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Abstract: All-in-focused image combination is a fusion technique used to acquire related data from
a set of focused images at different depth levels, which suggests that one can determine objects in
the foreground and background regions. When attempting to reconstruct an all-in-focused image,
we need to identify in-focused regions from multiple input images captured with different focal
lengths. This paper presents a new method to find and fuse the in-focused regions of the different focal
stack images. After we apply the two-dimensional discrete cosine transform (DCT) to transform the
focal stack images into the frequency domain, we utilize the sum of the updated modified Laplacian
(SUML), enhancement of the SUML, and harmonic mean (HM) for calculating in-focused regions of
the stack images. After fusing all the in-focused information, we transform the result back by using
the inverse DCT. Hence, the out-focused parts are removed. Finally, we combine all the in-focused
image regions and reconstruct the all-in-focused image.

Keywords: all-in-focused image; sum of updated modified Laplacian; frequency domain

1. Introduction

Light field cameras, also called plenoptic cameras, have been popularly used in digital refocusing
and three-dimensional reconstruction. They are fabricated with internal micro-lens arrays to capture
light field information in such a way that one can refocus the image after acquisition. This is the
very unique capability of the light field camera [1]. Due to the finite depth of field (DOF) in normal
digital cameras, an image of all of the relevant objects displays sharpness information inside the
DOF; however, the objects show blurred information outside the DOF. Since the light field image
generates a set of images focused at different depth levels after being captured, it is suggested that one
can determine objects in the foreground and background regions. Moreover, it can generate a set of
multi-view images without the need for calibration images.

All-in-focused image combination is a method for merging in-focused information of the stack
images that are captured at different focal planes from the same position. This algorithm addresses
a method to fuse image sequences for reconstructing the all-in-focused image so that all relevant
object regions appear sharp in the final image reconstruction. For detecting in-focused regions of the
images and combining them for the all-in-focused image, various methods have been studied for focus
measurement using the whole images. Up to now, various focus measurement and image combination
methods have been proposed for different applications. Aydin and Akgul have proposed a focus
measure operator that applies flexibly shaped and weighted support windows [2]. The algorithm can
retrieve the depth discontinuities. The all-focused image is used to determine the support window.
Zhang et al. have presented a focus detection method that portions source images into edges, textures,
and smooth regions [3]. Focused regions are measured by morphological components. The final fused
images are combined with the fusion map. Haghighat et al. have suggested a multi-focus image fusion
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method for visual sensor networks in the discrete cosine transform (DCT) domain [4]. This method
utilizes variance values to measure and fuse multi-focus images using DCT-based algorithms. Lee and
Zhou have introduced the DOF extension using a fusion of two images [5]. Their algorithm applies
the DCT-STD and the DWT-STD for focus detection. Besides that, Chen et al. have demonstrated a
multi-spectral imaging method that can also show the color image reproduction [6–8].

While most previous methods for image combination employed a few inputs of different focal
images, we attempt a new method for image composition using many input images. In this paper,
we describe a new all-in-focused image combination method that integrates the sum of updated modified
Laplacian (SUML) and the harmonic mean (HM) in the discrete cosine transform (DCT) domain.

The sum of modified Laplacian (SML) performs better than other focus criteria [9] and HM is more
robust than the arithmetic mean because they both support small pieces of information and increase
their influences on the overall estimation operation. Moreover, the proposed method takes advantages
of image representation in the frequency domain. Since it is difficult to classify in-focused and
out-focused regions in the spatial domain when edges of the out-focused parts are sharp, we transform
images into the frequency domain to analyze the image information. The main contributions of this
paper are: (1) The method for extending the DOF in the imaging system that creates an image from a
set of different focal images at one shot capture, and (2) the effective method for all-in-focused image
combination that is performed in the frequency domain to avoid the artifacts reduction process in the
spatial domain that requires a complexity execution.

2. All-in-Focused Image Combination

In this paper, we propose an image combination method that detects in-focused regions in the light
field images and merges them into the all-in-focused image. Figure 1 represents the procedure of our
proposed method. After dividing the input stack images into blocks of 8 × 8 pixels and calculating the
DCT coefficients of each block, we calculate SUML and HM as the in-focus measures and perform the
image combination procedure. Based on the final in-focused maps, we reconstruct the all-in-focused
image by applying the inverse DCT and mitigating blocking artifacts.
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Figure 1. The procedure of the proposed method.

2.1. Light Field Image Splitter

In this paper, we utilize a Lytro camera [10] to acquire light field images. In general, each light
field image is decomposed into different focus-level images using the light field image splitter [11].
The splitter provides a set of different focal images that display the same position, as shown in Figure 2.
We denote {It, t = 1, . . . , N} for the focal stack of input images.
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2.2. Discrete Cosine Transform (DCT)

Each stack image (It) is transformed into the frequency domain by DCT. The source image is
partitioned into blocks of 8 × 8 pixels and DCT coefficients of each block are computed by

D(u, v) =
n−1∑
x=0

n−1∑
y=0

cos
(
πu
2n

(2x + 1)
)

cos
(
πv
2n

(2y + 1)
)
I(x, y) (1)

where D(u, v) represents the DCT coefficient at the position (u, v) in the DCT domain. The DCT
coefficients consist of the DC coefficient D(0,0) and AC coefficients. The AC coefficients are used for
focus value calculation.

2.3. Sum of Updated Modified Laplacian (SUML)

In the proposed method, we improve the original SML and use it as a part of the focus measurement
since the SML gives better efficiency than other focus measurement criteria [9]. When we consider the
DCT coefficients, the higher energy property of the AC coefficients implies meaningful information in
the in-focused region. Because the AC coefficients D(4,5), D(5,4), and D(4,4) are more important than
other coefficients [12], we choose the AC coefficient D(4,4) for focus value calculation. The original
modified Laplacian (ML) only considers variations in the x and y directions [13]. Thus, we modify the
original ML and utilizes D(4,4). This value is small for both in-focused and out-focused parts in the
homogeneous region. Thus, we propose the updated modified Laplacian (UML) for the block B(x,y) to
include the diagonal directions and combine all the information of its neighborhood including sharp
in-focused parts around the block. UML is defined by

∇
2
UMLB(x, y) =

∣∣∣2D(4, 4) −D(4− step, 4) −D(4 + step, 4)
∣∣∣

+
∣∣∣2D(4, 4) −D(4, 4− step) −D(4, 4 + step)

∣∣∣
+

∣∣∣2D(4, 4) −D(4− step, 4 + step) −D(4 + step, 4− step)
∣∣∣

+
∣∣∣2D(4, 4) −D(4− step, 4− step) −D(4 + step, 4 + step)

∣∣∣
(2)
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where (x,y) represents the block position, D(u,v) is the AC coefficient at the position (u,v) of the block
B(x,y). In (2), ‘step’ is a fixed value, set as 1 in this paper. The focus measure at block B(x,y) is computed
as the SUML value in the window around B(x,y). SUML is expressed by

SUML(x, y) =
i=x+N∑
i=x−N

j=y+N∑
j=y−N

δ(i, j) where δ(i, j) =

{
∇

2
UMLB(x, y), ∇2

UMLB(x, y) ≥ TSUML
0, otherwise,

(3)

where δ(i, j) represents the UML value that follows the threshold TSUML condition. The window size
around B(x,y) is N × N.

2.4. Enhanced SUML (eSUML)

In a homogeneous region, the focus measure can be affected by pixel noise [14]. In order to
decrease this effect, the SUML values at block B(x,y) are computed as the eSUML value in the window
around SUML(x,y). eSUML is calculated by

eSUML(x, y) =
i=x+N∑
i=x−N

j=y+N∑
j=y−N

SUML(i, j) (4)

where N × N determines the size of the window.
The effectiveness of eSUML in the focus measure informs us that the focus measure values, as well

as the focus border, are more distinct for eSUML compared to SUML.

2.5. Harmonic Mean (HM)

HM measures the information of the eSUML results and is used for confirming the reliable focus
measure. The HM value at block B(x,y) is calculated based on the eSUML values in the window around
B(x,y), which is N × N. HM is defined by

H(x, y) =

 1
M

M∑
m=1

1
µm(x, y)


−1

(5)

where M determines the size of the window, (x,y) represents the block position, and µm is the average
value of the eSUML results at block B(x,y). High values of HM will be deemed as in-focused regions
and the out-focused regions will have low HM values.

HM has two advantages. First, arithmetic mean estimate can be distorted significantly by the
large variances of the out-focused regions, while the harmonic mean is robust. Second, the harmonic
mean considers reciprocals, hence it assists the small variances and increases their influence in the
overall estimation. Although most variances of the out-focused regions may have small values, one
large variance value can make the arithmetic mean value in those regions larger than the value in the
in-focused regions. It causes the out-focused regions to be falsely considered as in-focused regions.

2.6. Image Combination

The all-in-focused image combination is fused by selecting the DCT coefficients that grant the
highest HM value for each block B(x,y). The focal stack of input images {It, t = 1, . . . , N} that is
divided into blocks in position (x,y), the DCT coefficients {DCT(x,y)t, t = 1, . . . , N}, and the HM values
{H(x,y)t, t = 1, . . . , N} are the input data for the combination process. The block map of the fused image
{MAP(x,y)} and the DCT coefficients of the fused image {FDCT(x,y)} are selected by

FDCT(x, y) = DCT(x, y) f , MAP(x, y) = f

where f = argmax
t

{
H(x, y)t

}
, t = 1, 2, . . . , N (6)
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where f represents the index of the stack images that have the highest HM value. The image combination
process is demonstrated as shown in Figures 3 and 4.
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2.7. Consistency Verification (CV)

In order to improve the combination effect, we employ a CV process [4] to the block map of the
fused image MAP(x,y). We improve the MAP(x,y) accuracy by utilizing a majority filter in the window
around MAP(x,y) as shown in Figure 5. Therefore, the CV is applied as post-processing, after the image
combination process, to improve the quality of the output image and reduce the error due to unsuitable
block selection. This process succeeds in both quality and complexity. Then, the DCT coefficients of
the fused image FDCT(x,y) will be updated by following the improved MAP(x,y) values, as shown in
Figure 6.
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Finally, the all-in-focused image is reconstructed by applying the inverse DCT to the updated
FDCT(x, y). The inverse DCT coefficients of each block are computed by

I(x, y) =
∑n−1

u=0

∑n−1

v=0
D(u, v) cos

(
πu
2n

(2x + 1)
)

cos
(
πv
2n

(2y + 1)
)
. (7)

2.8. Blocking Artifacts Reduction

We apply edge-preserving smoothing, such as the fast guided filter [15], to the reconstructed
image. This smoothing method also has the ability to sharpen blurred edges and ensures the efficiency
of the reconstruction process.

3. Experimental Results

Experiments are conducted on five image sets: ‘Bag’, ‘Cup’, ‘Bike’, ‘Mouse’, and ‘Flower’ that
are captured by a Lytro camera [10]. The experimental results are evaluated in terms of the focus
measurement and the fused process for the all-in-focused image. We conduct the experiments on
360 × 360 pixel test images. The experimental parameters are assigned as a DCT window size of 8,
a SUML window size of 3, a HM window size of 3, a CV window size of 3, and TSUML of 10.

3.1. Focus Measurement

Figures 7–11 show the focus measurement in the in-focused regions of focal stack images.
The results display only sharply focused parts that have a high value of focus information.

3.1.1. On the Images of the ‘Bag’ Dataset

The effectiveness of the SUML focus measurement is evaluated using the SML on the images of
the ‘Bag’ dataset. It is illustrated in Figure 7. It can be observed that the focus measurement is more
distinct for the SUML in Figure 7c compared with the SML in Figure 7b.
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3.1.3. On the Images of the ‘Bike’ Dataset

The effectiveness of the SUML focus measurement is evaluated using SML on the images of the
‘Bike’ dataset. It is illustrated in Figure 9. It can be observed that the focus measurement is more
distinct for the SUML in Figure 9c compared with the SML in Figure 9b.Appl. Sci. 2019, 9, x 8 of 17 
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The effectiveness of the SUML focus measurement is evaluated using SML on the images of the
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3.1.5. On the Images of the ‘Flower’ Dataset

The effectiveness of the SUML focus measurement is evaluated using SML on the images of the
‘Flower’ dataset. It is illustrated in Figure 11. It can be observed that the focus measurement is more
distinct for the SUML in Figure 11c compared with the SML in Figure 11b.
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3.2. All-in-Focused Image Combination

In this section, the experimental results of the all-in-focused images are presented and evaluated by
comparing them with other prominent techniques such as light field software [10], SML [9], DCT-STD [5],
DCT-VAR-CV [4], SML-WHV [16], Agarwala’s method [17], DCT-Sharp-CV [18], DCT-CORR-CV [19],
and DCT-SVD-CV [20]. The all-in-focused images of different algorithms are shown in Figures 12–16.
From the expanded images in Figure 17, we can easily observe that the results of the light field
software, the DCT-STD method, and the DCT-VAR-CV method have lower contrast than those of
the SML method, Agarwala’s method, the DCT-Sharp-CV method, the DCT-CORR-CV method,
the DCT-SVD-CV method, and the proposed method. However, it is hard to show the differences from
the results of the SML method, Agarwala’s method, the DCT-Sharp-CV method, the DCT-CORR-CV
method, the DCT-SVD-CV method, and the proposed method by subjective evaluation. It seems that
there are little differences among the fused images, but the objective performance evaluation can
capture their differences precisely. Hence, this paper applies some non-reference fusion metrics, such as
the feature mutual information (FMI) metric [21] and Petrovic’s metric (QAB/F) [22]. These metrics are
calculated without respect to the reference images. The FMI metric measures the amount of information
that the fused image contains from the source images, while QAB/F measures the relative amount of
edge information that is transferred from the source into the fused image. If FMI or QAB/F indicate
a higher value, the fused image performance provides a better result. The comparison results are
summarized in Tables 1–5. The proposed method provides outstanding results when we compare it
with other comparative methods.
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Figure 12. Comparison of ‘Bag’ image results: (a) Light Field Software, (b) SML, (c) DCT-STD,
(d) DCT-VAR-CV, (e) SML-WHV, (f) Agarwala’s method, (g) DCT-Sharp-CV, (h) DCT-CORR-CV,
(i) DCT-SVD-CV, (j) The Proposed Method.

Table 1. Objective evaluation of the image results (non-reference fusion metrics) for ‘Bag’ image.

Methods
Criteria

FMI QAB/F

Light Field Software 0.9612 0.7965
SML 0.9666 0.8015

DCT-STD 0.9619 0.8171
DCT-VAR-CV 0.9673 0.8498

SML-WHV 0.9650 0.7994
Agarwala’s Method 0.9679 0.8542

DCT-Sharp-CV 0.9687 0.8626
DCT-CORR-CV 0.9684 0.8637
DCT-SVD-CV 0.9687 0.8635

The Proposed Method 0.9785 0.8729
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Figure 13. Comparison of ‘Cup’ image results: (a) Light Field Software, (b) SML, (c) DCT-STD, (d) 
DCT-VAR-CV, (e) SML-WHV, (f) Agarwala’s method, (g) DCT-Sharp-CV, (h) DCT-CORR-CV, (i) 
DCT-SVD-CV, (j) The Proposed Method. 

Table 2. Objective evaluation of the image results (non-reference fusion metrics) for ‘Cup’ image. 

Methods 
Criteria 

FMI QAB/F 
Light Field Software 0.9286 0.7413 

SML 0.9485 0.8088 
DCT-STD 0.9419 0.8252 

DCT-VAR-CV 0.9502 0.8535 
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Agarwala’s Method 0.9504 0.8570 
DCT-Sharp-CV 0.9532 0.8706 
DCT-CORR-CV 0.9532 0.8709 
DCT-SVD-CV 0.9533 0.8708 

The Proposed Method 0.9627 0.8788 

3.2.3. On the Images of the ‘Bike’ Dataset 

Figure 13. Comparison of ‘Cup’ image results: (a) Light Field Software, (b) SML, (c) DCT-STD,
(d) DCT-VAR-CV, (e) SML-WHV, (f) Agarwala’s method, (g) DCT-Sharp-CV, (h) DCT-CORR-CV,
(i) DCT-SVD-CV, (j) The Proposed Method.

Table 2. Objective evaluation of the image results (non-reference fusion metrics) for ‘Cup’ image.

Methods
Criteria

FMI QAB/F

Light Field Software 0.9286 0.7413
SML 0.9485 0.8088

DCT-STD 0.9419 0.8252
DCT-VAR-CV 0.9502 0.8535

SML-WHV 0.9484 0.8176
Agarwala’s Method 0.9504 0.8570

DCT-Sharp-CV 0.9532 0.8706
DCT-CORR-CV 0.9532 0.8709
DCT-SVD-CV 0.9533 0.8708

The Proposed Method 0.9627 0.8788
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Figure 14. Comparison of ‘Bike’ image results: (a) Light Field Software, (b) SML, (c) DCT-STD, (d) 
DCT-VAR-CV, (e) SML-WHV, (f) Agarwala’s method, (g) DCT-Sharp-CV, (h) DCT-CORR-CV, (i) 
DCT-SVD-CV, (j) The Proposed Method. 

Table 3. Objective evaluation of the image results (non-reference fusion metrics) for ‘Bike’ image. 

Methods 
Criteria 

FMI QAB/F 
Light Field Software 0.9384 0.7394 

SML 0.9518 0.7799 
DCT-STD 0.9476 0.7897 

DCT-VAR-CV 0.9538 0.8230 
SML-WHV 0.9493 0.7734 

Agarwala’s Method 0.9547 0.8373 
DCT-Sharp-CV 0.9580 0.8443 
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3.2.4. On the Images of the ‘Mouse’ Dataset 

Figure 14. Comparison of ‘Bike’ image results: (a) Light Field Software, (b) SML, (c) DCT-STD,
(d) DCT-VAR-CV, (e) SML-WHV, (f) Agarwala’s method, (g) DCT-Sharp-CV, (h) DCT-CORR-CV,
(i) DCT-SVD-CV, (j) The Proposed Method.

Table 3. Objective evaluation of the image results (non-reference fusion metrics) for ‘Bike’ image.

Methods
Criteria

FMI QAB/F

Light Field Software 0.9384 0.7394
SML 0.9518 0.7799

DCT-STD 0.9476 0.7897
DCT-VAR-CV 0.9538 0.8230

SML-WHV 0.9493 0.7734
Agarwala’s Method 0.9547 0.8373

DCT-Sharp-CV 0.9580 0.8443
DCT-CORR-CV 0.9580 0.8512
DCT-SVD-CV 0.9582 0.8505

The Proposed Method 0.9672 0.8574
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Figure 15. Comparison of ‘Mouse’ image results: (a) Light Field Software, (b) SML, (c) DCT-STD, (d) 
DCT-VAR-CV, (e) SML-WHV, (f) Agarwala’s method, (g) DCT-Sharp-CV, (h) DCT-CORR-CV, (i) 
DCT-SVD-CV, (j) The Proposed Method. 

Table 4. Objective evaluation of the image results (non-reference fusion metrics) for ‘Mouse’ image. 

Methods 
Criteria 

FMI QAB/F 
Light Field Software 0.9153 0.6917 

SML 0.9293 0.7451 
DCT-STD 0.9218 0.7626 

DCT-VAR-CV 0.9294 0.7819 
SML-WHV 0.9299 0.7548 

Agarwala’s Method 0.9310 0.7863 
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3.2.5. On the Images of the ‘Flower’ Dataset 

Figure 15. Comparison of ‘Mouse’ image results: (a) Light Field Software, (b) SML, (c) DCT-STD,
(d) DCT-VAR-CV, (e) SML-WHV, (f) Agarwala’s method, (g) DCT-Sharp-CV, (h) DCT-CORR-CV,
(i) DCT-SVD-CV, (j) The Proposed Method.

Table 4. Objective evaluation of the image results (non-reference fusion metrics) for ‘Mouse’ image.

Methods
Criteria

FMI QAB/F

Light Field Software 0.9153 0.6917
SML 0.9293 0.7451

DCT-STD 0.9218 0.7626
DCT-VAR-CV 0.9294 0.7819

SML-WHV 0.9299 0.7548
Agarwala’s Method 0.9310 0.7863

DCT-Sharp-CV 0.9337 0.7917
DCT-CORR-CV 0.9340 0.7964
DCT-SVD-CV 0.9341 0.7971

The Proposed Method 0.9439 0.8077
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Figure 16. Comparison of ‘Flower’ image results: (a) Light Field Software, (b) SML, (c) DCT-STD, (d) 
DCT-VAR-CV, (e) SML-WHV, (f) Agarwala’s method, (g) DCT-Sharp-CV, (h) DCT-CORR-CV, (i) 
DCT-SVD-CV, (j) The Proposed Method. 
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Figure 16. Comparison of ‘Flower’ image results: (a) Light Field Software, (b) SML, (c) DCT-STD,
(d) DCT-VAR-CV, (e) SML-WHV, (f) Agarwala’s method, (g) DCT-Sharp-CV, (h) DCT-CORR-CV,
(i) DCT-SVD-CV, (j) The Proposed Method.

Table 5. Objective evaluation of the image results (non-reference fusion metrics) for ‘Flower’ image.

Methods
Criteria

FMI QAB/F

Light Field Software 0.8279 0.5945
SML 0.9255 0.8706

DCT-STD 0.9237 0.8655
DCT-VAR-CV 0.9268 0.8684

SML-WHV 0.9223 0.8577
Agarwala’s Method 0.9273 0.8756

DCT-Sharp-CV 0.9424 0.9097
DCT-CORR-CV 0.9427 0.9096
DCT-SVD-CV 0.9429 0.9098

The Proposed Method 0.9518 0.9143
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Figure 17. The expanded image ‘Cup’ image results: (a) Light Field Software, (b) SML, (c) DCT-STD, 
(d) DCT-VAR-CV, (e) SML-WHV, (f) Agarwala’s method, (g) DCT-Sharp-CV, (h) DCT-CORR-CV, (i) 
DCT-SVD-CV, (j) The Proposed Method. 

The performance summary of the different methods on the five image datasets using QAB/F and 
FMI are listed in Table 6; Table 7, in which the top values are shown in bold. According to fusion 
metrics, QAB/F and FMI, the performance of the proposed method was better than the other nine 
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Figure 17. The expanded image ‘Cup’ image results: (a) Light Field Software, (b) SML, (c) DCT-STD,
(d) DCT-VAR-CV, (e) SML-WHV, (f) Agarwala’s method, (g) DCT-Sharp-CV, (h) DCT-CORR-CV,
(i) DCT-SVD-CV, (j) The Proposed Method.

The performance summary of the different methods on the five image datasets using QAB/F and
FMI are listed in Tables 6 and 7, in which the top values are shown in bold. According to fusion
metrics, QAB/F and FMI, the performance of the proposed method was better than the other nine
compared methods.

Table 6. The performance summary of different methods on the five image datasets, using QAB/F.

Image
Methods

[6] [9] [5] [4] [16] [17] [18] [19] [20] Proposed

Bag 0.7965 0.8015 0.8171 0.8498 0.7994 0.8542 0.8626 0.8637 0.8635 0.8729
Cup 0.7413 0.8088 0.8252 0.8535 0.8176 0.8570 0.8706 0.8709 0.8708 0.8788
Bike 0.7394 0.7799 0.7897 0.8230 0.7734 0.8373 0.8443 0.8512 0.8505 0.8574

Mouse 0.6917 0.7451 0.7626 0.7819 0.7548 0.7863 0.7917 0.7964 0.7971 0.8077
Flower 0.5945 0.8706 0.8655 0.8684 0.8577 0.8756 0.9097 0.9096 0.9098 0.9143

Average 0.7127 0.8012 0.8120 0.8353 0.8006 0.8421 0.8558 0.8584 0.8583 0.8662
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Table 7. The performance summary of different methods on the five image datasets, using FMI.

Image
Methods

[6] [9] [5] [4] [16] [17] [18] [19] [20] Proposed

Bag 0.9612 0.9666 0.9619 0.9673 0.9650 0.9679 0.9687 0.9684 0.9687 0.9785
Cup 0.9286 0.9485 0.9419 0.9502 0.9484 0.9504 0.9532 0.9532 0.9533 0.9627
Bike 0.9384 0.9518 0.9476 0.9538 0.9493 0.9547 0.9580 0.9580 0.9582 0.9672

Mouse 0.9153 0.9293 0.9218 0.9294 0.9299 0.9310 0.9337 0.9340 0.9341 0.9439
Flower 0.8279 0.9255 0.9237 0.9268 0.9223 0.9273 0.9424 0.9427 0.9429 0.9518

Average 0.9143 0.9443 0.9394 0.9455 0.9430 0.9463 0.9512 0.9513 0.9514 0.9608

4. Conclusions

In this paper, we proposed an all-in-focused image combination method by integrating the SUML,
eSUML, and HM in the DCT domain. The main contributions of this work are that we can perform the
robust all-in-focused image combination that is processed in the frequency domain, and extend the
depth of field in an imaging system. The performance of the proposed method was evaluated in terms
of both subjective and objective evaluation from five image datasets. For the subjective tests, a visual
perception experiment was performed. For the objective tests, the QAB/F and FMI were measured.
The experimental results show that the proposed method obtains an all-in-focused image of higher
quality, presenting the focus measurement and all-in-focused image combination. Consequently, it was
shown from the objective evaluation that the proposed method presented the top values of the QAB/F

and FMI criteria, compared with the conventional methods.
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