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Featured Application: In this paper, we propose a lightweight key-value store for managing
various types of data, which are generated from Big data applications, in a very simple form.
The proposed technique can be used in any environments where Windows operating systems are
running, which encompass from client environments (e.g., Windows 10) to server environments
(e.g., Windows Server 2016), with the minimum effort for the installation. For the other
environments without Windows operating systems, we can easily migrate data to the other any
environments that support existing key-value stores by using the ETL (Extract-Transform-Load)
method proposed by this paper.

Abstract: In this paper, we propose a method to construct a lightweight key-value store based on the
Windows native features. The main idea is providing a thin wrapper for the key-value store on top of
a built-in storage in Windows, called Windows registry. First, we define a mapping of the components
in the key-value store onto the components in the Windows registry. Then, we present a hash-based
multi-level registry index so as to distribute the key-value data balanced and to efficiently access
them. Third, we implement basic operations of the key-value store (i.e., Get, Put, and Delete) by
manipulating the Windows registry using the Windows native APIs. We call the proposed key-value
store WR-Store. Finally, we propose an efficient ETL (Extract-Transform-Load) method to migrate data
stored in WR-Store into any other environments that support existing key-value stores. Because the
performance of the Windows registry has not been studied much, we perform the empirical study to
understand the characteristics of WR-Store, and then, tune the performance of WR-Store to find the
best parameter setting. Through extensive experiments using synthetic and real data sets, we show
that the performance of WR-Store is comparable to or even better than the state-of-the-art systems
(i.e., RocksDB, BerkeleyDB, and LevelDB). Especially, we show the scalability of WR-Store. That is,
WR-Store becomes much more efficient than the other key-value stores as the size of data set increases.
In addition, we show that the performance of WR-Store is maintained even in the case of intensive
registry workloads where 1000 processes accessing to the registry actively are concurrently running.

Keywords: databases; data stores; key-value stores; performance evaluation

1. Introduction

Due to the emergence of Big data, data having various types such as texts, locations, graphs,
and images need to be stored and managed in the data store. Usually, in Big data applications, data
types cannot be determined in advance, and even new data types are generated. In the relational
databases, we need to define data types such as integers, dates, and characters in the database schema
and store only the data that follow the defined data types. Hence, we cannot store data having
various and undetermined types in the relational databases. We can manage those data easily by using
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the key-value store. The key-value store represents all the data in the form of a key and value pair.
Specifically, we store all the data regardless of their data types in the key-value store by mapping the
entire data to the value (e.g., in the form of strings or binary) and by assigning a unique key for the
value. Then, we utilize the stored data by parsing the value according to the required data types.

The representative key-value stores are Redis [1], LevelDB of Google [2], RocksDB of Facebook [3],
Berkeley DB of Oracle [4], and Memcached [5]. The key-value store can be categorized into persistent
stores and in-memory stores [6]. The former provides the flexibility of the data types to the relational
databases. That is, we can use the key-value store to manage various and undetermined data types
instead of the relational database. The latter provides the efficiency by caching data stored in persistent
stores. LevelDB, RocksDB, and BerkelyDB are categorized into persistent key-value stores; Redis and
Memcached into in-memory key-value stores. In-memory key-value stores can be worked with other
systems for improving the performance because they can act as the cache between the applications and
the underlying systems [7,8]. In this paper, we focus on the persistent stores. In-memory key-value
stores can be also worked with the persistent key-value stores to improve the performance.

The key-value stores require index structures to store the data and efficiently search the stored
data. LSM-tree [9] is widely used as the index structure in key-value stores, such as LevelDB [2],
RocksDB [3], HBase [10], and Cassandra [11]. Much work is publised to enhance the LSM-tree [12–16].
There are some work using hash-based structures [17–21]. The other work uses other data structures
such as B+-tree and Bε-tree or combined structures [6,22–24].

In this paper, for designing a lightweight key-value store, we investigate on the Windows registry
that is an internal built-in storage provided by the Windows operating system. In the Windows
registry, we typically store configurations and meta data needed in the Windows applications and the
operating system. For example, Internet Explorer stores the start Web pages in the registry. In addition,
the Windows operating system maintains the programs that need to be run when the operating system
starts in the registry. However, before this paper, there have been no research efforts that consider the
Windows registry as a general-purpose data storage.

In this paper, we propose a method to construct a lightweight key-value store, which we call
WR-Store, that designs the Windows registry as the key-value store. The novel ideas for WR-Store
can be summarized as follows. First, we define a mapping of the components in the key-value
store onto the components in the Windows registry. The Windows registry has been considered as
a special-purpose data store, but we extend it as a general-purpose data store. Second, we propose
a hash-based multi-level index structure. Due to the hash-based method, we can distribute the data
uniformly in the structure regardless of data distribution; due to the multi-level structure, we can
store large-scaled data. Third, we present the algorithms for the basic operations of the key-value
store (i.e., Get, Put, and Delete) using the Windows native APIs. The proposed algorithms depend
on a built-in internal storage in Windows, i.e., registry, and Windows native APIs. Thus, it can
be well integrated with the operating systems, and consequently, be quite efficient in general.
Fourth, we propose an efficient ETL (Extract-Transform-Load) method to migrate data stored in
WR-Store into the other key-values stores. This allows us to extend the coverage of WR-Store not
only for the environments where Windows operating systems are running but also for any other
environments that support the existing key-value stores. Fifth, we conduct the empirical analysis to
understand the performance of WR-Store and tune the performance. As a result, we can find the best
parameter setting of WR-Store for a given data set.

Through experiments, we show that WR-Store has the following strong points:

1. Lightness: WR-Store is a lightweight key-value store using Windows built-in structures and native
APIs without installing of additional libraries and applications. As a result, WR-Store requires
quite a small-sized executable file (i.e., 26 KB). Specifically, it reduces the size of the executable file
by 17.77∼153.73 times compared to the existing key-value stores (i.e., RocksDB [3], BerkeleyDB [4],
and LevelDB [2]).
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2. Efficiency and scalability: Through extensive experiments using synthetic and real data sets,
we show that the performance of WR-Store is comparable or even more efficient than the
state-of-the-art systems (i.e., RocksDB [3], BerkeleyDB [4], and LevelDB [2]) in terms of the
throughput of the read/write/delete operations. Especially, we show the scalability of WR-Store.
That is, WR-Store becomes much more efficient than the other key-value stores as the size of data
set increases. In addition, we show that the performance of WR-Store is maintained even in the
case of intensive registry workloads where 1000 processes accessing to the registry actively are
concurrently running.

The organization of the paper is as follows. In Section 2, we describe background. In Section 3,
we present the concept of WR-Store and its implementations. In Section 4, we present the empirical
analysis of WR-Store and the experimental results compared to the existing key-value stores.
In Section 5, we propose an efficient ETL (Extract-Transform-Load) method for WR-Store. In Section 6,
we present the related work. In Section 7, we discuss the features of WR-Store. In Section 8, we conclude
the paper.

2. Background

2.1. Key-Value Stores

The key-value store [25] represents each data item by a key-value pair (k, v). The key k uniquely
identifies the entire data items. The value v describes the actual data item. The key-value stores
provide quite simple operations: Get, Put, and Delete operations. The Get operation takes a key as the
input and returns the value associated to the given key from the key-value store. The Put operation
takes a key and value pair and stores the key-value pair into the key-value store. The Delete operation
takes a key as the input and deletes the data item with the given key.

2.2. Windows Registry

The Windows registry is a hierarchical structure to store the system information. It includes
application’s configurations, devices attached to the system, and user information on the system.
The Windows registry has been used in every Windows version including Windows 7/8/8.1/10 and
Windows Server 2008/2012/2016. The contents in one Window version are compatible with them in
the other Window version. That is, we can easily migrate data stored in the Window registry.

Figure 1 shows a logical view of the Windows registry provided by Registry Editor, which is
a default registry editor on Windows. The left pane represents keys for the registry. Here,
the keys are constructed as a tree structure. The tree path of the selected key in Figure 1 is
“Computer\HKEY_CURRENT _USER\Control Panel\Keyboard”. Each key can have multiple subkeys
and values. We can make the parent-children relationship between a key and its subkeys.

The right pane shows values for each key. As shown in Figure 1, each value consists of three
attributes: name, type, and data. The name attribute uniquely identifies the values in the same key;
the type attribute determines the type of the value; the data attribute represents actual value following
the specified value type. The representative value types are REG_BINARY that represents binary
data, REG_DWORD that represents numbers, and REG_SZ that represents strings (We can refer to
the Microsoft’s official home page [26] for the entire set of the supported types.). This means that we
can manage different types of data in the registry including numbers, strings, and binary.

The Windows registry consists of five root keys: (1) HKEY_LOCAL_MACHINE (simply, HKLM),
(2) HKEY_CLASSES_ROOT (simply, HKCR), (3) HKEY _CURRENT_CONFIG (simply, HKCC),
(4) HKEY_USERS (simply, HKU), and (5) HKEY_CURRENT_USER (simply, HKCU). HKLM maintains
the system information; HKCR and HKCC are symbolic links to certain subkeys in HKLM; HKU
maintains the information for all the users in the system; HKCU is a symbolic link to the current
user information in HKU. For the security reason, we typically store the information that requires
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restricted permissions (i.e., administrators) in HKLM and store the other information that can be
accessed without any restrictions (i.e., any logged in users) in HKCU.

Figure 1. The structure of the Windows registry.

The Windows registry is stored in a special physical location, called Hive,for persistently storing
data. The Windows operating system has a responsibility to synchronize between in-memory data
and Hive.

Table 1 shows representative APIs to manipulate the Windows registry (We can refer to the
Microsoft’s official home page [27] for the entire the set of APIs to manipulate the Windows registry.).
Basically, we create new information in the registry, query the existing information from the registry,
and delete the information from the registry. These APIs are supported by every version of Windows.
Thus, the executable file built using those APIs can be worked on any versions of Windows.

Table 1. Windows APIs to manipulate the Windows registry [27].

APIs Description

RegOpenKeyEx Open a specified registry key
RegCreateKeyEx Create a specified registry key
RegSetValueEx Set the data and type of a specified value in an opened registry key

RegQueryValueEx Retrieve the data of a specified value in an opened registry key
RegDeleteKeyValue Remove a specified value from an opened registry key

RegDeleteTree Delete all the subkeys and values of an opened registry key recursively
RegCloseKey Close a specified registry key

3. Constructing a Lightweight Key-Value Store Based on the Windows Native Features

3.1. The Concept

In this section, we propose a method to construct a lightweight key-value store based on the
Windows native features. We call the proposed key-value store WR-Store. For WR-Store, we design



Appl. Sci. 2019, 9, 3801 5 of 22

the Windows registry as the key-value store. Because we typically store configurations and meta data
of the system and applications in the Windows registry, there have been no efforts that regard the
Windows registry as a general-purpose data storage. We design WR-Store by mapping the components
in the key-value store onto the components. Table 2 shows the mapping.

Table 2. Mapping of the components in the key-value store onto the components in the
Windows registry.

Key-Value Store Window Registry

Key The name attribute of the value in the registry
Value The data attribute of the value in the registry

Database A registry key under a root key in the registry
Index Registry subkeys under a registry key for the database

Figure 2 shows the concept of WR-Store. WR-Store consists of two parts: (1) storage for key-value
data and (2) index structure. The right pane in Figure 2 shows the storage for key-value data in
WR-Store. We can store multiple values under a registry key. In the figure, a Window registry key,
“Computer\HKCU\kvs\ f e\40\8a\96”, is storing two key-value pairs. The key of one key-value pair
is “792479”, and its associated value is “#Scotland”; the key of the other key-value pair is “2149”,
and the value is “(−115.223125, 36.232915)”.

Figure 2. The concept of WR-Store.

The left pane in Figure 2 shows the index structure of WR-Store. In WR-Store, we use keys
and subkeys in the Windows registry as the index structure. As a result, we store key-value data in
the leaf subkeys of the registry path. For example, in Figure 2, “fe”, “40”, “8a”, and “96” is a path
to access key-value data for the keys “792479” and “2149”. Because multiple values are allowed to
store in a registry key, we identify actual key-value pairs by the name attribute in the value of the
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registry. Here, we determine the names of keys and subkeys in the registry path from the given key.
The detailed mechanism will be explained in Section 3.2.

We create a new database for WR-Store under a certain root registry. Here, we can choose a root
registry key according to the desired security level for the key-value store because any logged in users
can access HKCU, but only administrators can access HKLM. Consequently, we make a database in
one of the following paths: (1) “Computer\HKLM\DBName” or (2) “Computer\HKCU\DBName”.
In Figure 2, the used root key is HKCU, and the database name is “kvs”.

3.2. A Hash-Based Multi-Level Registry Index

In this section, we present how to construct the index structure for WR-Store. For this, we need to
determine the names of keys and subkeys in the registry path. One simple way is using the key in the
key-value store as it is in the Windows registry. For example, in Figure 2, “2149” becomes the key in
the registry, and thus, the registry path for the key “2149” becomes “Computer\HKCU\kvs\2149”.
In this case, WR-Store has one-level index structure. However, to make a scalable index, the multi-level
structure is required.

To make the multi-level structure, we can use substrings of the key in the key-value store as
keys and subkeys in the Windows registry. For example, when we have a key “2149”, we partition
it into two substrings “21” and “49”. Then, “21” becomes the key in the first-level registry structure,
and “49” becomes the key in the second-level registry structure. As a result, a path for the registry
key becomes “Computer\HKCU\kvs\21\49”. However, in this case, according to the distribution
of the keys, the stored key-value data could be skewed. That is, all the key-value pairs whose keys
are starting with “2149” such as “214910”, “214911”, “214912”, and “214913” will be stored under the
same registry key “Computer\HKCU\kvs\21\49”.

Now, we present a method to distribute key-value data uniformly over the registry keys in the
multi-level structure. For this, we use a hash function to determine a registry path from a specified key
in the key-value store. The hash function has a property that distributes data uniformly regardless of
the distribution of the original keys. In addition, the hash collision is not the problem in WR-Store
because the Windows registry allows to store multiple values in the same registry key. Here, we can
identify the values in a registry key using the name attribute. In this paper, we use MD5 for a hash
function and represent the hash result in hexadecimal. To make the multi-level structure, we partition
the hash result into multiple substrings and use each substring as a registry key for each level of the
multi-level structure.

Figure 3 shows a registry path for a hash-based multi-level registry index in WR-Store. A registry
path for indexing consists of WRD hash values where each hash value i (1 ≤ i ≤ WRD) has a length
WRL and is used for an i-th level index in the Windows registry. We can define WRD as the depth of
the registry and WRL as the length of each subkey in the registry path. Therefore, the total length of
a registry path for indexing is WRL × WRD.

Computer\HKCU\DBName\Hash1\Hash2\...\HashWRD

WRL

WRL X WRD

Figure 3. A registry path for a hash-based multi-level index structure in WR-Store.

Table 3 shows the example of the registry path in WR-Store. We have a key “2149” and
MD5(“2149”) = “fe40a2892ab382cd”. Let us suppose that WRD is 2, WRL is 2, and the database
name is “kvs”. The first two bytes of the hash result “fe” becomes the registry key for the first
level and the next two bytes of the hash result “40” becomes the registry key for the second level.
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As a result, a final path for the registry key becomes “Computer\HKCU\kvs\fe\40”. If WRD and
WRL become different, the corresponding registry paths are also changed as presented in Table 3.
Consequently, it will generate completely different index structures. Here, we note that the hash
results of the keys “214910” and “214911” are totally different even if the original keys are similar.
Therefore, the key-value data can be distributed uniformly on the Windows registry.

Table 3. The example of the registry path in WR-Store.

Key MD5 (Key) W RD W RL Registry Path

2149 fe40a2892ab382cd 2 2 Computer\HKCU\kvs\fe\40
2149 fe40a2892ab382cd 1 4 Computer\HKCU\kvs\fe40
2149 fe40a2892ab382cd 4 1 Computer\HKCU\kvs\f\e\4\0

The structure of WR-Store can impact the performance of WR-Store. That is, we can control WRD
and WRL to find the best setting for WR-Store. In Section 4, we will perform the empirical analysis to
check the performance variations as those factors are varied, and then, find the best parameter setting
for WR-store.

3.3. Processing Algorithms for WR-Store

Figure 4 shows the processing algorithms of operations for WR-Store. Here, RootKey and DBName
are determined when the database is created. RootKey is a root key of the registry and is determined
by the security level. DBName represents a database name and is a subkey of RootKey.

In the Get() operation, we pass a key to find a key-value pair, key_in, as the input and return a value
of the found key-value pair, value_out, as the result. First, we call RegOpenKeyEx() by passing RootKey
and DBName as the input and obtain the handle of a specified registry key, hKey. Then, we call
RegQueryValueEx() by passing hKey and key_in as the input and obtain value_out as the result.
Here, value_out becomes the final result of the Get() operation. Finally, we call RegCloseKey() to
finalize allocated resources.

In the Put() operation, we pass a key-value pair, key_in and value_in, as the input to store a new
key-value pair. First, we call RegCreateKey() by passing RootKey and DBName. If the given DBName
has not been created as a registry key under RootKey (i.e., it is the first time to insert data), then it
creates a registry key of DBName under RootKey. Otherwise (i.e., DBName has been already created),
it opens a specified registry key and returns the handle of the registry key, hKey. Then, we call
RegSetValueEx() by passing hKey, key_in, REG_SZ, value_in, and sizeo f (value_in) as the input to store
a new key-value pair in the registry. Here, we use REG_SZ for the value type, which deals with strings,
and consequently, we can store arbitrary data types as strings. Finally, we call RegCloseKey() to finalize
allocated resources.

In the Delete() operation, we pass a key of a key-value pair to delete, key_in, as the input.
First, we call RegOpenKeyEx() by passing RootKey and DBName as the input and obtain the
handle of a specified registry key, hKey. Then, we call RegDeleteKeyValue() by passing RootKey,
DBName, and key_in as the input to delete the key-value pair with a specified key. Finally, we call
RegCloseKey() to finalize allocated resources.
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Algorithm Get
Input: key_in: key of a key-value pair to find
Output: value_out: a value of the found key-value pair 

HKEY hKey;
If (RegOpenKeyEx(RootKey, DBName, 0, KEY_QUERY_VALUE, &hKey) 

!= ERROR_SUCCESS) 
{

return FAIL_TO_GET;
}
if (RegQueryValueEx(hKey, key_in, NULL, NULL, value_out, NULL) 

!= ERROR_SUCCESS) 
{

RegCloseKey(hKey);
return FAIL_TO_GET;

}
RegCloseKey(hKey);
return value_out;

Algorithm Put
Input: (key_in, value_in): a key-value pair to store

HKEY hKey;
if (RegCreateKey(RootKey, DBName, &hKey) != ERROR_SUCCESS)
{

return FAIL_TO_PUT;
}
if (RegSetValueEx(hKey, key_in, 0, REG_SZ, (LPBYTE)value_in, sizeof(value_in)) 

!= ERROR_SUCCESS)
{

RegCloseKey(hKey);
return FAIL_TO_PUT;

}
RegCloseKey(hKey);

Algorithm Delete
Input: key_in: key of a key-value pair to delete

HKEY hKey;
if (RegOpenKeyEx(RootKey, DBName, 0, KEY_ALL_ACCESS, &hKey) 

!= ERROR_SUCCESS)
{

return FAIL_TO_DELETE;
}
if (RegDeleteKeyValue(RootKey, DBName, key_in) != ERROR_SUCCESS)
{

RegCloseKey(hKey);
return FAIL_TO_DELETE;

}
RegCloseKey(hKey);

Figure 4. Processing algorithms for WR-Store.

4. Performance Evaluation

4.1. Experimental Data and Environment

We compare the performance of WR-Store with the representative key-value stores: RocksDB
of Facebook [3], BerkeleyDB of Oracle [4], and LevelDB of Google [2]. For implementing the Get(),
Put(), Delete() operations of WR-Store, we use the algorithms presented in Section 3.3 based on the
Windows native APIs. For RocksDB, we build a library for Windows according to the guideline
provided by RocksDB (https://github.com/facebook/rocksdb/wiki/Building-on-Windows). We use
the source code released in the master branch of Github (https://github.com/facebook/rocksdb);
the used source code version is 5.14. For BerkeleyDB, we build a library for Windows according to
the document provided by Oracle (https://docs.oracle.com/database/bdb181/index.html). We use
the source code released in the Oracle official homepage (http://www.oracle.com/technetwork/
database/database-technologies/berkeleydb/downloads/index.html); the used source code version
is 18.1. For LevelDB, we build a library for Windows using the source code released in Github for the
Windows version of LevelDB (https://github.com/ren85/leveldb-windows).

RocksDB, BerkeleyDB, and LevelDB provide interfaces for multiple programming languages
such as C, C++, and Java. For the fairness, we use C++ for all the methods. We use Visual Studio
15.0 on Windows 10 64 bit. To verify that WR-Store can run on any Windows environments,

https://github.com/facebook/rocksdb/wiki/Building-on-Windows
https://github.com/facebook/rocksdb
https://docs.oracle.com/database/bdb181/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/downloads/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/downloads/index.html
https://github.com/ren85/leveldb-windows
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we perform experiments in the other environment on a different Windows version. We perform
all the experiments on a system with a quad-core Intel Xeon E5-2660 2.0 GHz processor, 8 GB of main
memory, and Windows 2016 server 64 bit. To minimize the intervention of the other processes running
on Windows, we perform each experiment right after booting the system.

Table 4 shows characteristics of the data sets. We use eight data sets including synthetic and real
data sets. Synthetic data sets are used to measure the scalability of the key-value stores as the size of
data set is increased. Each key-value pair consists of a random string with a variable length for a value
and an unique number for a key. We generate four data sets of varying sizes: (1) KVData1, (2) KVData2,
(3) KVData3, and (4) KVData4.

Table 4. Characteristics of the data sets.

Data Sets Total Number of Objects Average of Key Size Average of Value Size Total Size of Data Set

KVData1 10,000 3.89 52.44 560 KB
KVData2 100,000 4.89 52.53 5.7 MB
KVData3 1,000,000 5.89 52.54 58 MB
KVData4 10,000,000 6.89 52.50 589 MB
ID-Geo 2,656,660 19.00 28.34 122 MB

ID-Hashtag 172,958 19.00 25.31 7.4 MB
ID-Tweet 1,556,300 19.00 135.54 234 MB

User-Followers 140,438 12.27 5.06 2.5 MB

We crawl four real data sets from Twitter. To crawl actual tweets, we use the Tweepy library
(https://github.com/tweepy/tweepy) with a different filtering condition and post-processing for
each data set. That is, all the data sets are designed to have different data types such as geo locations,
texts, and integers. Table 5 shows the samples of real data sets. (1) ID-Geo data set consists of the tweet
ID and the location information of the tweet. (2) ID-Hashtag data set consists of the tweet ID and the
hash tags in the tweet. (3) ID-Tweet data set consists of the tweet ID and the tweet text. (4) User-Followers
data set consists of the user ID and the number of followers of the user.

Table 5. The samples of real data sets.

Data Sets Key Value

ID-Geo 1020235969885134848 (−115.223125, 36.232915)
ID-Hashtag 1020253494912135168 #OrangeCounty #I4 #Orlando #traffic

ID-Tweet 1020315941345923074 A Chocolate man with a pretty smile
User-Followers 429997348 1016

We measure three kinds of operations to evaluate the performance of the key-value stores:
(1) read operations, (2) delete operations, and (3) write operations. To measure each set of operations,
we conduct the basic operations in the key-value store continuously, i.e., Get() for the read operations,
Delete() for the delete operations, and Put() for the write operations. To check the change of
the performance as the number of continuous operations k is increased, we vary k from 1 to
1 million for a data set. For a small (or large) k, initial cost of the key-value store occupies
a large (or small) portion. We measure the processing time in microseconds (µs) using a Windows
API QueryPer f ormanceCounter() and convert it into the operations per second (simply, OPS) for
the presentation.

4.2. The Size of the Executable File

Because WR-Store uses Windows native structures and APIs, it is inherently lightweight. To verify
this, we measure the sizes of the executable files of the key-value stores. Table 6 shows the
result. The executables of the other key-value stores contain the large size of source codes and
even third-party libraries such as zlib, snappy, and lz4 to support full-featured key-value stores.

https://github.com/tweepy/tweepy


Appl. Sci. 2019, 9, 3801 10 of 22

In contrast, WR-Store only uses the Windows built-in structures and native APIs. As a result, the size
of executable file for WR-store is quite small comparable to them of the other key-value stores.
Specifically, WR-Store reduces the size of the executable file by 153.73 times compared to RocksDB,
by 72.69 times compared to BerkeleyDB, and by 17.77 times compared to LevelDB.

Table 6. The size of the executable file.

Key-Value Stores Size (KB) Ratio

WR-Store 26 1.00
RocksDB 3997 153.73

BerkeleyDB 1890 72.69
LevelDB 462 17.77

4.3. Empirical Analysis of WR-Store

It is important to understand the characteristics of the Windows registry because the performance
of WR-Store depends on the internals of the Windows registry. However, the internals of the Windows
registry have not been known or reported much. In this section, we perform the empirical analysis of
WR-Store to understand the characteristics of its performance. As explained in Section 3.2, we have
two parameters affecting the performance of WR-Store: (1) the depth of the registry, WRD, and (2) the
length of each subkey of the registry, WRL. We represent each setting of WR-Store as xD_yL where x is
a value for WRD and y is for WRL. Here, we use KVData2 as the data set and measure OPS (operations
per second) while the number of continuous operations is fixed as 1 thousand.

Figure 5 shows the performance of WR-Store as WRD is increased while WRL is fixed as 1; Figure 6
shows the performance of WR-Store as WRL is increased while WRD is fixed as 1. In both experiments,
when WRL × WRD is 2, 3, and 4, the performance of WR-Store is relatively better than the other cases.
WRL × WRD determines the number of values under a registry key, and we conclude that it is more
important factor to the performance of WR-Store than each of WRL and WRD. Therefore, we need to
find the most efficient value for WRL × WRD, and then, we need to select proper values for WRL and
WRD for a determined value for WRL × WRD.

(a) Read throughput. (b) Write throughput. (c) Delete throughput.

Figure 5. Performance of WR-Store as WRD is varied. (a); Read throughput (b); Write throughput;
(c) Delete throughput.
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(a) Read throughput. (b) Write throughput. (c) Delete throughput.

Figure 6. Performance of WR-Store as WRL is varied. (a) Read throughput; (b) Write throughput;
(c) Delete throughput.

4.4. Performance Tuning of WR-Store

The empirical analysis indicates that WR-Store has the best parameter setting for a given data set.
Performance of WR-Store as WRD × WRL is varied: Figure 7 shows the processing time of

WR-Store where WRD × WRL is 2, 4, and 6 as the number of continuous operations k is varied from
1 to 1 million. We use KVData as the data set. As WRD × WRL is increased, each key may have
less values because the number of distinct registry keys is increased. Hence, when WRD × WRL is
small, we need to process a large number of values for the same key, incurring the cost to deal with
many values after finding the specified registry. In contrast, when WRD × WRL is large, we have only
a small number of values for the same key (e.g., one value for each key), and consequently, have many
subkeys. It requires a large size of the registry index, incurring the cost to access the large registry
index. As a result, we can expect that there exists a moderate value for WRD × WRL that shows the
best performance of WR-Store.

For the read operations, the performance of 2D_2L is the most stable as k increases. Especially,
2D_2L is much more efficient than 2D_1L by 10.41 times and 2D_3L by 11.39 times when k is 1 million.
For the write operations, 2D_2L is the most efficient. Specifically, 2D_2L outperforms 2D_1L by
4.12∼12.77 times and 2D_3L by 3.51∼12.85 times as k is varied. For the delete operations, 2D_1L is
generally the most efficient, but 2D_2L shows the most stable performance. Specifically, when k is
varied from 100 thousand to 1 million, the performance degradation of 2D_1L is about 21.47% while
that of 2D_2L is only about 2.25%.

According to the experimental results, we observe that the performance variation of WR-Store
is very severe as WRD × WRL is varied. In addition, we show that 2D_2L is the most stable and
efficient performance.

(a) Read throughput. (b) Write throughput. (c) Delete throughput.

Figure 7. Performance of WR-Store as WRD × WRL is varied. (a) Read throughput; (b) Write
throughput; (c) Delete throughput.
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Performance of WR-Store as WRL and WRD are varied: According to the previous result, the total
length of a registry path for indexing, WRL × WRD, is fixed as 4. Then, we vary WRL and WRD to
find the best combination of WRL and WRD for a determined WRL × WRD. That is, we have three
combinations of WRL and WRD: (1) 1D_4L, (2) 2D_2L, and (3) 4D_1L.

Figure 8 shows the processing time of 1D_4L, 2D_2L, and 4D_1L as the number of continuous
operations k is varied from 1 to 1 million. We use KVData as the data set. Even if the overall
performance difference is less than the case where WRD × WRL is varied, there exists meaningful
performance difference as WRL and WRD are varied. For the read operations, 1D_4L is the most
efficient. When k is 1 million, 1D_4L outperforms 2D_2L by 2.21 times and 4D_1L 1.81 times. For the
write operations, 1D_4L is slightly more efficient than the other settings. When k is 1 million,
1D_4L outperforms 2D_2L by 1.64 times and 4D_1L 1.39 times. For the delete operations, 1D_4L is the
most efficient. When k is 1 million, 1D_4L outperforms 2D_2L by 1.55 times and 4D_1L outperforms
by 1.55 times.

(a) Read throughput. (b) Write throughput. (c) Delete throughput.

Figure 8. Performance of WR-Store as WRD and WRL are varied. (a) Read throughput; (b) Write
throughput; (c) Delete throughput.

According to both experimental results, we confirm that the performance variation of WR-Store
is very serious as WRL and WRD are varied (especially for WRD × WRL). Thus, for the remaining
experiments on synthetic data sets, we use the best parameter setting for WR-Store, i.e., 1D_4L.

In addition, we conduct the performance evaluation on four real data sets to find their best
parameter settings. Table 7 shows the measured throughput on real data sets as WRL and WRD are
varied. Here, we simply calculate the average throughput by assigning the same weight into read,
write, and delete operations. As a result, we can find the best parameter setting, which is represented
in bold. For the remaining experiments on real data sets, we use the best parameter setting for each
data set as shown in this table.

Table 7. The best settings of WR-Store for real data sets.

Data Sets Throughput (OPS)
Parameters

2D_1L 2D_2L 2D_3L 1D_4L 4D_1L

ID-Geo

Read 23,085 54,749 4928 20,095 8791
Write 368 8516 2045 6140 3903
Delete 13,057 18,289 2558 11,116 4265

Average 12,170 27,185 3177 12,450 5653

ID-HashTag

Read 25,635 58,849 11,411 40,369 52,908
Write 9718 20,107 18,081 25,413 24,374
Delete 38,835 30,053 6077 18,783 23,022

Average 24,729 36,337 11,856 28,188 33,435
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Table 7. Cont.

Data Sets Throughput (OPS)
Parameters

2D_1L 2D_2L 2D_3L 1D_4L 4D_1L

ID-Tweet

Read 10,227 12,334 906 33,327 14,347
Write 564 5578 727 9279 6889
Delete 24,539 8079 611 13,254 9125

Average 11,777 8664 748 18,620 10,121

Users-Followers

Read 39,234 61,177 48,506 46,310 49,974
Write 17,482 21,385 19,187 24,490 24,039
Delete 36,308 25,321 22,623 21,921 23,972

Average 31,008 35,961 30,105 30,907 32,661

4.5. Experimental Results on Synthetic Data Sets

Throughput as the number of continuous operations k is increased: Figure 9 shows the
throughput on a synthetic data set, KVData3, as k is increased from 1 to 1 million. The result
indicates that WR-Store shows the constant performance regardless of k, but RocksDB, BerkeleyDB,
and LevelDB do not. As a result, WR-Store is particularly efficient for small k, i.e., from 1 to
1 thousand. Specifically, WR-Store outperforms RocksDB by 59.25∼9479.95 times for read operations,
by 1.59∼6182.61 times for write operations, and by 2.36∼5978.49 times for delete operations;
WR-Store outperforms BerkeleyDB by 2.09∼10.24 times for read operations, by 1.32∼38.72 times
for write operations, and by 15.28∼54.14 times for delete operations; WR-Store outperforms
LevelDB 25.29∼1091.79 times for read operations, by 1.78∼695.29 times for write operations, and by
3.76∼642.65 times for delete operations. This stems from the fact that the other key-value stores
require much initial cost to perform operations. As a result, when k is small, the performance is quite
inefficient compared to WR-Store, which does not require the initial cost because the Windows registry
is always ready.

We can observe some part of cases where the other key-value store are more efficient than
WR-Store when the value of k becomes large. Specifically, RocksDB outperforms WR-Store by 5.03 times
for read operations, by 14.02 times for write operations, and by 9.10 times for delete operations when k
is 1 million. LevelDB partly outperforms WR-Store even for the large value of k. That is, LevelDB is
more efficient than WR-Store by 9.16 times for write operations and by 4.89 times for delete operations
when k is 100 thousand. However, for read operations, WR-Store consistently outperforms LevelDB in
all the values of k; for the write and delete operations, WR-Store outperforms LevelDB again when the
value of k becomes larger, i.e., 1 million. WR-Store is still comparable to BerkeleyDB even for large k.
That is, WR-Store is efficient than BerkeleyDB by 44.34% for the delete operations when k is 1 million;
BerkeleyDB is efficient than WR-Store by 83.09% for the read operations and by 5.31% for the delete
operations when k is 1 million.

In addition, it is important to check the performance of additional loading of data in WR-Store
when data has been stored. Here, a dataset, KVData3, has been stored, and then, we measure the
performance for additional writes of data whose size is increased from 1 to 1 million. The result shows
that the performance of WR-Store is quite constant even as the size of newly inserted data is increased,
which means that WR-Store is stable even on additional loading of data.

Throughput as the size of data set is increased: Figure 10 shows the throughput on synthetic data
sets as the size of data set is increased from 10 thousand (i.e., KVData1) to 10 million (i.e., KVData4).
We fix the number of continuous operations as 10 thousand. The most important point of this result
shows the scalability of WR-Store. That is, the performance of WR-Store is quite constant as the size of
data set is increased while the performances of the other key-value stores are degraded much. If we
measure the performance degradation when the data set is KVData4 compared to KVData1, that of
WR-Store is 1.05 times for the read operations, 2.30 times for the delete operations, and 16.25 times
for the write operations, respectively; RocksDB 52.11 times, 55.02 times, and 49.63 times, respectively;
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BerkeleyDB 4365.17 times, 230.23 times, and 1.48 times, respectively; LevelDB 239.80 times, 725.28 times,
and 766.18 times, respectively. Here, we note that WR-Store is not enough scalable to the write
operations compared to the read and delete operations. This stems from the fact that the Windows
registry already stores a data set required by the operating systems while the other key-value stores do
not. We also note that BerkeleyDB is scalable to the write operations, but its performance degradation
is much severe for the read and delete operations.

(a) Read throughput. (b) Write throughput. (c) Delete throughput.

Figure 9. Throughput on a synthetic data set as the number of continuous operations k is increased.
(a) Read throughput; (b) Write throughput; (c) Delete throughput.

(a) Read throughput. (b) Write throughput. (c) Delete throughput.

Figure 10. Throughput as the size of data set is increased. (a) Read throughput; (b) Write throughput;
(c) Delete throughput.

4.6. Experimental Results on Real Data Sets

Throughput as the number of continuous operations k is increased: Figure 11 shows the
throughput on a real data set as k is increased from 1 to 1 million. Here, we use ID-Geo as the
data set. Overall trends are similar to the results on synthetic data sets as presented in Figure 9. That is,
the performance of WR-Store is quite constant while the other key-value stores require much initial cost.
Therefore, WR-Store is much efficient for small k while RocksDB and LevelDB outperform WR-Store
for only some values of large k.

Throughput for various real data sets: Figure 12 shows the throughput on various real data
sets. We fix the number of continuous operations as 10 thousand. For the read and delete operations,
we note that WR-Store outperforms the other key-value stores for the larger data sets, i.e., ID-Geo and
ID-Tweet. For the write operations, BerkeleyDB and LevelDB show quite constant performance while
WR-Store is still comparable to them.
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(a) Read throughput. (b) Write throughput. (c) Delete throughput.

Figure 11. Throughput on a real data set as the number of continuous operations k is increased. (a) Read
throughput; (b) Write throughput; (c) Delete throughput.

(a) Read throughput. (b) Write throughput. (c) Delete throughput.

Figure 12. Throughput on various real data sets. (a) Read throughput; (b) Write throughput;
(c) Delete throughput.

4.7. The Stress Test in Intensive Registry Workloads

The Windows applications are always accessing to the registry to store and retrieve data. It is
important to observe the performance of WR-Store in intensive registry workloads because WR-Store
is based on the registry. First, we analyse the registry accesses of other processes while WR-Store is
working. We collect all the registry operations occurred in the Windows operating system using Process
Monitor (https://docs.microsoft.com/en-us/sysinternals/downloads/procmon), which is a tool to
monitor all the I/O events in Windows including the registry accesses, provided by Microsoft. Table 8
shows the summarization of registry operations collected by Process Monitor. That is, over 3.8 million
registry operations are collected during 626.7 s. We confirm that 79 Windows processes are working
with WR-Store and they are actively accessing to the registry. That is, the average time interval between
registry operations in all the processes is 12.96 milliseconds for each process. Table 9 shows top-10
processes accessing to the registry in the order of the portion. The average time interval between
registry operations in top-10 processes is 1.95 milliseconds.

Table 8. The summarization of the collected registry operations.

Total Duration
for Collection

The Number of
Registry Operations

The Number of
Processes

The Average Time
Interval between Registry Operations

in Each Process

626.7 s 3, 821, 733 79 12.96 milliseconds

Then, we measure the performance of WR-Store in the environments of the intensive registry
workloads. Here, we make each synthetic process so as to access to the registry once every
1.95 milliseconds, which is the same as the average frequency of top-10 processes accessing to the
registry. Then, we vary the number of concurrently running processes p from 1 to 1000. Figure 13

https://docs.microsoft.com/en-us/sysinternals/downloads/procmon
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shows the performance variation as p is increased. Here, we use a real data set, ID-Geo, as the data
set and fix the number of continuous operations as 10 thousand. As a result, even in the case where
1000 processes accessing to the registry intensively are concurrently running, the performance of
WR-Store is maintained constantly like as the other key-value stores that do not depend on the registry.

Table 9. The top-10 processes accessing to the registry.

Process Name The Number of Registry Operations Portion

svchost.exe 932,191 24.39%
settingsynchost.exe 667,275 17.46%

mscorsvw.exe 365,202 9.56%
tiworker.exe 275,724 7.21%

sihost.exe 205,835 5.39%
runtimebroker.exe 180,807 4.73%

explorer.exe 177,815 4.65%
ngen.exe 147,814 3.87%

msmpeng.exe 130,601 3.42%
backgroundtaskhost.exe 125,047 3.27%

(a) Read throughput. (b) Write throughput. (c) Delete throughput.

Figure 13. Throughput as the number of concurrently running processes p increases. (a) Read
throughput; (b) Write throughput; (c) Delete throughput.

5. An Efficient Method for ETL (Extract-Transform-Load) in WR-Store

In this section, we propose an ETL (Extract-Transform-Load) method to extract data stored
in WR-Store and load them into the other key-value stores. Because WR-Store is based on the
Windows registry, it is portable only if Windows operating systems are running. However, in the other
environments without Windows operating systems, we need a method to migrate data in WR-Store
into the other environments.

The key-value store deals with data in a very simple form consisting of the key and value pair.
However, WR-Store stores data in a multi-level structure based on the Windows registry as presented
in Section 3.2. Thus, we need to investigate the method to extract data from the multi-level structure
and to transform them into a form of the key-value pair.

First, let us consider a straightforward method for the ETL process in WR-Store. It extracts data
from the registry path for WR-Store into a file, and then, transforms the contents in the file into a form
of the key-value pair, which we call extract-then-transform (E-then-T). The E-then-T method depends
on the built-in extract feature provided by the Windows registry. That is, if we execute a Window
command “regedit /E”, it will extract data stored in a specific registry path into a file. Figure 14 shows
the details of data extracted from WR-Store storing a real data set, ID-HashTag. It represents the
registry path in a multi-level, and each registry path contains the corresponding key and value pairs.
Then, from this file, we can specify the key part and value part by parsing the contents based on the
pattern matching method such as the regular expression.
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Figure 14. The details of data extracted from WR-Store (Data set: ID-HashTag).

The E-then-T method requires two separate phases, and the second phase (i.e., transform)
must be performed on the result of the first phase (i.e., extract). Thus, we need to design
a more efficient ETL method that transforms data directly while extracting data, which we call
extract-and-transform (E-and-T). For the E-and-T method, we need to directly access to the Windows
registry using the native APIs. Using those APIs, we can traverse the entire structure under a registry
path that is storing data for WR-Store. Whenever we find the key and value during the traversal,
we directly transform each one into a form of the key-value pair. Figure 15 shows the algorithm of
the E-and-T method. First, it obtains the information for a given registry path to know the number of
subkeys and the number of key and value pairs. If there are subkeys, we need to investigate each one
of them by calling this algorithm recursively. Otherwise, we extract key and value pairs one by one.
As a result, we can obtain the list of key and value pairs that have been stored in WR-Store.

To show the performance of the proposed E-and-T method, we conduct some experiments.
Figure 16 shows the performance analysis of two proposed ETL methods for WR-Store, i.e., E-then-T
and E-and-T. Here, we use four real data sets and fix the number of continuous operations as
10 thousand. The elapsed time of the E-then-T method consists of two parts: (1) that of the extract
process and (2) that of the transform process. We measure those parts separately to compare each
one with the elapsed time of the E-and-T method. Figure 16a shows the elapsed time of extract,
transform, E-then-T, and E-and-T. The result shows that E-and-T is much more efficient than E-then-T.
Specifically, E-and-T outperforms E-then-T by 1.24 ∼ 3.85 times as the data set varies. We indicate
that E-and-T needs a slightly more time than the export-only process while E-then-T requires much
time for the transform process, which involves the pattern matching. We note that the performance
improvement of E-and-T over E-then-T becomes larger for large-scaled data sets, i.e., ID-GEO and
ID-Tweet. The performance improvement is 3.30 times and 3.85 times, respectively.

Figure 16b shows the portion of E-and-T and E-then-T out of the entire ETL process that starts
to extract data stored in WR-Store and ends to load them into the other key-value store, i.e., one of
RocksDB, BerkeleyDB, and LevelDB. Here, we show a case where the data set is ID-Geo. As presented,
E-then-T occupies 11.78%∼84.93% out of the entire ETL process; E-and-T occupies 3.89%∼63.04%.
We note that E-and-T for BerkeleyDB and LevelDB occupies only 11.21% and 3.89% out of the entire
ETL (extract-transform-load) process, respectively.
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Figure 15. The algorithm of Extract-and-Transform (E-and-T) for WR-Store.

(a) Performance of E-then-T and E-and-T. (b) Portion of E-then-T and E-and-T.

Figure 16. The performance analysis of the proposed ETL methods for WR-Store. (a) Performance of
E-then-T and E-and-T; (b) Portion of E-then-T and E-and-T.

6. Related Work

WR-Store uses the Window’s internal structure based on the Windows registry as its index
structure. To place the data in the index, we have proposed a hash-based structure as presented
in Section 3.2. The distinguishing property of WR-Store from the existing key-values stores is that
WR-Store does not require additional data structures, which are necessary in the existing key-value
stores, because WR-Store directly utilizes the internal structure that is provided by the Windows
operating system.

LSM-tree [9] is widely used as the index structure in key-value stores, e.g., LevelDB [2],
RocksDB [3], HBase [10], and Cassandra [11]. There have been much work for enhancing the LSM-tree.
bLSM [13] is a LSM-tree with the advantages of B-Trees and log structured approaches by using Bloom
filters to improve the index performance. VT-tree [14] extends the LSM-tree to efficiently handle
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sequential and file-system workloads. LSM-Trie [15] is a trie structure of LSM-Tree for a more efficient
compaction of the structure. WiscKey [12] is a persistent LSM-tree-based key-value store optimized in
the SSD storage. Flame DB [16] proposes a grouped level structure to reduce the compaction overhead
in the LSM-tree. In addition, it adapts an enhanced bloom filter that reduces the false positive of
a bloom filter.

There are various key-value stores based on the hash table. FAWN-KV [21] uses an in-memory
hash table and a log structured datastore. It provides not only high performance on the flash storage
but also replication and consistency. FlashStore [17] uses a variant of the cuckoo hash table and
compacts key signatures to store the key-value pairs on the flash storage effectively. SkimpyStash [18]
uses an in-memory hash table using linear chaining to index key-value pairs on the flash storage.
It achieves extremely low RAM footprint. SILT [20] combines three basic key-value stores: log store,
hash store, and sorted store. Mercury [19] is a chaining hash table connected with the linked list.
It achieves to reduce DRAM accesses.

There are some work based on other data structures. Masstree [22] is an in-memory structure
combining B+-trees and tries. It offers fast random access and supports range queries. NVMKV [23]
is a key-value store that uses advanced FTL capabilities. ForestDB [6] uses a HB+-trie that combines
a disk-based trie structure with B+-tree. It is efficient for indexing and retrieval of the keys with
various lengths. Tucana [24] uses an extension of Bε-tree to provide the asymptotic properties for the
insert operations.

7. Discussions

Before this paper, the Windows registry has been considered as a storage for configurations or
meta data. In this section, we discuss features of WR-Store in terms of the general-purpose data store.

Large-scaled storage: Table 10 shows some limitations of the Windows registry [28]. Registry keys
are used for indexing in WR-Store. 255 characters of the key name and 512 depths of keys are
enough for making a scalable index. As discussed in Section 3.2, the hash result is represented in
hexadecimal. This means that we can create 16255 combinations for one-level of the registry, and we
can make 512 levels of the registry. The size limitation for the value name is 16,383, and accordingly,
the maximum length of the key for WR-store is 16,383. Typically, keys are represented in decimal.
Thus, we can deal with 1016383 keys, which is enough to store large-scaled key-value pairs.

Table 10. Limitations of the Windows registry [28].

Registry Element Size Limitation

Key name 255 characters
Depth of the registry keys 512

Name attribution in the value 16,383 characters
Data attribute in the value Available memory

Even if the size limitation of the value in the Windows registry is stated as an available memory,
Microsoft recommends to store values whose sizes are less than 2 MB for efficiency [28]. Typical recent
sources to collect key-value data such as social networking services and search engines deal with
data whose sizes are much less than 2 MB. For example, Twitter allows 280 bytes (i.e., less than
1 KB) for a Tweet; Facebook allows 63,206 bytes (i.e., about 61 KB) for a post; Google crawls 500 KB
of a Web page as the maximum size (https://developers.google.com/search/reference/robots_txt).
Furthermore, we can store large-scale of values by working with the file system. That is, we store
a large-scaled value as a file in the file system and maintain only a path for the file in the
Windows registry.

Migration: We can easily migrate the data stored in WR-Store into another machines only if
the Windows operating system is running on the target system because all the Windows versions
support the Windows registry. We can easily export data stored in one WR-Store and import them

https://developers.google.com/search/reference/robots_txt
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into another WR-Store in the other machine by using a Windows built-in command (For exporting
data stored in “HKCU\DBName”, the following Windows built-in command can be used: “regedit/E
export.reg ‘HKCU\DBName”’, which stores the exported data into export.reg. For importing data, the
following command can be used: “regedit/S export.reg”, which imports the exported data into the
other systems.). In addition, for the other environments that do not support registry, we can migrate
the data in WR-Store into any other environments that support existing key-value stores by using the
ETL (Extract-Transform-Load) method proposed in Section 5.

Portability: WR-Store can be used in every Windows version (e.g., Windows 7/8/8.1/10 and
Windows server 2008/2012/2016) because the Windows registry and associated APIs can be worked
in any versions of Windows. The executable file compiled by one environment can be worked on other
Windows environments without any modifications.

Stable operations: The Windows registry is always accessed from the Windows applications.
Especially, the system processes such as explorer.exe and services.exe are always working even if the
users do not execute any applications at all. They use the built-in APIs provided by Windows to access
to the Windows registry, which has been shown in Table 1. WR-Store is also developed based on
the same APIs. Figure 4 shows that all the algorithms for the basic operations of the key-value store
(i.e., Get, Put, and Delete) are based on the built-in APIs. As a result, WR-Store becomes one of normal
Windows applications that are working with the Windows registry.

In addition, to show the safety of WR-Store even in extreme cases where the intensive updates to
the Windows registry are concurrently occurred, we performed the stress test in Section 4.7. That is,
we monitored the performance of WR-Store as we increase the number of the processes that are
concurrently accessing to the Windows registry. As a result, we showed that the performance of
WR-Store is maintained even in the case of intensive registry workloads where 1000 processes accessing
to the registry actively are concurrently running.

8. Conclusions

In this paper, we have proposed a method to construct a lightweight key-value store that designs
the Windows registry as the key-value store. First, we have defined a mapping of the components in the
key-value store onto the components in the Windows registry. Second, we have proposed a hash-based
multi-level index structure so as to distribute the key-value data balanced and to efficiently access
them. Third, we have implemented the basic operations (i.e., Get, Put, and Delete) for the key-value
store using the Windows native APIs. We call the proposed key-value store WR-Store. Fourth, we have
proposed an efficient ETL (Extract-Transform-Load) method to migrate from WR-Store into the other
key-values stores. This allows us to extend the coverage of WR-Store not only for the environments
where Windows operating systems are running but also for any other environments that support
the existing key-value stores. Fifth, we have conducted the empirical analysis to understand the
performance of WR-Store and have tuned the performance.

We have shown that WR-Store has the following strong points. First, WR-Store is a lightweight
key-value store because it uses Windows built-in structures and native APIs without installing of
additional libraries and applications. Experimental results show that WR-Store reduces the size of
the executable file by 17.77∼153.73 times than the other key-value stores. Second, through extensive
experiments using synthetic and real data sets, we have shown that WR-Store is comparable to or
even more efficient than the state-the-of-the-art systems (i.e., RocksDB, BerkeleyDB, and LevelDB).
Especially, when the number of continuous operations is small, WR-Store outperforms the other
key-value stores because the other key-value stores require much initial cost while WR-Store does
not. Moreover, we verify the scalability of WR-Store by showing that WR-Store becomes much
more efficient than the other key-value stores as the size of data set increases. We also show that
the performance of WR-Store is maintained even in the case of intensive registry workloads where
1000 processes accessing to the registry actively are concurrently running.
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WR-Store is based on the Windows internal structure, i.e., Windows registry. Thus, it can be
lightweight and efficient because it does not require additional structures and the cost to manage
them. At the same time, WR-Store inherits the limitations of the Windows registry. For example,
WR-Store inherits the limitations of the registry element size, which has been discussed in Section 7.
Nevertheless, a very important observation is that this paper is the first effort to show that we can
use the Windows registry as a general-purpose data storage. Furthermore, we have shown strengths
of WR-Store: (1) lightness, (2) efficiency, and (3) scalability. The proposed technique can be used
in any environments where Windows operating systems are running with the minimum effort for
the installation. For the other environments without Windows operating systems, we can easily
migrate data to the other any environments that support existing key-value stores by using the
ETL (Extract-Transform-Load) method proposed by this paper.

For future studies, we have two research directions. First, we investigate how to improve the
performance of WR-Store by working with in-memory key-value stores. Second, we extend WR-Store
into distributed environments on multiple nodes. WR-Store has a property that can be easily applied
into multiple nodes where the Windows operating systems are running, but we need to investigate
an efficient method for distributing the data and integrating the results.
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