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Abstract: Offshore wind turbine foundations are commonly subjected to large horizontal, vertical,
and bending moment loads. Marine soils have high moisture content, high compressibility, high
sensitivity, and low strength, resulting in insufficient foundation bearing capacity. In order to improve
the bearing capacity of wind turbine foundations and reduce foundation settlement, an internal
vacuum preloading method combined with electroosmosis reinforcement is used to reinforce the
soil within bucket foundations. The pore water pressure, vertical settlement, pumping quality of
the soil during the reinforcement process, soil moisture content before and after the reinforcement,
and undrained shear strength were analyzed. Horizontal and vertical bearing capacity model tests
were carried out on the reinforced and nonreinforced soil inside the bucket foundation. Results
show that vacuum preloading combined with electroosmosis reinforcement reduces soil moisture
content inside the bucket foundation by approximately 20%, and the undrained shear strength of
the internal soil increases by approximately 20 times. Soil reinforcement has high spatial uniformity.
Results of the bucket foundation bearing capacity model show that when the soil inside the bucket
foundation is strengthened, horizontal bearing capacity increased by 2.9 times and vertical bearing
capacity increased by 2.1 times. Vacuum preloading combined with electroosmosis reinforcement can
effectively improve the shear strength of soft soil and enhance the bearing capacity and stability of
bucket foundations.

Keywords: marine soft soil; electroosmosis reinforcement; bucket foundation; offshore wind;
bearing capacity

1. Introduction

Offshore wind farms have been widely developed in recent years due to abundant offshore
wind, lack of occupied land, and lack of pollution. Common types of offshore wind power generator
foundations include single pile foundations, gravity foundations, jacket foundations, and floating
foundations [1,2]; however, bucket foundations have been widely examined and employed in recent
years due to their simple construction, low cost, and recyclability [3–8]. In 2018, the world’s largest
single-capacity 8.8 MW wind turbine was successfully installed in the Aberdeen offshore wind farm in
Scotland, and its foundation consists of four bucket foundations with a diameter of 9.5 m and height of
15 m [9].

The composite bucket foundation (CBF) is a new type of bucket foundation proposed by Tianjin
University and Daoda Company, which adds bulkheads to the bucket and the transition section above
the bucket foundation. The foundation can be prefabricated on land and transported and installed
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using a one-step installation vessel, which significantly reduces cost [10–12]. In November 2018,
two wind turbines with a CBF foundation were installed in the Sanxia Dafeng Sea in Jiangsu, China.
The prefabrication, transportation and installing processes are shown in Figure 1.

Figure 1. The composite bucket foundation (CBF) with offshore wind turbine: (a) Prefabrication
onshore; (b) One-step transportation; (c) Integrated installation.

The seabed is commonly composed of silt, silty clay, and other marine soft soils with high water
content, high compressibility, and low permeability, which commonly results in insufficient foundation
bearing capacity and excessive settlement after foundation installation. In addition, during the
installation of the bucket foundation, hydraulic fracturing of the soil in the bucket is caused by the
large seepage force, which reduces the bearing capacity of the top cover of the bucket foundation [13].
Furthermore, cracks may form in the bucket wall, and the soil and foundation may separate during
leveling of the bucket foundation [14–16]. Fracturing will destabilize and reduce the bearing capacity
of the bucket foundation. Consequently, the soil inside the bucket foundation needs to be reinforced
to improve the bearing capacity of the foundation. Soil failures during the installation of a bucket
foundation are shown in Figure 2.

Figure 2. Soil failure during the installation of a bucket foundation: (a) Soil plug during installation
(b) Fractures beside the bucket wall [16].

Ding et al. [17] applied a vacuum preloading method combined with electroosmosis reinforcement
to the internal soil of the bucket foundation. The effectiveness of soil reinforcement was confirmed
through a series of reinforcement model tests [18–20]. The vacuum-electroosmosis method for bucket
foundation can be studied using existing vacuum preloading and electroosmosis methods. Vacuum
preloading is performed by forming a vacuum under a sealing membrane covering the ground, and the
pressure difference across the membrane causes the soil layer to consolidate, which increases the soil
effective stress by reducing the pore water pressure without changing the total stress. The vacuum
preloading method was first proposed by the Swedish civil engineer Kjellman in 1952 and has been
widely used in soft soil foundation treatment [21–29]. Electroosmotic method is accomplished by
applying a direct current at both ends of a soil deposit. The free water and weakly absorbed water in
the soil move toward the cathode together with the cations, thereby draining and consolidating the
soil. In 1939, Cassagrande in Germany used the electro-osmotic soil treatment method for the first time
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in an excavation of railway subgrade [30,31]. Electroosmosis improves the permeability coefficient of
the soil and reduces the amount of weakly absorbed water regardless of grain assize [32]. In recent
years, electroosmotic strengthening of soil has been widely studied [33–36]. This study employed a
series of model tests to quantitatively analyze foundation settlement, pore water pressure inside the
soil, soil moisture content before and after reinforcement, and undrained shear strength of the soil.
The influence of electrode embedding, energization mode, and voltage level on reinforcement was
studied. The effect of soil reinforcement on bucket foundation bearing capacity was studied using a
series of model tests in clay.

2. Model Tests

2.1. Soil Preparation and Parameters

In this study, the soil tanks were 1 m long, 1 m wide, and 1 m high. A 10 cm thick layer of cobbles
was placed at the bottom of the soil tank to act as a water-drainage layer, and a layer of geotextile was
placed on the cobbles for soil consolidation. Figure 3 shows the soft soil used in this study, which was
taken from Bohai Bay in China. The soil preparation process is as follows. First, the soil was dried and
pulverized into a powder with a particle size below 0.2 mm, and the dried soil was uniformly mixed
with water to produce a mud with 50% moisture content. The prepared mud was then placed in the
soil tank in 10 cm thick layers with a total thickness of approximately 60 cm. The water level was kept
2 cm high after the preparation of the soil in order to ensure saturation of the soil, and the degree of
saturation was 99.2%. After one week, the undrained shear strength of the clay was approximately
2 kPa. Table 1 indicates the parameters of the soil sample.

Figure 3. Soil sample and vane shear test.

Table 1. Physical and mechanical parameters of soil.

Soil
Type

Moisture
Content

w (%)

Plastic
Limit wp

(%)

Liquidity
Index IL

(%)

Plasticity
Index IP

Shear
Strength
Su (kPa)

Permeability
Coefficient k

(cm·s−1)

Unit
Weight γ
(kN·m−3)

Coefficient of
Compressibility

a (MPa−1)

Clay 50 22 37 15 1~2 6.7 × 10−6 17.2 0.91

2.2. Test Setup

Figure 4 shows the bucket foundation and electrodes used in this study. The dimensions of
the bucket foundation are shown in Figure 4a. The prototype of the bucket foundation which was
installed in East China Sea is 30 m in diameter and 12 m in height, and the scale of the test foundation
and the prototype is 1:100. As shown in Figure 4b, the top of the bucket foundation was made
of Perspex and was connected to the bucket wall using eight bolts. A layer of geotextile was laid
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under the bucket foundation cover to facilitate the transfer of vacuum pressure in the horizontal
direction. A drainage hole and monitoring hole of vacuum pressure were placed in the top of the
bucket foundation. The drainage hole was connected to the water-air separation cylinder, and the
monitoring hole of the vacuum pressure was connected to the vacuum pressure sensor. The bucket
wall was used as an anode and connected with an external DC power using welding wire. A copper
tube with a length of 12 cm, a diameter of 1cm, and a wall thickness of 2 mm was used as a cathode
(Figure 4c). A layer of geotextile was wrapped outside the copper tube to facilitate drainage of the
electrode. The copper tube was inserted into the clay before installation of the bucket foundation.

Figure 4. Test model and electrode: (a) Sketch of the bucket foundation; (b) Bucket foundation;
(c) Copper tube electrode.

Figure 5 shows the test setup for the soil reinforcement. Prior to testing, pore water pressure
sensors which are named PP1, PP2 and PP3, respectively, were pre-buried at 1 cm, 6 cm, and 12 cm
from the surface of the soil, as well as 10 cm horizontally from the bucket wall. A vacuum sensor
and a laser displacement sensor (LPS) were installed at the top of the foundation. A vacuum pump
provided a 60 kPa vacuum load. A water-air separation cylinder was arranged between the vacuum
pump and the foundation, and the amount of water discharge was weighed. Figure 6 shows the sketch
of horizontal and vertical loading system, which is composed of servo motor, a loading push rod,
a reaction force frame, a tension and pressure sensor, a displacement sensor, a universal joint head,
and a guide rod.

Figure 5. Vacuum pressure combined electro-osmotic reinforcement device.

Figure 6. Bearing capacity test system of bucket foundation: (a) Horizontal loading test system;
(b) Vertical loading test system.



Appl. Sci. 2019, 9, 3778 5 of 15

2.3. Test Procedure

Figure 7 shows the installation process of the bucket foundation. The self-weight installation
reached a depth of 3 cm. Then, the suction was applied until the foundation cap reached the clay.
After installation was completed, the vacuum was applied to soil inside the bucket foundation,
and simultaneously, the positive and negative electrodes of the DC power supply were, respectively,
connected with the bucket wall and the copper tube. After soil reinforcement was completed, the soil
in the bucket was subjected to a vane shear test and a moisture content test.

Table 2 shows all the test conditions in this study. T1 and T2 are the vacuum preloading tests.
In T2, the electrodes were installed in the bucket without voltage. In T3, T4, T5 and T6 the vacuum
pressure is combined with electroosmosis reinforcement, with a voltage of 3.75 V in T3, T4 and T5,
and a voltage 20 V in T6. In T3 and T6, the bucket wall was used as an anode, and the bucket wall was
used is a cathode in T4. The positive and negative poles of the power supply are switched every 6 h
in T5.

Figure 7. Installation of bucket foundation: (a) Self-weight installation; (b) Suction installation.

Table 2. Test conditions.

Test Nos. Vacuum
Loading (kPa) Voltage (V) Reinforcement

Time (h)
Bucket Wall

Electrode
Copper Rod

Electrode

T1 60 0 70 —— No
T2 60 0 70 —— Yes
T3 60 3.75 70 Anode Yes
T4 60 3.75 27 Cathode Yes
T5 60 3.75 70 A↔ C * Yes
T6 60 20 70 Anode Yes

TV1 —— —— —— —— ——
TH1 —— —— —— —— ——
TV2 60 20 70 Anode Yes
TH2 60 20 70 Anode Yes

* A↔ C means electrode exchange during the test.

3. Results and Discussion

3.1. Effects of Foundation Settlement and Displacement during Soil Improvement

Figure 8 illustrates the relationship between bucket settlement and water discharge with time
during the reinforcement tests. Table 3 shows the foundation settlement and drainage quality under
different working conditions. In T1, T2, T3, T5, and T6, water discharge rate decreases with increasing
reinforcement time. In T4, the water in the soil is collected using electroosmosis. After the soil is
strengthened for approximately 12 h, percolation channels are formed on both sides of the tube wall,
and the pumping volume increases rapidly. After 12 h of foundation reinforcement, the foundation
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reached a maximum settlement displacement of 20 mm. The through-flow passage was created due to
the contact surface between the bucket wall and the internal and external soils. The pumping amount
subsequently increased linearly with the reinforcement time, and the water discharge weight reached
15 kg at 25 h. The test was stopped after 27 h of operation. Based on the cumulative pumping volume
of the first 2.5 h of reinforcement, the drainage quality of T4 reached a maximum of 0.924 kg, and the
foundation settlement was 13.599 mm. This is primarily due to the larger surface area of the bucket wall
enhancing the electro-osmotic effect compared to the copper tube anode. The moisture content of the
soil inside the bucket foundation is large in the initial stage of reinforcement; hence, the reinforcement
effect in T4 is best in the initial stage of reinforcement. The reinforcement effect in T1 is the weakest,
with a drainage quality and foundation settlement of only 0.388 kg and 2.942 mm, respectively. After
10 h, the reinforcement effect in T6 is the best. Also, the maximum drainage quality in T6 is 1.411 kg,
and the maximum settlement of foundation is 20.740 mm, which is primarily due to the large driving
voltage. When reinforcement time reaches 50 h, the drainage quality in T6 reaches 5.646 kg, and the
foundation settlement is up to 31.412 mm. The foundation settlement in T6 is 1.79 times that in
T3, and the weight of water discharge in T6 is 1.80 times that in T3. Therefore, during vacuum
piezoelectric infiltration strengthening of the bucket foundation, increasing the electro-osmotic voltage
can effectively improve soil consolidation. Furthermore, the T3 foundation settlement is 1.67 times
and 1.49 times that in T1 and T2, respectively, and the drainage quality is 1.76 times and 1.53 times
that in T1 and T2, respectively. Test results show that the vacuum combined with electroosmosis
reinforcement can effectively improve the consolidation rate of the soil inside the foundation compared
to the vacuum only preloading method.

Figure 8. Foundation settlement and water discharge versus reinforcement time: (a) Test T1; (b) Test
T2; (c) Test T3; (d) Test T4; (e) Test T5; (f) Test T6.
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Table 3. Settlement and water discharge of foundation at different reinforcement time.

Test Nos
2.5 h 10 h 50 h

Settlement
(mm)

Water
Discharge (kg)

Settlement
(mm)

Water
Discharge (kg)

Settlement
(mm)

Water
Discharge (kg)

T1 2.942 0.388 6.941 0.782 15.659 1.786
T2 5.471 0.454 10.506 0.922 17.522 2.054
T3 8.614 0.796 14.133 1.339 26.189 * 3.143 *
T4 13.599 0.924 18.105 1.410 - -
T5 9.150 0.471 13.247 0.947 21.813 2.158
T6 11.864 0.706 20.740 1.411 31.412 5.646

* The soil improvement time is 48.7 h.

3.2. Effect of Pore Water Pressure during Soil Reinforcement

Figure 9 shows the relationship between the excess pore water pressures PP1, PP2, and PP3 and
the vacuum load P for the bucket during the reinforcement process. The negative pressure beneath the
bucket foundation top during the reinforcement process is approximately −50 kPa due to vacuum
load loss. As shown in Figure 10, pore water pressure increases with elapsed time. PP2 and PP3 are
less than −5 kPa for all tests, except T5. PP2 near the top of the foundation is −1 to −2 kPa higher
than PP3. The maximum PP3 in T5 is −18 kPa, and the maximum PP2 and PP3 are −20 kPa and
−18 kPa, respectively.

Compared with T1, PP1 increased by 10 kPa, and PP2 and PP3 increased by −1.5 kPa after 60 h
of soil reinforcement in T2 with an additional electrode. The electrode arrangement increases the
longitudinal drainage channel within the soil in the bucket, promoting the transmission of the negative
pressure throughout the soil, which contributes to soil reinforcement inside the foundation. Compared
with T2, PP2 and PP3 increased by −2 kPa and −10 kPa in T3 and T5 after 60 h of reinforcement,
respectively. This is primarily due to the pore water in the bucket moving from the anode to the cathode
under the action of electroosmosis such that the soil in the bucket generates an electric hydraulic
gradient in the horizontal direction, which is superimposed on the negative vertical pressure on the
foundation and increases the pore water pressure.

In T4, due to the formation of through-flow passages on both sides of the bucket wall, PP2 and
PP3 in the soil are only 50% of PP2 and PP3 in T3 after 24 h of reinforcement. In T6, electrolyzed water
was present inside the bucket foundation, and the moisture content rapidly decreased, forming an
impervious water-repellent layer; therefore, PP2 and PP3 were close to 0 kPa at the end of T6.

Figure 9. Cont.
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Figure 9. Pore pressure, vacuum load versus time: (a) Test T1; (b) Test T2; (c) Test T3; (d) Test T4;
(e) Test T5; (f) Test T6.

3.3. Effects of Shear Strength and Soil Moisture Content before and after Soil Reinforcement

Figure 10 shows the photos of the soil change after the soil reinforcement, and Figure 11 shows
the undrained shear strength of the soil in T1-T6. Su’ means the undrained shear strength of the soil
before reinforcement, and Su5, Su10, and Su15 indicate the undrained shear strength of the soil at 5 cm,
10 cm, and 15 cm from the wall of the bucket wall after reinforcement, respectively.

Figure 10. Photographs showing the soil change inside the bucket foundation: (a) Test T1; (b) Test T6.

In T1 and T2, an ~2 cm thick crust soil was found under the bucket foundation (Figure 10a).
The undrained shear strength of the crust soil was 6–8 kPa, and the water content was approximately
38%. The generation of the crust soil hinders the downward transfer of the negative pressure, restricting
any change in shear strength of the soil under the crust. At a depth of 5 cm, the undrained shear
strength of the soil is the same as before the reinforcement, and the moisture content of the soil is
reduced by 10%. In T2, the electrode increases the vertical negative pressure transmission channel in
the soil, and soil reinforcement strength in the horizontal direction is uneven. The undrained shear
strength Su at 5 cm and 10 cm from the wall of the bucket increased by 1 kPa and 2 kPa, respectively.
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The undrained shear strength of the surface soil is 10 kPa in T3 and T5 and 8 kPa in T4. At a depth
of 10 cm in the bucket, the undrained shear strength is 4 kPa in T3 and T5 and approximately 3 kPa in
T4. The undrained shear strength of T3 and T5 is about 1.67 times the height of the bucket wall.

Figure 11. Undrained shear strength with soil depth for T1–T6: (a) Test T1; (b) Test T2; (c) Test T3;
(d) Test T4; (e) Test T5; (f) Test T6.

In T6, the undrained shear strength of the soil is 21.5 kPa, which is approximately 20 times
the shear strength before reinforcement, and the reinforcement depth is approximately 4 times of
the foundation height. At 10 cm deep, Su5 and Su10 of the soil in the bucket are 12 kPa and 18 kPa,
respectively, which are 3 times and 4.5 times the corresponding shear strengths in T3. Su10 is about 3
kPa greater than Su5. The soil near the cathode has the highest undrained shear strength. After the test,
the soil in the bucket is in a hard plastic state and is wrapped tightly around the cathode (Figure 10b).

Figure 12 shows the change in moisture content with soil depth, where w’, w5, w10, and w15,
respectively indicate the moisture content of the soil before reinforcement, at 5 cm, 10 cm, and 15 cm
from the bucket wall after reinforcement. The soil has a moisture content of approximately 50% before
reinforcement and a moisture content of approximately 55% in the surface soil. In T1-T5, the moisture
content at 5 cm deep after soil reinforcement decreases to 40%, and the soil moisture content is about
50% at 20 cm deep, which is the same as soil without reinforcement. Due to the hard soil in the upper
part of T6, moisture content was only measured up to 20 cm deep, and the soil moisture content was
approximately 38%. Therefore, increasing the driving voltage can effectively decrease moisture content
and increase the uniformity of the soil reinforcement in the vertical direction.

Figure 12. Cont.
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Figure 12. Changes of moisture content with soil depth for T1–T6: (a) Test T1; (b) Test T2; (c) Test T3;
(d) Test T4; (e) Test T5; (f) Test T6.

In this study, the vacuum-electroosmosis reinforcement tests of the bucket foundation under
atmospheric conditions were carried out. The vacuum load was the atmospheric pressure difference
between the top and bottom top lid, therefore, the maximum vacuum load applied was −100 kPa.
Furthermore, the situ effects with high confining pressure under the water will be occurred, and the
high water level will promote the vacuum load. The under-pressure of the top lid will be increased
with the increased water depth. For example, it could create a gradient of −200 kPa (−100 kPa is
initial pore water pressure and extra −100 kPa is the cavitation limit) at 10 m depth. Therefore, the soil
reinforcement will be more efficacious.

In actual foundation of the offshore wind turbine. A cathode hole can be installed on the top
lid of the bucket foundation, and the hole can be sealed during the installation and the vacuum
electroosmosis soil reinforcement. After the installation of the bucket foundation, the electrokinetic
geosynthetics (EKG) will be inserted through the cathode hole, which is used as cathode, and then
seal the cathode hole. The bucket wall will be connected with positive pole of the DC power, and the
EKG will be connected with the negative pole of the DC power. Then the vacuum preloading will be
applied through the pumping hole. Therefore, the soil inside the bucket foundation will be reinforced.
The voltage gradient applied with 1.3 V/cm will be more efficacious than 0.25 V/cm, and the bucket
wall should be used as anode during the reinforcement.

4. Bucket Foundation Bearing Capacity before and after Soil Reinforcement

The reinforcement method of the soil employed in this study is the same as in T6. After soil
reinforcement, the horizontal and vertical bearing capacities of the bucket foundation were measured.

4.1. Influence of Soil Reinforcement on Bucket Foundation Vertical Bearing Capacity

Under a vertical load, the bucket foundation experiences general shear failure with significant
soil heave around the foundation (Figure 13). In this test, the vertical load corresponding to a vertical
displacement of 0.07 D is used as the vertical bearing capacity of the bucket foundation, which gives
a soil vertical bearing capacity before and after reinforcement of 675 N and 2085 N, respectively.
The vertical bearing capacity increased by 2.1 times after reinforcement. The vertical load-displacement
curve can be divided into three stages, including the compression stage I, shear stage II, and heave
stage III (Figure 14). In the compression phase I, the load-displacement curve is approximately straight
during elastic deformation, and the stiffness of the vertical load is 0.130 MN/m without reinforcement,
and 0.423 MN/m after reinforcement. The vertical bearing stiffness of the foundation after reinforcement
is 3.25 times that of the unreinforced soil. In the shear stage II, the load-displacement curve is nonlinear,
and shear occurs at the bottom of the foundation. Test results show that the vertical displacement in the
shear stage is approximately 12 mm before reinforcement and increases to 17.5 mm after reinforcement.
In the heave stage III, an incremental load increase will cause a large foundation settlement. In this
stage, the vertical load growth rate is 6.23 kN/m for soil without reinforcement and 9.40 kN/m for
reinforced soil. The vertical bearing capacity and stability of the bucket foundation as well as soil
stiffness are significantly improved after vacuum-electro-osmotic reinforcement.
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Figure 13. Failure mode of vertical load.

Figure 14. Vertical load versus displacement.

4.2. Influence of Soil Reinforcement on Bucket Foundation Horizontal Bearing Capacity

The bucket foundation undergoes forward deflection under a horizontal load, and a gap
was present on the back side of the foundation after soil reinforcement in the bucket (Figure 15).
The horizontal load corresponding to the horizontal displacement of the foundation is determined
by a horizontal displacement of 0.05 D, therefore, the horizontal bearing capacity of the test before
and after reinforcement was 47.1 N and 184 N, respectively (Figure 16). The bearing capacity of
the soil was increased by 2.9 times. The horizontal load displacement curve can be divided into
three stages, including the elastic stage, elastoplastic stage, and plastic failure stage (Figure 16).
The load-displacement curve is approximately linear in the elastic stage. The stiffness of the horizontal
load before and after soil reinforcement is 18.35 kN/m and 14 kN/m, respectively, and the elastic stage
has displacements of 21 mm and 1.5 mm, respectively. The final horizontal resistance is 174.4 N and
21 N, respectively, and the horizontal resistance of the bucket after the elastic stage is 8.3 times that of
the non-reinforced condition. In the elastoplastic stage, the soil plastic deformation load displacement
curve is nonlinear. When the soil in the bucket is reinforced, the soil shear stress gradually reaches its
failure strength, and the soil enters a plastic limit equilibrium state. In the plastic failure stage, shear
failure of the soil occurs after reinforcement, and the resistance provided by the soil plastic deformation
outside the bucket is much less than the horizontal resistance provided by the reinforced soil within the
bucket, which significantly reduces the horizontal bearing capacity. However, the horizontal resistance
without soil reinforcement is increased by the soil plastic deformation, but the large deformation of the
foundation does not meet the design criteria.
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Figure 15. Failure mode of horizontal load.

Figure 16. Horizontal load versus displacement.

4.3. Influence of Soil Reinforcement on Rotation Centers

Figure 17 shows the relationship between the rotation point height and bucket foundation
horizontal displacement before and after the soil reinforcement. Results indicate that the center of
rotation is the highest when the horizontal displacement is less than 5 mm, and the bucket foundation
rotation height increases with increasing horizontal displacement, after which the height of rotation
point gradually decreases. When the horizontal displacement is 15 mm, the height of the center of
rotation is 2 mm on the mud surface and 10 mm below the mud surface before and after reinforcement,
respectively. After soil reinforcement, the passive earth pressure in the passive zone provides greater
resistance for the soil reinforcement, therefore, the height of the rotation center after soil reinforcement
is significantly lower than that before soil reinforcement.

Figure 17. Rotation center height versus horizontal displacement: (a) TH1; (b) TH2.

5. Conclusions

The influence of vacuum pressure, the electrodes, and electrification mode on the strengthening of
soil in a bucket foundation was examined using model tests of vacuum electroosmosis reinforcement.
The effects of reinforcement on foundation settlement, water discharge, and undrained shear strength
were evaluated. Finally, model tests on bearing capacity of the bucket foundation before and after soil
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reinforcement were carried out, and the effects of soil reinforcement on the bearing characteristics of
the bucket foundation were analyzed. The following conclusions are made:

(1) The vacuum electroosmosis reinforcement significantly improves soil strength inside the bucket
foundation when using the bucket wall as the anode, and undrained shear strength increases
with increasing the voltage. The undrained shear strength of the soil applied the voltage of 20 V is
3–4.5 times that applied the voltage of 3.75 V in this study. Furthermore, a higher driving voltage
can improve the uniformity of soil reinforcement in the vertical direction. The vertical bearing
stiffness of the reinforced foundation during soil compression is 3.25 times the bearing stiffness of
an unreinforced foundation.

(2) Using the bucket wall as the cathode causes a percolation passage along the bucket wall to form,
which decreases the reinforcement effect. The strengthening effect of the conversion electrode
method was weaker than using the bucket wall as the anode. In addition, increased internal
vertical drainage channel during the reinforcement can effectively improve vacuum pressure
transmission inside the soil, thereby improving the reinforcement.

(3) The horizontal and vertical bearing capacity of bucket foundation can be significantly increased
through vacuum electroosmosis reinforcement. General shear failure of the bucket foundation
occurs under vertical load. The vertical bearing stiffness of the reinforced foundation during soil
compression is 3.25 times the bearing stiffness of an unreinforced foundation, and the vertical
bearing capacity of the foundation increased by 2.1 times after soil reinforcement.

(4) The bucket foundation undergoes forward destructive failure when subjected to horizontal
load. In the elastic stage, the horizontal resistance of the reinforced foundation is 8.3 times
that of the unreinforced foundation, and the horizontal bearing capacity increased by 2.9 times.
Soil reinforcement improves the stiffness of the soil and the passive earth pressure; thus, the height
of the rotation center is significantly reduced after soil reinforcement.
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