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Abstract: In this paper, we propose a new method for static mesoscale sample diagnosis using
three-dimensional radiography with high-energy electron radiography (HEER). The principle of
three-dimensional high-energy electron radiography (TDHEER) is elucidated, and the feasibility of
this method is confirmed by start-to-end simulation results. TDHEER is realized by combining HEER
with the three-dimensional reconstruction method, by which more information about the samples
can be attained, especially regarding the samples’ internal structures. With our study, the internal
structures and the three-dimensional positions of the spherical sample are determined with a ~3 µm
resolution. We believe that this new method enhances the HEER diagnostic capability and extends its
application potential in mesoscale sciences.

Keywords: high-energy electron radiography; three-dimensional high-energy electron radiography;
three-dimensional reconstruction; static mesoscale sample diagnosis; mesoscale sciences

1. Introduction

High-energy electron radiography (HEER) was proposed as a high spatial and temporal resolution
probe tool for high-energy-density physics (HEDP) and inertial confinement fusion (ICF) experimental
diagnostic studies [1,2]. In recent years, HEER technology was well developed through both simulations
and experiments [3–8]. Radiography can be performed with a ps pulse-width electron beam, achieving
a spatial resolution close to 1 µm in an experiment with a large magnification imaging lens [9].
HEER takes advantage of a high-energy electron beam with powerful penetration, which can be used
for thicker samples (tens of microns to millimeters) diagnostics, short period (ps–ns) bunch train time
structures for ultra-fast dynamic process diagnostics and point to point imaging with a magnetic lens to
achieve high spatial resolution. The high-energy electron beam for HEER is generated by a high-energy
electron linear accelerator based on a photocathode injector.

Concerning the mesoscale sciences, the spatial scale of the samples ranges from tens of µm to mm
and the time scale from ps to ns, which is the bridge between microscale and macroscale. Currently,
in mesoscale sciences, HEDP and ICF research are important topics and the focus of intense research
efforts. The diagnostic method for mesoscale sciences, especially for material studies, was figured out
to be the most important part and will present a substantial challenge in the future [10]. Some research
has shown that the radiography capability and characteristics of HEER are suitable candidates for
mesoscale sciences diagnostic studies. However, with normal HEER, we can only get a two-dimensional
transverse projection of the samples and it is very difficult to get the exact details of the internal
structures of samples.

Appl. Sci. 2019, 9, 3764; doi:10.3390/app9183764 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-6237-1358
http://www.mdpi.com/2076-3417/9/18/3764?type=check_update&version=1
http://dx.doi.org/10.3390/app9183764
http://www.mdpi.com/journal/applsci


Appl. Sci. 2019, 9, 3764 2 of 9

Here, the three-dimensional high-energy electron radiography (TDHEER) method is put forward
for the detailed diagnosis of static mesoscale samples. To our knowledge, this is the first time that
the TDHEER method has been proposed, and its validity and usage in static mesoscale samples
fully three-dimensional diagnostics is confirmed by start-to-end simulation studies. Detailed studies
are shown below. In Section 2, the TDHEER method is introduced and its principle is explained.
In Section 3, we present detailed start-to-end simulation studies of TDHEER with dedicated samples
to evaluate its feasibility and capability. In Section 4, we report the conclusions and also present
a future plan for TDHEER development, which would provide a powerful diagnostic tool for future
mesoscale sciences.

2. The TDHEER Method and General Layout

HEER benefits from the magnetic lens optics, which improves the spatial resolution dramatically
compared to projection radiography. The principle of HEER is shown in Figure 1: The electron beams
pass through the target and then are imaged point to point from the target plane to the image plane
by the imaging lens. There are two primary requirements of the imaging lens system. First, the lens
must provide point-to-point focus from the object to the image. Second, it must form a Fourier plane,
where particles are radially sorted by the magnitude of the scattering within the object. With this
correlation, particles scattered to large angles by multiple Coulomb scattering can be removed through
collimation at the Fourier plane. The remaining parameters of a particular imaging lens system design
are determined by the radiographic applications. The beam energy must be high enough to penetrate
the areal density of the object to be radiographed, and the aperture of the lens system must be chosen
to provide sufficient angular acceptance throughout the required field of view. An additional strong
design requirement is the resolution of the radiography system. This resolution is typically dominated
by chromatic aberrations due to the energy spread of the injected beam in combination with the spread
of energy loss through the object due to areal density variations of the object.
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Figure 1. The sketch map of high-energy electron radiography (HEER) and three-dimensional
high-energy electron radiography (TDHEER) with a parallel beam.

The TDHEER is combined with HEER and a tomography reconstruction method. Its principle
is also shown in Figure 1. The sample is placed on a rotatable platform, which can be rotated
around the y-axis (±90 degrees) with a step of 1 degree and imaged with HEER at the detectors
for each rotation angle. Afterward, a total of 180 images of the sample are collected with different
rotation angles. Then we use the three-dimensional reconstruction algorithms [11] to get the sample’s
three-dimensional slice images of each axis. From these slices, we can get the detailed internal structures
of the sample. The method of TDHEER is studied and confirmed by start-to-end simulation. The electron
beam parameters used in the simulation are the following: Beam energy 50 MeV, energy spread 0.1%,
normalized emittance 1.0 mm mrad, bunch charge 1 nC, bunch length rms 10 ps, and parallel beam on
the samples, as shown in Figure 1.
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3. The Start-to-End Simulation Studies of TDHEER Method

3.1. The Imaging Lens Design

The imaging lens is designed with a magnification of 1 using eight quadrupoles. The designed
maximum field gradient of the quadrupoles is 12 T/m, the inner diameter is 20 mm, and the length
is 10 cm. The imaging lens structure is optimized using COSY INFINITY9.1 [12] by tuning the
quadrupoles field to achieve a magnification of 1 (R11 = R33 = −1) and point to point imaging
(R12 = R34 = 0). The designed imaging lens parameters are shown in Table 1. All quadrupoles have
the same structural design for manufacturing convenience. The electron beam trajectory is shown in
Figure 2 with optimized quadrupoles field and magnification factor R11 = R33 = −1, also showing
a good point-to-point imaging performance both in the x Figure 2a and y Figure 2b plane. The chromatic
lengths in the x-plane and y-plane are 3.05 and 3.24 m, respectively. With this imaging lens, the T116
and T336 are zero; therefore, the matched beam should be parallel, shown in Figure 1. More details of
the beam matching requirement for HEER are referred to in [5].

Table 1. The optimized parameters for imaging lens structure.

Quads Flux Density at
Pole Tip B (T)

Transport Matrix
Element

Optimized Transport
Matrix Element Values Drift Drift Distance

(m)

Q1 0.036593 R11 = R33 −1.0 L1 0.4

Q2 −0.03382 R12 = R34 [m/rad] 0 L2 0.1

Q3 −0.03382 T116, T126 [m/rad] 0, 3.05279 L3 0.8

Q4 0.036593 T336, T346 [m/rad] 0, 3.24576 L4 0.4
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3.2. The HEER Simulation Studies with Rotating Sample

The important interaction processes between electrons and samples are multiple Coulomb
scattering (MCS), ionization energy loss, radiative energy loss, and bremsstrahlung. The MCS,
ionization energy loss, and straggling processes in electron radiography are very similar to those in
proton radiography, an analogous process and well-understood radiography technique used around the
world for thick object imaging. However, bremsstrahlung interactions are dominant in the formation
of electron radiography when the electron beam energy is above the critical energy. The scattering
angle distributions and the energy spectrum of the electron beam after passing through the target
are important considerations for HEER [7]. Here we use the electron gamma shower (EGS) code [13]
for the electron beam and sample interaction studies and PARMELA code [14] for particles tracking.
EGS is a general-purpose package for the Monte Carlo simulation of the coupled transport of electrons
and photons in an arbitrary geometry for particles with energies from a few keV up to several
hundreds of GeV.

The sample used in the simulation is specially designed for internal structures diagnostics.
The sample is a spherical aluminum ball with radius 0.01 cm and a small spherical hollow ball with
radius 0.003 cm placed inner at a defined position. The sample parameters are shown in Table 2 and
the structures are shown in Figure 2a, the red one is aluminum and the blue one is hollow. With HEER,
the samples would be reverse imaged both in the x and y plane on the detectors, which is shown in
Figure 2b, where the green ball (two images) is the reverse image of the blue object ball (one object).

Table 2. The spherical sample parameters used in simulation.

Sample/Material X (cm) Y (cm) Z (cm) R (cm)

Red and big/aluminum 0 0 0 0.01
Blue and small/hollow −0.004 0.005 0 0.003

3.3. Three-Dimensional Reconstruction and Results Analysis

The three-dimensional reconstruction (TDR) method has been well developed in recent decades.
Many algorithms, such as FBP (filter back projection) [15], ART (algebraic reconstruction technique),
SIRT (simultaneous iterative reconstruction technique), SART (simultaneous algebraic reconstruction
technique) [11], MEM (maximum entropy method) [16], have been developed and applied in many
fields for solving different problems. The TDR of the mass density of an object from its two-dimensional
line projection is the core of electron tomography [17,18]. Therefore, electron tomography can be seen
as a problem of inverting projection transformation to recover the distribution of the mass density of
the original object. Various algorithms have been proposed to cope with the practical difficulties of this
inversion problem and they differ widely in terms of their robustness with respect to noise in the data,
completeness of the collected projection data set, errors in projections’ orientation parameters, and the
ability to efficiently handle large data sets. Our TDHEER method is similar to electron tomography but
with an inverse image due to the imaging lens, so the TDR algorithm used in the electron tomography
is also suitable for TDHEER. The FBP algorithm is selected in our TDHEER studies due to its
computational timesaving and ease of implementation. The FBP is an analytic reconstruction algorithm
designed to overcome the limitations of conventional back-projection. It applies a convolution filter to
remove blurring. Here we use “Ram-Lak” filter in the TDHEER reconstruction [19].

The sample used for TDHEER studies is shown in Figure 3a. As in the HEER imaging process
shown in Figure 1, the sample radiography images are collected of each rotation angle from 0 to
179 degree. They were used for 3D reconstruction studies. The reconstruction results with the FBP
algorithm are shown in Figure 4, where (a–c) are the reconstructed slice images along the axis x from x−
to x+; (d–f) are the reconstructed slice images along the axis y from y+ to y−; (g–i) are the reconstructed
slice images along the axis z from z− to z+. Depending on the slices’ numbers and directions, the x,
y, and z positions of the inside ball can be attained. For each of the three axes, the thickness and the
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total number of slices are 0.03 cm and 100, respectively. Therefore, the thickness of each slice is 3 µm.
The inner ball in each slice image along the three axes is shown from invisibility to visibility, and then
to invisibility again, by which the inner ball center position of each axis is determined, shown in Table 3.
The errors of the inner ball center positions are due to the slice number uncertainty of the first and last
slice images with the inner ball. The reconstruction results are consistent with the original settings in
the simulation, and they confirm the validation of the TDHEER, from which the internal structure of
the samples can be exactly determined.
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in simulation.

Table 3. The reconstructed inner ball x, y, and z positions compared with original settings.

Inner Ball/Material X (cm) Y (cm) Z (cm)

Hollow (original settings) −0.004 0.005 0
Hollow (reconstruction results) 0.0042 ± 0.0003 −0.0054 ± 0.0003 0 ± 0.0003
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3.4. TDHEER Studies for Complicated Samples

In order to further investigate the capability of the TDHEER, a more complicated spherical sample
has four small balls of different materials inside, which is shown in Figure 5a. The positions and
materials of each ball are shown in Table 4. In Figure 4b, the sample reverse projection both in x and y
plane is shown, which is equivalent to the HEER image with 0-degree rotation angle. It is consistent
with the HEER imaging with 0-degree rotation angle, shown in Figure 5c. From Figure 5c, there is
an obvious problem, where the inner small balls number 3 and 5 are overlapping and it is difficult to
distinguish from the HEER image.
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Table 4. The positions and material parameters of the complicated spherical sample with four small
balls inside.

Sample Number/Material X (cm) Y (cm) Z (cm) R (cm)

1/aluminum 0 0 0 0.01
2/hollow 0.005 0.006 0 0.002
3/hollow 0 −0.004 −0.005 0.003

4/tungsten −0.004 0.005 0 0.003
5/tungsten 0 −0.006 0.005 0.002

The TDR algorithm FBP was also used for the complicated sample to get the three-dimensional
radiography. We also tried to determine the inner small balls exact three-dimensional positions.
The reconstruction slice images along the z-axis are shown in Figure 6a–d. We can distinguish the
inner four small balls’ z positions and solve the normal HEER problem, of which the small inner balls
number 3 and 5 are overlapping as shown in Figure 5c. We also estimated the inner four small balls
positions along the x, y, and z-axis and get the same results as shown in Table 3, which is not shown
here. Therefore, the TDHEER capability is confirmed from complicated sample radiography studies.
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4. Conclusions and Discussions

A new three-dimensional high-energy electron radiography method was proposed for mesoscale
sciences diagnostics. The feasibility and validation of TDHEER are testified by start-to-end simulation
studies. The TDHEER method is a combination of HEER and a three-dimensional reconstruction
algorithm. With the TDHEER method, the diagnostics capability of HEER is enhanced greatly.
The simulation results show that the internal structures of the sample can be attained from slice to slice
along each axis. The inner flaw or structure of the sample can be exactly determined, and the spatial
resolution can reach µm, which is very useful for mesoscale sciences studies.
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For further TDHEER development, some possible methods were investigated. First of all, TDHEER
experimental studies will be undertaken in the near future, using the same process as shown in the
simulation studies. The TDHEER experiment has been scheduled and will be performed at the Lanzhou
HEER experimental platform [20]. Secondly, the imaging lens used in this paper has a magnification
factor of 1, which restrains the HEER spatial resolution to several microns. For further studies,
a high-magnification imaging lens should be used, such as 10 to 100, which will help and improve
the spatial resolution to sub µm [9] accordingly, improving the TDHEER resolution. Thirdly, here we
used the FBP reconstruction algorithm with a total of 180 HEER images, in which data recording and
images analysis took a long time. Therefore, we suggest that other three-dimensional reconstruction
algorithms are used to achieve the three-dimensional reconstruction with fewer HEER images in less
time, for example, with a 5 or 10 degree step. Fourth, in this paper, we considered the static mesoscale
samples. We also considered TDHEER for the samples’ dynamic process diagnostics, for which we
cannot use rotating sample technology. However, we proposed three-orthogonal directions HEER with
three radiography electron beam lines from one accelerator [2,8]. Here, we propose the reconstruction of
the sample’s three-dimensional structures with even fewer HEER images and the development of a new
reconstruction algorithm [21] in the future. Furthermore, the electron beam energy can be selected from
tens of MeV to GeV to achieve high spatial resolution and image contrast depending on the sample
characteristics. In summary, we propose and demonstrate a new three-dimensional radiography
method with HEER, which is more powerful and suitable for mesoscale sciences diagnostic studies.

Author Contributions: Q.Z. and Y.M. have equal contributions, conceptualization, Q.Z. and Z.Z.; methodology,
Y.M.; software, Y.M, Y.Z. and Z.R.; validation, Q.Z., Y.M., and J.X.; writing—original draft preparation, Q.Z. and Y.M.;
writing—review and editing, S.C. and X.S.; project administration, Z.Z.; funding acquisition, Z.Z.

Funding: This research was funded by the National Natural Science Foundation of China, grant number 11435015,
the Ministry of Science and Technology of China 2016YFE0104900 and the Chinese Academy of Sciences 28Y740010.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gai, W.; Qiu, J.; Jing, C. Electron imaging system for untrafast diagnostics of HEDLP. In Proceedings of the SPIE
9211, Target Diagnostics Physics and Engineering for Inertial Confinement Fusion III, San Diego, CA, USA,
10 September 2014; p. 921104.

2. Zhao, Y.; Zhang, Z.; Gai, W.; Du, Y.; Cao, S.; Qiu, J.; Zhao, Q.; Cheng, R.; Zhou, X.; Ren, J.; et al. High
energy electron radiography scheme with high spatial and temporal resolution in three dimensions based on
a e-LINAC. Laser Part. Beams 2016, 34, 338–342. [CrossRef]

3. Merrill, F.; Harmon, F.; Hunt, A.; Mariam, F.; Morley, K.; Morris, C.; Saunders, A.; Schwartz, C. Electron
radiography. Nucl. Instrum. Methods Phys. Res. B 2007, 26, 382–386. [CrossRef]

4. Zhao, Q.; Cao, S.; Cheng, R.; Shen, X.; Zhao, Z.Z.Y.; Gai, W.; Du, Y. High Energy Electron Radiography
Experiment Research Based on Picosencond Pulse Width Bunch. In Proceedings of the LINAC2014, Geneva,
Switzerland, 31 August–5 September 2014; pp. 76–79.

5. Zhao, Q.; Cao, S.C.; Liu, M.; Shen, X.K.; Wang, Y.R.; Zong, Y.; Zhang, X.M.; Jing, Y.; Cheng, R.; Zhao, Y.T.; et al.
High energy electron radiography system design and simulation study of beam angle-position correlation
and aperture effect on the images. Nucl. Instrum. Methods Phys. Res. A 2016, 832, 144–151. [CrossRef]

6. Zhou, Z.; Du, Y.; Cao, S.; Zhang, Z.; Huang, W.; Chen, H.; Cheng, R.; Chi, Z.; Liu, M.; Su, X.; et al. Experiments
on bright field and dark field high energy electron imaging with thick target material. Phys. Rev. Accel. Beams
2018, 21, 074701. [CrossRef]

7. Zhao, Q.T.; Cao, S.C.; Cheng, R.; Du, Y.C.; Shen, X.K.; Wang, Y.R.; Xiao, J.H.; Zong, Y.; Zhu, Y.L.; Zhou, Y.W.; et al.
Generation of uniform transverse beam distributions for high-energy electron radiography. Laser Part. Beams
2018, 36, 313–322. [CrossRef]

8. Zhao, Q.T.; Cao, S.C.; Shen, X.K.; Wang, Y.R.; Zong, Y.; Xiao, J.H.; Zhu, Y.L.; Zhou, Y.W.; Liu, M.; Cheng, R.;
et al. Design and simulation study of ultra-fast beam bunches split for three orthogonal planes high-energy
electron dynamic radiography. Laser Part. Beams 2017, 35, 579–586. [CrossRef]

http://dx.doi.org/10.1017/S0263034616000124
http://dx.doi.org/10.1016/j.nimb.2007.04.127
http://dx.doi.org/10.1016/j.nima.2016.06.103
http://dx.doi.org/10.1103/PhysRevAccelBeams.21.074701
http://dx.doi.org/10.1017/S0263034618000265
http://dx.doi.org/10.1017/S0263034617000647


Appl. Sci. 2019, 9, 3764 9 of 9

9. Zhou, Z.; Fang, Y.; Chen, H.; Wu, Y.; Du, Y.; Yan, L.; Tang, C.; Huang, W. Demonstration of Single-Shot
High-Quality Cascaded High-Energy-Electron Radiography using Compact Imaging Lenses Based on
Permanent-Magnet Quadrupoles. Phys. Rev. Appl. 2019, 11, 034068. [CrossRef]

10. Hemminger, J.; Crabtree, G.; Sarrao, J. From Quanta to the Continuum: Opportunities for Mesoscale Science.
In A Report from the Basic Energy Sciences Advisory Committee; U.S. Department of Energy: Washington, DC,
USA, 2012.

11. Kak, A.C.; Slaney, M. Principles of Computerized Tomographic Imaging; IEEE Press: New York, NY, USA, 1999.
12. Berz, M.; Makino, K. COSY INFINITY 9.1 Beam Physics Manual; MSU Report MSUHEP 060804-Rev;

MSU: East Lansing, MI, USA, 2013.
13. EGS (Electron Gamma Shower). Available online: http://rcwww.kek.jp/research/egs/ (accessed on 22

August 2019).
14. Young, L.M. Parmela; LA-UR-96-1835; Los Alamos National Laboratory: Los Alamos, NM, USA, 23 May 2005.
15. Penczek, P.A. Fundamentals of three-dimensional reconstruction from projections. Methods Enzymol. 2010,

482, 1–33. [CrossRef] [PubMed]
16. Skilling, J.; Bryan, R.K. Maximum entropy image reconstruction: General algorithm. Mon. Not. R. Astron. Soc.

1984, 211, 111–124. [CrossRef]
17. Frank, J. Electron Tomography-Methods for Three-Dimensional Visualization of Structures in the Cell, 2nd ed.;

Springer: Berlin/Heidelberg, Germany, 2005.
18. Miao, J.; Ercius, P.; Billinge, S.J. Atomic electron tomography: 3D structures without crystals. Science 2016,

353, aaf2157. [CrossRef] [PubMed]
19. Zeng, G.L. Revisit of the Ramp Filter. IEEE Trans. Nucl. Sci. 2015, 62, 131–136. [CrossRef] [PubMed]
20. Zhu, Y.; Yuan, P.; Cao, S.; Liu, M.; Zong, Y.; Zhao, Q.; Zhang, J.; Shen, X.; Zhang, Z. Design and simulation of

a LINAC for high energy electron radiography Research. Nucl. Instrum. Methods Phys. Res. A 2018, 911,
74–78. [CrossRef]

21. Volegov, P.L.; Danly, C.R.; Merrill, F.E.; Simpson, R.; Wilde, C.H. On three-dimensional reconstruction of
a neutron/x-ray source from very few two dimensional Projections. J. Appl. Phys. 2015, 118, 205903. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1103/PhysRevApplied.11.034068
http://rcwww.kek.jp/research/egs/
http://dx.doi.org/10.1016/S0076-6879(10)82001-4
http://www.ncbi.nlm.nih.gov/pubmed/20888956
http://dx.doi.org/10.1093/mnras/211.1.111
http://dx.doi.org/10.1126/science.aaf2157
http://www.ncbi.nlm.nih.gov/pubmed/27708010
http://dx.doi.org/10.1109/TNS.2014.2363776
http://www.ncbi.nlm.nih.gov/pubmed/25729091
http://dx.doi.org/10.1016/j.nima.2018.09.133
http://dx.doi.org/10.1063/1.4936319
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The TDHEER Method and General Layout 
	The Start-to-End Simulation Studies of TDHEER Method 
	The Imaging Lens Design 
	The HEER Simulation Studies with Rotating Sample 
	Three-Dimensional Reconstruction and Results Analysis 
	TDHEER Studies for Complicated Samples 

	Conclusions and Discussions 
	References

