfall-induced flowslides in laboratory flume tests. Géotechnique 2001,
51, 587–599. [CrossRef]

10. Jin, X.; Zeng, J.; Liu, X. Application of GM (1,1) optimized model in prediction of landslide. In Proceedings
of the International Conference on Natural Computation, Haikou, China, 24–27 August 2007; pp. 735–739.

11. Xie, P.; Zhou, A.; Chai, B. The application of long short-term memory (LSTM) method on displacement
prediction of multifactor-induced landslides. IEEE Access 2019, 7, 54305–54311. [CrossRef]

12. Hossein, S.M.; Masoud, M.; Himan, S. Big data in geohazard; pattern mining and large scale analysis of
landslides in Iran. Earth Sci. Inform. 2019, 12, 1–17.

13. Mandavilli, V.S.; Madamala, N. Detection of natural disaster affected areas using R. Int. J. Inf. Technol. 2018,
10, 123–131. [CrossRef]

14. Ma, J.; Tang, H.; Hu, X. Identification of causal factors for the Majiagou landslide using modern data mining
methods. Landslides 2017, 14, 311–322. [CrossRef]

15. Webb, G.I. Discovering significant patterns. Mach. Learn. 2007, 68, 1–33. [CrossRef]
16. Liao, C.W.; Perng, Y.H. Data mining for occupational injuries in the Taiwan construction industry. Saf. Sci.

2008, 46, 1091–1102. [CrossRef]
17. Wu, X.; Zhan, F.B.; Zhang, K. Application of a two-step cluster analysis and the Apriori algorithm to classify

the deformation states of two typical colluvial landslides in the Three Gorges, China. Environ. Earth Sci.
2016, 75, 146–162. [CrossRef]

http://dx.doi.org/10.1016/j.enggeo.2008.03.022
http://dx.doi.org/10.1007/s10346-014-0466-0
http://dx.doi.org/10.1016/j.geomorph.2009.02.026
http://dx.doi.org/10.1007/s10346-016-0768-5
http://dx.doi.org/10.1016/j.geomorph.2004.09.025
http://dx.doi.org/10.1016/j.soildyn.2010.06.017
http://dx.doi.org/10.1016/j.enggeo.2016.02.009
http://dx.doi.org/10.1680/geot.2001.51.7.587
http://dx.doi.org/10.1109/ACCESS.2019.2912419
http://dx.doi.org/10.1007/s41870-018-0101-8
http://dx.doi.org/10.1007/s10346-016-0693-7
http://dx.doi.org/10.1007/s10994-007-5006-x
http://dx.doi.org/10.1016/j.ssci.2007.04.007
http://dx.doi.org/10.1007/s12665-015-5022-2


Appl. Sci. 2019, 9, 3819 10 of 10

18. Wei, L.; Guangming, L.; Yachao, S.; Junlong, L.; You, Z. Optimization and application in medical big
document-data of Apriori algorithm based on MapReduce. In Proceedings of the International Conference
on Computer Communication and Informatics, Coimbatore, India, 7–9 January 2016; pp. 1–5.

19. Belhassena, A.; Wang, H. Trajectory big data processing based on frequent activity. Tsinghua Sci. Technol.
2019, 24, 317–332. [CrossRef]

20. Duaimi, M.G.; Salman, A. Association rules mining for incremental database. Int. J. Adv. Res. Comput. Sci.
Technol. 2014, 2, 346–352.

21. Luna, J.M.; Cano, A.; Pechenizkiy, M.; Ventura, S. Speeding-up association rule mining with inverted index
compression. IEEE Trans. Cybern. 2016, 46, 3059–3072. [CrossRef]

22. Luna, J.M.; Padillo, F.; Pechenizkiy, M. Apriori versions based on mapreduce for mining frequent patterns on
big data. IEEE Trans. Cybern. 2018, 48, 2851–2865. [CrossRef]

23. Zhao, Y.; Wu, J.; Liu, C. Dache: A data aware caching for big-data applications using the MapReduce
framework. Tsinghua Sci. Technol. 2014, 19, 39–50. [CrossRef]

24. Wang, S.Q.; Yang, Y.-B.; Chen, G.-P.; Gao, Y.; Zhang, Y. Mapreduce based closed frequent itemset mining
with efficient redundancy filtering. In Proceedings of the 2012 IEEE 12th International Conference on Data
Mining Workshops, Brussels, Belgium, 10–13 December 2012; pp. 449–453.

25. Ding, M.; Su, P.; Wang, H. RETRACTED ARTICLE: Distribution characteristics of debris flows and landslides
in Three Parallel Rivers Area. Nat. Hazards 2012, 61, 879. [CrossRef]

26. Yi, S.; Ning, W.; Peng, L. Changes in livestock migration patterns in a Tibetan-style agropastoral system: A
study in the three-parallel-rivers region of Yunnan, China. Mt. Res. Dev. 2007, 27, 138–146.

27. Matsuura, S.; Asano, S.; Okamoto, T. Relationship between rain and/or meltwater, pore-water pressure and
displacement of a reactivated landslide. Eng. Geol. 2008, 101, 49–59. [CrossRef]

28. Montella, A.; Aria, M.; D’Ambrosio, A.; Maurielloa, F. Analysis of powered two-wheeler crashes in Italy by
classification trees and rules discovery. Accid. Anal. Prev. 2012, 49, 58–72. [CrossRef] [PubMed]

29. Fang, G.; Xiong, J.; Tu, C.; Luo, A. An algorithm of mining spatial topology association rules based on Apriori.
In Proceedings of the International Conference on Intelligent Computing and Intelligent Systems, Xiamen,
China, 29–31 October 2010; pp. 101–104.

30. Jencso, K.G.; Mcglynn, B.L. Hierarchical controls on runoff generation: Topographically driven hydrologic
connectivity, geology, and vegetation. Water Resour. Res. 2011, 47, 431–435. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.26599/TST.2018.9010087
http://dx.doi.org/10.1109/TCYB.2015.2496175
http://dx.doi.org/10.1109/TCYB.2017.2751081
http://dx.doi.org/10.1109/TST.2014.6733207
http://dx.doi.org/10.1007/s11069-011-9890-9
http://dx.doi.org/10.1016/j.enggeo.2008.03.007
http://dx.doi.org/10.1016/j.aap.2011.04.025
http://www.ncbi.nlm.nih.gov/pubmed/23036383
http://dx.doi.org/10.1029/2011WR010666
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Method 
	IAprioriMR 
	Algorithm Performance Analysis 

	Study Area and Data 
	Study Area 
	Data 

	Experiment and Analysis 
	Conclusions 
	References

