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Featured Application: unidirectional invisibility, laser, highly sensitive sensor.

Abstract: Complex anti-parity-time symmetric periodic lattices, in a wide frequency band, can act as
unidirectional invisible media. The reflection from one end is suppressed while it is enhanced from
the other. Furthermore, unidirectional laser points (ULPs) which correspond to the poles of reflection
from one end, arise in the parameter space composed of the permittivity and angular frequency.
The phase of the reflection coefficient changes sharply near the ULPs. Subsequently, large lateral shift
which is proportional to the slope of phase could be induced for the reflected beam. The study may
find great applications in unidirectional invisibility, unidirectional lasers and highly sensitive sensors.

Keywords: anti-parity-time symmetry; unidirectional invisibility; unidirectional laser; lateral shift;
periodic lattice

1. Introduction

According to the theory of quantum mechanics, the observed physical parameters in experiments
are real, and the corresponding Hamiltonian operator is Hermitian. When a light field interacts
with the multi-level atomic systems, under-considering the spontaneous emission and ionization of
atoms, dissipative terms are introduced, then the Hamiltonian operator to describe the system is
non-Hermitian [1–3].

The eigenvalues of non-Hermitian Hamiltonian are usually complex containing imaginary parts.
However, the non-Hamiltonian that satisfies the parity–time (PT) symmetry has a real spectrum, which
extends quantum mechanics into a new research field [4–10]. PT-symmetry and non-Hermitian optics
are new concepts and have become a research hotspot in recent years [11–19]. It is worth noting that
the study of Hermitian and non-Hermitian properties are not limited to electronic systems, but also
can be extended to the field of optics [20,21]. Although the Schrödinger equation describing a single
particle is different from the Maxwell equation describing electromagnetic field in physical origin, the
electromagnetic field propagation equation is similar to the Schrödinger equation in mathematical
form under the slowly varying envelope approximation [22,23]. This similarity provides the possibility
of studying PT symmetry and non-Hermiticity in optical systems. Therefore optics has the natural
advantage of being used to explore all sorts of non-Hermitian predictions that used to be considered
difficult in quantum systems [24–26]. The introduction of gain and loss in photonic crystals, as well as
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the clever design of various structures, can improve the luminous efficiency of materials and obtain
fascinating nonlinear and topological properties [27–30].

The propagation constant in PT symmetric phase is a real number. Although there is gain and loss,
the energy of the system is conserved. When the gain/loss ratio g is much smaller than the coupling
coefficient, it corresponds to the PT symmetric phase, and the PT symmetric supermodel appears in
the system [21]. For the larger g, the PT phase will be broken. At this time, severe mode mismatch will
occur in the two waveguides, and the energy coupling of the mode field is suppressed, resulting in the
occurrence of asymmetric light intensity distribution [31]. In the vicinity of spontaneous PT-symmetry
breaking point, the PT symmetric periodic structure medium shows unidirectional invisibility [32].
In a wide frequency range near the Bragg point, when light enters from one end, the outgoing light
passes through unaffected. But when light comes in from the other end, the reflected light is enhanced.
The anti-PT symmetry which arises from the charge-conjugation symmetry has also induced many
fascinating phenomena, such as flat broadband light transport [33], topological bound modes [34] and
chiral mode conversion [35]. The refractive index of material obeys n(z) = n*(−z) and n(z) = −n*( −z) in
PT and anti-PT symmetric systems [16,17,36], respectively. If expressed in terms of dielectric constant,
PT and anti-PT symmetric systems both satisfy the condition ε(z) = ε*(−z). Further, we hypothesized
whether new optical properties would be obtained when ε(z) = −ε*(−z). At this point, the refractive
index satisfies n(z) = −in*(−z), which is called complex anti-PT symmetry here. This new symmetry
can be seen as a combination of anti-PT symmetry and rotation of π/2. It further extends the scope of
symmetry and may lead to more novel optical properties.

In this work, we investigated the unidirectional invisibility in the complex anti-PT-symmetric
periodic lattices. We showed that the reflection was anisotropic as light impinged upon the lattices
from the left and right end. Unidirectional laser points (ULPs) which were confirmed to be substantial
boundary modes arose in the parameter space composed of the permittivity and angular frequency. We
further explored the phase of reflection coefficient and demonstrated the singularity of phase and large
lateral shift of reflected beam around the ULPs. The study can be utilized for highly sensitive sensing.

2. Complex Anti-Parity–Time Symmetric Lattices

We considered a one-dimensional complex anti-PT symmetric lattice consisting of 10 periodic
unit cells, embedded in a homogeneous background, such as in air, shown in Figure 1. The dielectrics
A and B were arranged alternately, forming a periodic structure. The structure can also be noted by
(AB) N, where the periodic number is N = 10. The thickness of dielectrics A and B were L = 125 µm.
The permittivities of the dielectrics were εa = 0.1 + 0.01i and εb = −0.1 + 0.01i, respectively. Based on
the relation n = ε1/2, the corresponding refractive indices were na = 0.3166 + 0.0158i and nb = 0.0158 +

0.3166i, respectively.
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Figure 1. Schematic of the one-dimension complex anti-parity–time (PT) symmetric photonic crystals
(PCs), where the complex refractive indices were distributed in n(z) = −in*(−z). For the primitive
unit-cell layers A and B, the thickness was L = 125 µm and the complex refractive indices were
na = 0.3166 + 0.0158i and nb = 0.0158 + 0.3166i, respectively. The imaginary part was positive for gain
material and negative for loss material.
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Here we assumed that the input intensity of light was low enough and ignored the nonlinear
effect. The materials were treated to be uniform and isotropic. As a light beam impinged upon the
system, the reflection and transmission coefficients were denoted by r and t, respectively. The two
coefficients could be obtained by the transfer matrix method (TMM) [37,38]. The transmittance T was
identified as T = tt* = It/Ii, where It and Ii are the transmitted and incident intensities, respectively.
The reflectance R was identified as R = rr*.

3. Unidirectional Invisibility and Laser Points

We calculated the transmission and reflection spectra as the transverse magnetic (TM) wave
obliquely impinged upon the complex anti-PT symmetric lattices. The incident angle was
θ = 5◦. Figure 2a shows the transmittance and reflectance spectra for light incident from the
left. The transmittance T1 decayed rapidly and tended to a constant as the angular frequency ω
increased. However, there were two peaks in the curve of reflectance R1. The two maxima were
R1 = 10.5 and 7.97 × 104 in the curve marked by black asterisks, respectively locating at ω = 1.83 × 1013,
and 4.29 × 1013 rad/s.Appl. Sci. 2019, 9, x; doi: FOR PEER REVIEW 4 of 10 
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Figure 2. (a,b) The transmission and reflection spectra for light incident from the left and right,
respectively. (c,d) The phases of transmission coefficient and reflection coefficient for the complex
anti-PT symmetric PCs, respectively.

When light was incident from the right side, Figure 2b shows the reflection spectrum and
transmission spectrum. Initially, the transmittance T2 and reflectance R2 decreased rapidly with the
increase of the angular frequency. Then, as the frequency increased, the reflectance and transmittance
tended to be constant. For incident light at higher frequencies, the transmittance was close to zero.
This phenomenon indicated that the media had anisotropy of the reflection as light was incident from
the left and right. Therefore, for incident light with a certain frequency, the reflected light on the left
could be enhanced greatly, but the reflected light on the right may be suppressed. These properties could
be used to enhance the reflected light intensity from unidirection, as well as unidirectional invisibility.

The transmission and reflection coefficients were represented by t = |t|exp(iϕt) and r = |r|exp(iϕr),
where ϕt and ϕr were the phase shifts of the transmitted and reflected beams referred to the incident
beam, respectively. Figure 2c shows the phases of the transmission coefficients of light from the left
and right, respectively. One can see that the reflection coefficients in the left and right were isotropic.
There were many step points in the curve, and the jump value was 2π, which was meaningless and
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could be eliminated. However, near the poles of the transmittance, the phase of the transmission
coefficient changed dramatically, which indicated that large lateral shift could have existed in the
transmitted beam.

Figure 2d shows the phase of the reflection coefficient. When light was incident from the left, the
phase change of the reflection coefficient near the two maxima of reflectance was 2π and π, respectively,
and the phase varied dramatically with the angular frequency around those asterisks. The 2π phase
jump point was stepwise and the step was meaningless. But the phase changed continuously around
the π change point. When light was incident from the right, the phase curve had a maximum point.
With the increase of angular frequency, the phase of reflection coefficient first increased, then decreased,
and finally tended to a constant value. For the reflected beam, the change in phase was extremely
sensitive to the angular frequency of incident light around the maxima of the reflectance, so this effect
could be used for high-sensitivity sensors.

To find the properties in the complex anti-PT symmetric lattices, we defined the permittivities of
dielectrics A and B as εa = 0.1 + 0.01εii and εb = −0.1 + 0.01εii, respectively. The gain in the lattices
could be obtained by nonlinear two-wave mixing or a Ge/Cr doped fiber [39,40], while the loss could
be achieved by an acoustic modulator [41]. Figure 3a gives the reflectance R1 as light was incident
from the left. The parameter space was composed of the permittivity εi and angular frequency ω.
One could find that there were two poles in the parameter space, denoted by the unidirectional laser
point (ULP)1 (εi1 = 2, ω1 = 1.8 × 1013 rad/s) and ULP2 (εi2 = 1, ω2 = 4.29 × 1013 rad/s), respectively.
The corresponding maxima of the reflectance were RUPL1 = 2.28 × 104 and RUPL2 = 4.44 × 104.
Appl. Sci. 2019, 9, x; doi: FOR PEER REVIEW 5 of 10 

 

Figure 3. (a,b) The transmittance and reflectance varying with the permittivity and angular frequency 

for light incident from the left, respectively. (c) The electric field intensity (|Ez|2) distribution at the 

unidirectional laser point (ULP1). 

To find the properties in the complex anti-PT symmetric lattices, we defined the permittivities 

of dielectrics A and B as εa = 0.1 + 0.01εii and εb = −0.1 + 0.01εii, respectively. The gain in the lattices 

could be obtained by nonlinear two-wave mixing or a Ge/Cr doped fiber [41,42], while the loss could 

be achieved by an acoustic modulator [43]. Figure 3a gives the reflectance R1 as light was incident 

from the left. The parameter space was composed of the permittivity εi and angular frequency ω. One 

could find that there were two poles in the parameter space, denoted by the unidirectional laser point 

(ULP)1 (εi1 = 2, ω1 = 1.8 × 1013 rad/s) and ULP2 (εi2 = 1, ω2 = 4.29 × 1013 rad/s), respectively. The 

corresponding maxima of the reflectance were RUPL1 = 2.28 × 104 and RUPL2 = 4.44 × 104.  

On the contrary, we plotted the reflectance as light impinged into the lattices from the right. The 

intensity of reflection beam was extremely faint as shown in Figure 3b. The reflectance sharply 

decreased with the increase of the angular frequency in area I and the value of reflection in area II 

approached to zero in our calculating accuracy. The properties demonstrated that there was strong 

dependence of reflection on the two incident directions from the left and right. Especially, the poles 

of reflectance arose in the parameter space for the light incident from the left, but the reflectionless 

phenomenon could have resulted for light incident from the right. The characteristics could be 

therefore utilized for the unidirectional laser. Figure 3c provides the distribution of the electric field 

intensity for the ULP1. It shows that the power of the mode field was mainly localized at the first layer 

of the input port, so the ULP1 could be viewed as a boundary mode. 

We studied the phase properties of reflected and transmitted coefficients as the permittivity of 

the dielectrics and the angular frequency changed. Figure 4a plots the reflection phase in the 

parameter space. It shows the phase dislocated at the ULP1 and ULP2, which were the singular points 

in phase of reflected coefficient. To demonstrate the characteristics of the phase varying with the 

permittivity and angular frequency, Figure 4b plots the phase curves for three specific permittivities 

εi = 0.01, 0.015 and 0.02. One can see that the phase varied with the angular frequency. There was 2π 

phase jump at the frequency ω1 for the curve corresponding to εi = 0.02 and π phase jump at the 

frequency ω1. Actually, the curve was continuous at ω1 since the 2π phase jump was meaningless. For 

εi = 0.015, the phase changed dramatically around the ULP1 and ULP2. This behavior indicated that 

large lateral shift of the reflected beam may have been induced, since the lateral shift was 

proportional to the curvature of the phase curve. For εi = 0.01, the phase changed abruptly with π at 

ω2. The π change in phase justly approved the characteristics of the ULP1 and ULP2. The maximum 

property of transmittance resulted in the uncertainty in phase. We also gave the phase of transmitted 

coefficient in the parameter space as shown in Figure 4c. It manifested that the phase of transmitted 

beam also dislocated at the ULP1 and ULP2. Figure 4d demonstrates the phase changed with the 

Figure 3. (a,b) The transmittance and reflectance varying with the permittivity and angular frequency
for light incident from the left, respectively. (c) The electric field intensity (|Ez|2) distribution at the
unidirectional laser point (ULP1).

On the contrary, we plotted the reflectance as light impinged into the lattices from the right.
The intensity of reflection beam was extremely faint as shown in Figure 3b. The reflectance sharply
decreased with the increase of the angular frequency in area I and the value of reflection in area II
approached to zero in our calculating accuracy. The properties demonstrated that there was strong
dependence of reflection on the two incident directions from the left and right. Especially, the poles
of reflectance arose in the parameter space for the light incident from the left, but the reflectionless
phenomenon could have resulted for light incident from the right. The characteristics could be therefore
utilized for the unidirectional laser. Figure 3c provides the distribution of the electric field intensity for
the ULP1. It shows that the power of the mode field was mainly localized at the first layer of the input
port, so the ULP1 could be viewed as a boundary mode.
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We studied the phase properties of reflected and transmitted coefficients as the permittivity of the
dielectrics and the angular frequency changed. Figure 4a plots the reflection phase in the parameter
space. It shows the phase dislocated at the ULP1 and ULP2, which were the singular points in phase of
reflected coefficient. To demonstrate the characteristics of the phase varying with the permittivity and
angular frequency, Figure 4b plots the phase curves for three specific permittivities εi = 0.01, 0.015 and
0.02. One can see that the phase varied with the angular frequency. There was 2π phase jump at the
frequencyω1 for the curve corresponding to εi = 0.02 and π phase jump at the frequency ω1. Actually,
the curve was continuous atω1 since the 2π phase jump was meaningless. For εi = 0.015, the phase
changed dramatically around the ULP1 and ULP2. This behavior indicated that large lateral shift of
the reflected beam may have been induced, since the lateral shift was proportional to the curvature of
the phase curve. For εi = 0.01, the phase changed abruptly with π atω2. The π change in phase justly
approved the characteristics of the ULP1 and ULP2. The maximum property of transmittance resulted
in the uncertainty in phase. We also gave the phase of transmitted coefficient in the parameter space as
shown in Figure 4c. It manifested that the phase of transmitted beam also dislocated at the ULP1 and
ULP2. Figure 4d demonstrates the phase changed with the angular frequency. For the above three
specific permittivities, the phase abruptly stepped with π around the ULP1 and ULP2, and at the other
step points, the phase change was the no meaning value of 2π.
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angular frequency, respectively. (b,d) The phases of reflection coefficient and transmission coefficient
varying with the angular frequency for three different permittivities εi = 0.01, 0.015 and 0.02, respectively.
The light was incident from the left for (a–d).

For light incident from the right, Figure 5a shows the reflectance in the parameter space. One can
see the focusing area in the parameter space was divided into two parts, viz part I and part II, which
corresponded to the descent zone and saturation zone, respectively. The reflectance decreased with the
increase of the angular frequency in the descent zone. However, the reflectance was saturated as the
angular frequency further increased. To illustrate this further, we plotted three curves of reflectance
for εi = 0.01, 0.015 and 0.02 as shown in Figure 5b. In part I, the reflectance rapidly dropped as the
frequency increased. In part II, the reflectance remained constant. The corresponding saturation value
of reflectance was smaller for a larger permittivity. In general, the reflected beam was weak as light
was incident from the right. This flaw will limit the application in practice though large lateral shift of
the reflected beam may be achieved [42–44].
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angular frequency for light incident from the right, respectively. (b,d) The reflectance and phase of
reflection coefficient varying with the angular frequency for three different permittivities εi = 0.01,
0.015 and 0.02, respectively.

Figure 5c gives the phase of reflection coefficient in parameter space. We could see the phase
varied with the permittivity and angular frequency continuously. For each permittivity, there was
a maximum in the phase curve as the angular frequency changed. The maxima of phase located at
the position along with the white dotted line in the parameter space. Figure 6d illuminates the phase
of reflection coefficient varied with the angular frequency for the three fixed permittivities. There is
a maximum marked by an asterisk in each curve of phase and the corresponding maximum phase
was larger for a smaller permittivity. With the increase of angular frequency, the phase tended to be
a constant.

4. Lateral Shift of Reflected Beam

As an incident beam impinged upon the structure, the lateral shift of the reflected beam relative
to the position predicted by geometry optics could be derived by ∆ = −dϕ/dk [45]. For several different
permittivities εi < εi1 = 0.02, Figure 6a plots the lateral shift versus the angular frequency. The shift
was positive and there was a peak in each curve around ω1. The maximum shift was larger as the
permittivity approached to εi1 more. On the other hand, the shift was negative and there was a valley in
each curve aroundω1 for the permittivities εi ≥ εi1 as shown in Figure 6b. Analogously, the maximum
negative shift was larger as the permittivity was more near εi1. In the parameter space, Figure 6c
demonstrates the distribution of lateral shift of reflected beam around the ULP1. For better contrast,
we took the logarithm of the absolute lateral shift (i.e., log10|∆/λ|). The focusing region was separated
into two parts labeled by I and II, respectively. The lateral shift was positive in part I, while it was
negative in part II. Except for the ULP1, the lateral shift approximated to zero along the dotted line.
The negative and positive polarities of lateral shift converted at the ULP1, approving the singularity of
ULP1 for the lateral shift of reflected beam.

As light was incident on the lattices from the left, Figure 6d gives all of the maxima and minima
of lateral shift in each curve. It shows that the positive and negative lateral shift were divided by εi1
as the angular frequency changed. In the vicinity of the ULP1, maximum lateral shift dramatically
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climbed when the permittivity increased. The shift tended to infinity as εi reached to εi1. At the ULP1,
the maxima experienced a step change from positive to negative. And then, the negative shift began to
increase sharply with the increase of the permittivity. In our calculating accuracy, the positive and
negative lateral shifts reached highly to 4.39 × 102 and −6.3 × 102 times of the incident wavelength near
the ULP1, respectively. Subsequently, the shifts returned to an ordinary magnitude from the negative
maximum as the permittivity moved away from the ULP1. On the whole, one can see that the ULP1 was
a singular point of lateral shift and the polarities of lateral shift transformed at this point. Otherwise,
around the permittivity εi2, the curve of maxima was not smooth enough, indicated by the dashed
box. Such an abnormal phenomenon resulted from the parameters close to the ULP2. Distribution of
electric field for the boundary mode induced great variation in the phase of reflection coefficient.
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varying with the permittivity around ULP1.

5. Conclusions

We studied the reflectance and the phase of the reflection coefficient in complex anti-PT symmetric
periodic lattices. The reflection was anisotropic for light incident from the left and right. Two ULPs
arose in the parameter space composed of the permittivity and angular frequency. The reflection from
the left was greatly enhanced at the ULPs, while the right reflection was suppressed tremendously.
Moreover, the phase of the reflected coefficient dislocated around the ULPs. Large lateral shift of
reflected beam could be achieved. The maxima of positive and negative lateral shift approached the
magnitude of 102λ around the ULPs. This study paves the way for the development of unidirectional
invisibility, unidirectional lasers and highly sensitive sensors.
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