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Abstract: Accurate PM2.5 concentration prediction is crucial for protecting public health and
improving air quality. As a popular deep learning model, deep belief network (DBN) for PM2.5
concentration prediction has received increasing attention due to its effectiveness. However, the
DBN structure parameters that have a significant impact on prediction accuracy and computation
time are hard to be determined. To address this issue, a modified grey wolf optimization (MGWO)
algorithm is proposed to optimize the DBN structure parameters containing number of hidden nodes,
learning rate, and momentum coefficient. The methodology modifies the basic grey wolf optimization
(GWO) algorithm using the nonlinear convergence and position update strategies, and then utilizes
the training error of the DBN to calculate the fitness function of the MGWO algorithm. Through the
multiple iterations, the optimal structure parameters are obtained, and a suitable predictor is finally
generated. The proposed prediction model is validated on a real application case. Compared with the
other prediction models, experimental results show that the proposed model has a simpler structure
but higher prediction accuracy.

Keywords: PM2.5; deep belief network; grey wolf optimization algorithm; concentration prediction;
air pollution

1. Introduction

With continuous advancement of industrialization and urbanization, artificial pollutants such
as industrial production and automobile exhaust are increasing. As a consequence, urban air quality
has gradually deteriorated, which seriously affects people’s living environment. PM2.5, as one of the
main pollutants in urban atmosphere has a small particle size, allowing staying in the atmosphere
for a long time. It can enter human body through breathing and then deposits in the alveoli, causing
great harm to human body [1]. Besides, PM2.5 has a negative impact on atmospheric visibility and
climate change [2]. Therefore, accurate PM2.5 concentration prediction is necessary for controlling air
pollution and protecting human health.

Early prediction methods of PM2.5 concentration are mostly simple regression analysis.
The regression equation between influencing factors and pollutant is established [3–5]. Subsequently,
back-propagation (BP) neural network [6,7], support vector machine (SVM) [8,9], and other machine
learning prediction methods are developed for the concentration prediction. However, these traditional
machine learning methods are hard to learn the intrinsic relationship between the influencing factors
and pollutant due to the shallow learning. In terms of prediction accuracy, it is not satisfactory.
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In 2006, Hinton et al. proposed a deep learning model, so-called deep belief network (DBN) [10].
It consists of multiple restricted Boltzmann machines (RBMs) and a back propagation (BP) neural
network, allowing processing large amounts of data. In recent decades, the DBN has been successfully
applied to fault diagnosis, wind speed forecasting, breast cancer classification, and so on [11–16].
Due to its advantage in prediction accuracy, in this paper, we introduce the DBN to conduct the
PM2.5 concentration prediction. However, how to determine the structure parameters is an important
issue when building a DBN network for PM2.5 concentration. The unsatisfactory network structure
parameters—which contain number of hidden nodes, learning rate, and momentum coefficient—will
reduce the prediction accuracy and increase the calculation time.

This paper aims to establish a prediction model with high accuracy for PM2.5 concentration. Main
contributions are as follows:

1. An advanced deep learning model, so-called DBN, is introduced to predict the PM2.5 concentration,
which establishes the close relationship between the influencing factors and pollutant.

2. A modified grey wolf optimization (MGWO) algorithm is proposed to determine the DBN
structure parameters, which improves the prediction accuracy of PM2.5 concentration and
reduces the computation time.

3. The proposed model is successfully applied to the PM2.5 concentration prediction of Baoding
city in China where air pollution is particularly serious.

The rest of this paper is organized as follows. Section 2 is devoted to the description of the
DBN and the MGWO algorithm, including how to construct their combination. Section 3 presents
the data source and the process of model establishment. Besides, several experiments have been
done to validate the effectiveness and superiority of the proposed prediction model. In Section 4,
the concluding remarks and future work are given.

2. PM2.5 Concentration Prediction Approach

2.1. Deep Belief Network

Deep belief network (DBN) is a probability generation model with multiple hidden layers.
It maximizes the generation probability of entire model by training weights between nodes. Figure 1
shows the basic structure of the DBN. It consists of several restricted Boltzmann machines (RBMs) and
a back propagation (BP) neural network. RBM, whose output is fed into the input of the next RBM,
is a two-layer neural network with directional connections. Thus, a multi-hidden layer structure can
be continuously superimposed.
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Figure 1. Basic structure of deep belief network (DBN). RBM: restricted Boltzmann machine. Figure 1. Basic structure of deep belief network (DBN). RBM: restricted Boltzmann machine.

Figure 2 shows the basic structure of the RBM. Wherein vi and hi are the visible and hidden nodes
of the input and output layers, respectively. The visible and hidden nodes are fully connected in both
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directions, while there is no connection between them. b and c denote the biases of the output and
input layers respectively, while w denotes the connection weight between the visible node and the
hidden node. Thus, the model parameter set θ consists of b, c, and w.
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Then, the joint probability distribution function of the visible and hidden nodes can be obtained
by the energy function.
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where Z(θ) is a partition function for normalization.
In the RBM, given the input vector v, the activation probability of the hidden node hi of the output

layer can be expressed as

P(hi = 1) =
1
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(4)

Given the output vector h, the activation probability of the visible node vi of the input layer can be
expressed as

P(vi = 1) =
1

1 + exp(−c j −
∑
j

h jw ji)
(5)

To obtain the optimal solution of the model, the negative log-likelihood function of training set D
is taken as the loss function and is given by

l(θ, D) = −
1
N

∑
v(i)∈D

log P(v(i)) (6)

where N is the size of the training set. After that, each weight is updated by the partial derivatives of
the loss function for parameter set θ, as follows.
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where <:>d denotes the statistical probability of the samples, and <:>m denotes the generation
probability of the model. Through adjusting the weights of each node, DBN makes the statistical
probability of the samples equal to the generation probability of the model as much as possible.

The training process of the DBN is divided into two stages. The first stage is to train each RBM
from bottom up. The second stage is to fine-tune the network parameters from top down. In the RBM,
the unbiased statistical probability of the samples can be calculated using Equations (4) and (5), while
the unbiased generation probability of the model is difficult to obtain. To address this issue, Hinton
proposed a contrast divergence algorithm [17] to obtain an approximation of the RBM distribution by
one Gibbs sampling. The process can be described mathematically as

wn ← λwn−1 + σ(
〈
vih j

〉0
−

〈
vih j

〉1
)

bn ← λbn−1 + σ(
〈
vh j

〉0
−

〈
h j

〉1
)

cn ← λcn−1 + σ(〈vi〉
0
− 〈vi〉

1)

 (8)

where σ and λ denote the learning rate and the momentum coefficient, respectively.

2.2. Modified Grey Wolf Optimization Algorithm

Grey wolf optimization (GWO) algorithm [18] simulates intelligent hunting behavior of grey
wolves. According to hierarchical mechanism, grey wolf population can be divided into chief wolf α,
deputy chief wolf β, ordinary wolf δ, and bottom wolf ω from high to low. When the wolves capture
prey, the other individuals are organized to besiege the prey under the leadership of wolf α. In the
GWO algorithm, the α, β, and δ denote the individuals with best fitness, the second best fitness and the
third best fitness respectively, while the remaining individuals are noted as ω. The position of the prey
is defined as the global optimal solution of optimization problem. Then, the GWO algorithm can be
briefly described as follows.

In a D-dimensional search space, suppose that the position of the ith grey wolf is Xi =

(X1
i , X2

i , · · · , Xd
i , · · · , XD

i ), where Xd
i denotes the position of the ith grey wolf in the dth dimension. First

of all, the grey wolf population surrounds the prey. The mathematical description of the process is

Xd
i (t + 1) = Xd

p(t) −Ad
i |C

d
i Xd

p(t) −Xd
i (t)| (9)

where t is the current number of iterations; Xp = (X1
p, X2

p, · · · , XD
p ) is the prey position;

Ad
i |C

d
i Xd

p(t) −Xd
i (t)| is the surrounding step; and the coefficient vectors Ad

i and Cd
i are given by

Ad
i = 2a · r1 − a (10)

Cd
i = 2r2 (11)

where r1 and r2 denote the random variables between [0, 1]; and a is the convergence factor. In the
evolution process of the algorithm, the convergence factor a changes with the current number of the
iterations and is given by

a = 2− 2
t
T

(12)

where T is the maximum number of the iterations. Obviously, the convergence factor a decreases
from 2 to 0 as t increases, which serves as the global search and local search for the adjustment of
the algorithm.
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Next, the grey wolf population hunts. The process, which is guided by α, β, and δ, aims to update
the all individual positions. The mathematical description is

Xd
i,α(t + 1) = Xd

α(t) −Ad
i,1|C

d
i,1Xd

α(t) −Xd
i (t)|

Xd
i,β(t + 1) = Xd

β(t) −Ad
i,2|C

d
i,2Xd

β(t) −Xd
i (t)|

Xd
i,δ(t + 1) = Xd

δ
(t) −Ad

i,3|C
d
i,3Xd

δ
(t) −Xd

i (t)|

 (13)

Xd
i (t + 1) =

Xd
i,α(t + 1) + Xd

i,β(t + 1) + Xd
i,δ(t + 1)

3
(14)

Finally, the grey wolves attack and capture the prey. The attack behavior is mainly achieved by
linearly decreasing the convergence factor a from 2 to 0. When |A| ≤ 1, the grey wolves concentrate on
attacking the prey, corresponding to the local search of the algorithm, while when |A| > 1, the grey
wolves disperse for the global search.

How to balance the local search and the global search is a very important problem often encountered
in swarm intelligence algorithm [19]. The local search ability can speed up the convergence of the
algorithm; while the global search can maintain the diversity of the population. For the GWO algorithm,
we find that the convergence process in practice is not linear. Instead, a nonlinear convergence factor
may be more appropriate for balancing the local search and the global search. Thus, a new nonlinear
convergence factor is proposed to replace the original linear convergence factor (Equation (12)) and is
given by

a = 2− 2
(
tan

(
πt
4T

))k
(15)

where k denotes the attenuation order of the nonlinear convergent factor and takes the integer between
0 and 5. The nonlinear convergence factor with larger k decreases more sharply. Figure 3 shows the
convergence factors with different values of k. At the beginning of the iterations, the attenuation degree
of a is reduced for constructing the global search. In the later stage of the iterations, the attenuation
degree of a is improved for constructing the local accurate search. In this paper, value of k is taken as 3.
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The original GWO algorithm updates the grey wolf positions through calculating the average
of the three best grey wolf positions. However, the update strategy ignores the characteristics of the
different solutions, which may achieve the final solution with lower accuracy. In this paper, we design
a weighting factor considering the contribution of each solution. Thus, Equation (14) is modified as

Xd
i (t + 1) = wαXd

i,α(t + 1) + wβXd
i,β(t + 1) + wδXd

i,δ(t + 1) (16)
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wi =
1/ fi

1/ fα + 1/ fβ + 1/ fδ
, i = α, β, δ (17)

where fα, fβ, and fδ denote the values of the fitness of α, β, and δ, respectively; and wα, wβ, and wδ
denote the values of the weighting factor of α, β, and δ, respectively.

2.3. DBN Structure Parameters Determined by MGWO Algorithm

Due to lack of the effective training algorithms for the DBN structure parameters containing
the number of hidden layers, the number of hidden nodes, the learning rate and the momentum
coefficient, the selection of structure parameters mainly relies on the manual experience or the multiple
experiments. To address this issue, the modified grey wolf optimization (MGWO) algorithm is
proposed to optimize the number of hidden layers, the number of hidden nodes, the learning rate, and
the momentum coefficient. Figure 4 shows the combination process of MGWO algorithm and DBN.
Wherein N grey wolves are selected and the DBN structure parameters are searched in parallel.
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The parameter optimization process of DBN based on MGWO algorithm is as follows.
Step 1: Initialize the grey wolf population. Each individual position consists of the number of

hidden layers l, the number of hidden nodes n, the learning rate σ, and the momentum coefficient λ.
Step 2: Learn the training samples and take the mean square error of prediction results using DBN

as the individual fitness function of MGWO algorithm.
Step 3: Calculate a according to Equation (15) and update A and C.
Step 4: Calculate w according to Equation (17) and update the individual position according to

Equations (13) and (16).
Step 5: Return the optimal individual position if the termination condition is reached; otherwise,

repeat the Step 3–Step 5.
The key to finding the global optimal solution in the MGWO algorithm is to determine the

termination condition and the fitness function [20,21]. In this paper, the training error of the DBN
is used to calculate the fitness function of the MGWO algorithm, and the training error threshold of
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the DBN is taken as the termination condition of the MGWO algorithm. The calculation steps of the
training error are as follows.

Step 1: If the fitness of the grey wolf of the tth generation is f (lt, nt, σt,λt), then the number of
hidden layers, the number of hidden nodes, the learning rate, and the momentum coefficient can be
noted as lt, nt, σt, and λt. Then, initialize the DBN parameter set θ consisting of weights and biases.

Step 2: Let v0 be the input sample vector, q be the iteration number of the DBN and e be the
training error of the DBN.

Step 3: Calculate the feature vectors h0, v0, h1, v1, · · · , hlt of the visible and hidden layers of the
RBM according to Equations (4) and (5).

Step 4: Get the joint probability distribution of the initial state and the update state of the RBM
according to Equation (7), and then substitute it into Equation (8) to modify the parameter set θ.

Step 5: Iterate the training set by q times with random batches, and repeat the Step 3–Step 4.
Step 6: Fine-tune the θ using the BP algorithm.
Step 7: Calculate the hlt using the θ and get the training error e = ‖hlt − v0‖.
Thus, the MGWO algorithm is associated with the DBN through the fitness function. The fitness

value can reflect the quality of DBN structure parameters, so as to generate a suitable predictor.

3. Real Application Case

3.1. Data Source

Baoding city is located in the central part of Hebei Province, China. The city with the land area of
22,190 square kilometers has four distinct seasons. In recent decades, air pollution has become more
and more serious in this city. Especially in winter, there is severe haze. In this paper, we take the
Baoding city as the research area and expect to establish a long-term and effective prediction model for
PM2.5 concentration.

For the research area, we got the three parts of data, including PM2.5, aerosol optical depth
(AOD) and meteorological parameters. Table 1 reports the related parameters of data source. The brief
description is as follows.

1. PM2.5 data—The PM2.5 data come from the monitoring station for air pollution particles in
Baoding city. Its unit is µg/m3. The data are sourced from the china meteorological website
(http://www.tianqihoubao.com/lishi/), and the selection duration is 2014–2016.

2. Aerosol optical depth—Aerosol is the general term of solid and liquid particulate matter suspended
in the atmosphere. AOD, one of the optical properties of atmospheric aerosols, is equal to the
integral of aerosol extinction coefficient from the ground to the top of the atmosphere. It is used
to characterize the degree of extinction caused by the aerosol scattering in cloudless atmospheric
vertical columns. AOD data are derived from MODIS aerosol products. MODIS offers two AOD
products with resolutions of 10 km and 3 km. Considering the small ground coverage in Baoding
city, the MOD04_3K product with the resolution of 3 km is chosen. The data are sourced from the
official website of MODIS products, and the selection duration is 2014–2016.

3. Meteorological parameters—Monitoring stations in Baoding city provide 9 meteorological
parameters, including average temperature, maximum temperature, minimum temperature, air
pressure, average relative humidity, total precipitation, average visibility, average wind speed,
and maximum continuous wind speed. The data are sourced from the global weather data
website (https://en.tutiempo.net/climate), and the selection duration is 2014–2016.

http://www.tianqihoubao.com/lishi/
https://en.tutiempo.net/climate
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Table 1. Related parameters of data source

Type Data Acquisition Time Resolution Source

Ground PM2.5 PM2.5 (µg/m3) 8:00 a.m. N/A Tianqihoubao website

Remote sensing data Terra MODISAOD products 8:00 a.m. 3 km NASA, MODIS

Meteorological data

Temperature/◦C

8:00 a.m. 0.125◦ Global climate data

Air pressure/hPa
Relative humidity/%

Precipitation/mm
visibility/km

Wind speed/(m/s)

3.2. Model Establishment and Verification

First of all, this paper obtains 1058 sets of available data. To make the data have same range and
promote the network convergence, the original sample data are normalized by (x− xmin)/(xmax − xmin),
where x, xmin, and xmax denote the original data, the minimum and maximum values of the original
data, respectively.

Next, the MGWO algorithm is utilized to search the number of the hidden nodes, the learning
rate and the momentum coefficient of the DBN in parallel. In the MGWO algorithm, the population
size is set to 20 and the maximum number of iterations is set to 50. The DBN network adopts a classic
four-layer structure, including an input layer, a first hidden layer (H1), a second hidden layer (H2), and
an output layer. In the DBN, the maximum number of RBM iterations is set to 50; the maximum number
of BP neural network iterations is set to 100; the training error threshold is set to 0.02. The analytic
space of the number of hidden layer nodes is set between 0 and 500, and the analytic spaces of the
learning rate and the momentum coefficient are set between 0 and 1.

Figure 5 shows the distribution of grey wolf population in the MGWO optimization process
for the hidden nodes. The grey wolf population is able to obtain the information about the solution
during the search process. Through the surrounding, hunting, and attacking operations, the grey wolf
population gradually gathers into the optimal solution area. In the experiment, the initial population of
the MGWO algorithm is randomly distributed in the analytic space. As the iteration increases, the grey
wolves approach the optimal solution step by step. After eight iterations, the MGWO algorithm finds
the optimal solution of the DBN, that is, the number of H1 nodes is 6, the number of H2 nodes is 5,
the learning rate is 0.077 and the momentum coefficient is 0.807.

The DBN with these searched parameters is used to learn the training samples. The establishment
process of the DBN can be divided into two steps. The first step is to train each RBM separately. This is
an unsupervised process, ensuring that feature information is preserved as much as possible when
feature vectors are mapped to different feature spaces. The second step is to fine-tune the weights and
biases of the network. The BP neural network takes the output feature vector of the RBM as its input
feature vector and trains the whole network in a supervised manner.

After the MGWO optimized DBN (MGWODBN) model is established, there are two ways to
verify the model, as follows:

1. MGWODBN predicts all trained data, and the linear fitting equation of the observed and predicted
values is obtained as y = 1.117x− 7.947, where y is the actual observed value; x is the predicted
value of the model. The root mean square error (RMSE) is 18.532 µg/m3, and the coefficient
of determination (R2) is 0.713. Figure 6a shows the verification results. It can be seen that the
sample points are roughly distributed on both sides of the diagonal line and are more aggregated,
indicating that the model has a better fitting effect.

2. Cross-validation—90% data are randomly selected to train the model, and the remaining 10%
data are used as the verification points. Repeated 10 experiments showed that the linear fitting
equation of the observed and predicted values is obtained as y = 1.200x− 11.710. The RMSE is
19.815 µg/m3, and the R2 is 0.677. Figure 6b shows the verification results. It can be seen that the
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sample points are roughly distributed on both sides of the diagonal line. The less sample points
deviate from the diagonal line, which satisfies the law of error distribution. These results show
that the verification results are good.
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Figure 5. Distribution of grey wolf population in the MGWO optimization process. (a) Initial population.
(b) The fourth-generation population. (c) The eighth-generation population.
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Figure 6. Verification results of the MGWODBN model. (a) Fitting of training data. (b) 10-fold
cross validation.

3.3. Compared with Other Prediction Models

The mean absolute error (MAE), the mean square error (MSE) and the R2 are popular indicators
for evaluating the prediction results [22–25]. Thus, we use the three indicators to evaluate the
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proposed prediction model. Here, two evaluation tasks are to done. The first is to evaluate the
optimization ability of the MGWO algorithm and the second is to evaluate the prediction accuracy of
the MGWDBDN model.

To verify the optimization ability of the MGWO algorithm, the particle swarm optimization
(PSO) [26], differential evolution (DE) [27] and basic GWO algorithms are used for comparison.
Considering the maximum optimization capability of each algorithm, each algorithm should achieve
the convergence. Thus, the population size and maximum number of iterations of all algorithms are
set to 20 and 50, respectively. In the PSO algorithm, the inertia weight is linearly reduced from 0.9 to
0.4 and the learning factor is set to 2.0. In the DE algorithm, the scaling factor and crossover probability
factor are set to 0.5 and 0.2, respectively.

Table 2 reports the optimization results of the PSO, DE, GWO, and MGWO algorithms.
The structure parameters are obtained by the optimization algorithms in the 1028 training samples,
while the MAE, MSE, and R2 are obtained by the calculation of prediction results of DBN with optimized
structure parameters in the 30 testing samples. The DBN optimized by the MGWO algorithm shows
superiority in the structure complexity, fitting accuracy, and optimization time. More specifically,
the MGWODBN model achieves 6 H1 nodes and 5 H2 nodes, which is more concise than the other
three models. Regardless of the MAE or MSE, the fitting error of the MGWODBN model is lower
than that of the other three models. For the R2, the MGWODBN model also reaches a higher value.
In particular, the optimization time of the MGWODBN model is 293.367 s, significantly lower than the
726.362 s of the PSODBN model and the 623.746 s of the DEDBN model. Compared with the GWODBN
model, the optimization time of the MGWODBN model is slight higher. These results indicate that the
MGWO algorithm has better optimization ability than the PSO, DE, and GWO algorithms. In addition,
the lower optimization time implies that the MGWO algorithm has a lower complexity.

Table 2. Structures of deep belief network (DBN) based on the optimization algorithms. MAE: mean
absolute error; MSE: mean square error; PSODBN: PSO optimized DBN; DEDBN: DE optimized DBN;
GWODBN: GWO optimized DBN; MGWODBN: MGWO optimized DBN.

Model Hidden
Nodes

Learning
Rate

Momentum
Coefficient

MAE
(µg/m3)

MSE
(µg2/m6) R2 Optimization

Time (s)

PSODBN 324 340 0.896 0.959 18.437 463.176 0.844 726.362
DEDBN 5 61 0.569 0.273 18.568 476.006 0.857 623.746

GWODBN 8 33 0.106 0.645 18.162 442.553 0.879 286.254
MGWODBN 6 5 0.077 0.807 17.604 410.266 0.884 293.367

The PSO algorithm performs parallel search by comparing the local extremum with the global
extremum. When the population iterates to a certain value, the fitting error will no longer decrease.
Thus, the PSO algorithm is easy to fall into the local optimum. The DE algorithm performs random
search through the population differences, but the differences within the late population will decrease,
resulting in slow convergence. Thus, the DE algorithm is also prone to falling into the local optimum.
However, the GWO algorithm simulates the intelligent hunting activities of a grey wolf population.
Through the surrounding, hunting, and attacking operations, it can search a good solution. In this
paper, the basic GWO algorithm is modified by using the nonlinear convergence and position update
strategies, so that the MGWO algorithm can jump out of the local optimum and get a better solution.

To verify the superiority of the MGWDBDN model in prediction performance, the genetic
algorithm optimized back propagation (GABP) neural network [28], differential evolution optimized
support vector machine (DESVM) [29], and random forest [30] models are used for comparison.
The prediction results of PM2.5 concentrations of 30 testing samples using the four models are shown
in Figure 7. It can be seen that the predicted curve of the MGWODBN model are closer to the actual
observed curve.

Table 3 reports the prediction errors of PM2.5 concentration using the four models. The R2 of the
MGWODBN model is 0.884, lower than the 0.708 of the GABP model, the 0.758 of the DESVM model
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and the 0.863 of the random forest model. This shows that the MGWODBN model can more essentially
reflect the relationship between the influencing factors and the PM2.5 concentration. In addition,
the MAE and MSE of the MGWODBN model are 17.604 µg/m3 and 410.266 µg2/m6 respectively, lower
than that of the other three models. These results indicate that the MGWODBN model outperforms
the GABP, DESVM, and random forest models.
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Table 3. Prediction errors of PM2.5 concentration using different models

Model MAE (µg/m3) MSE (µg2/m6) R2

GABP 20.318 551.859 0.708
DESVM 18.623 492.428 0.758

Random Forest 18.957 498.668 0.863
MGWODBN 17.604 410.266 0.884

4. Conclusions

In this work, a deep belief network (DBN) combined with modified grey wolf optimization
(MGWO) algorithm for PM2.5 concentration prediction is proposed. The proposed model is successfully
applied to the PM2.5 concentration prediction of Baoding city in China. Compared with the other
prediction models, the proposed model has higher prediction accuracy.

The use of DBN, which is an advanced deep learning model, is proposed to establish the close
relationship between the influencing factors and pollutant. The use of MGWO algorithm, which is an
advanced optimization algorithm, is proposed to determine the DBN structure parameters. The basic
grey wolf optimization (GWO) algorithm is modified by using the nonlinear convergence and position
update strategies, so that the MGWO algorithm can get a better solution.

Considering that the selection of DBN structure parameters still has no theoretical results, this
paper only obtains a possible optimal solution from the perspective of optimization. Future work will
focus on the selection theory of DBN structure parameters to further improve the prediction accuracy
of PM2.5 concentration.
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