iriried applied
L sciences

Article
Intelligent Tennis Robot Based on a Deep
Neural Network

Shenshen Gu *%, Wei Zeng !, Yuxuan Jia ? and Zheng Yan 3

School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield 510 2TN, UK
Center for Artificial Intelligence, University of Technology, Sydney 2007, Australia

Correspondence: gushenshen@shu.edu.cn

t Current address: 99 Shangda Road, Shanghai, China.

@D N =

check for
Received: 15 August 2019; Accepted: 4 September 2019; Published: 8 September 2019 updates

Abstract: In this paper, an improved you only look once (YOLOv3) algorithm is proposed to
make the detection effect better and improve the performance of a tennis ball detection robot.
The depth-separable convolution network is combined with the original YOLOv3 and the residual
block is added to extract the features of the object. The feature map output by the residual block is
merged with the target detection layer through the shortcut layer to improve the network structure of
YOLOV3. Both the original model and the improved model are trained by the same tennis ball data
set. The results show that the recall is improved from 67.70% to 75.41% and the precision is 88.33%,
which outperforms the original 77.18%. The recognition speed of the model is increased by half and
the weight is reduced by half after training. All these features provide a great convenience for the
application of the deep neural network in embedded devices. Our goal is that the robot is capable of
picking up more tennis balls as soon as possible. Inspired by the maximum clique problem (MCP),
the pointer network (Ptr-Net) and backtracking algorithm (BA) are utilized to make the robot find
the place with the highest concentration of tennis balls. According to the training results, when the
number of tennis balls is less than 45, the accuracy of determining the concentration of tennis balls
can be as high as 80%.

Keywords: object detection; deep neural network; YOLOV3; maximum clique problem;
pointer network; backtracking algorithm

1. Introduction

With the rapid progress of science and technology, the living standards of human beings are
constantly improving, and the service robot market is booming day by day. This includes the
development of sweeping robots and restaurant service robots. However, there are not many service
robots for sports, especially tennis service robots, and such robots are still in a rudimentary stage of
development. Tennis, as a worldwide sport, has many fans all over the world. However, the scattered
tennis balls on the court are difficult to deal with, both during training and during matches. Picking up
tennis balls is time-consuming and laborious. Based on these factors, we researched and designed an
intelligent tennis robot to satisfy the requirements of tennis players. See details in [1].

We applied the you only look once (YOLOv3) detection algorithm to design a tennis robot.
The structural block diagram of our tennis robot is shown in Figure 1. The tennis robot can be divided
into two parts: motion control and machine vision. In the motion control part, we used Arduino Mega
2560 as the control board of the slave computer to drive the DC motor with L298N and count the
mileage of the two wheels by the encoder. It forms a closed-loop control system which composes the
slave computer. The main function of the slave computer is to receive speed information from the host

Appl. Sci. 2019, 9, 3746; d0i:10.3390/app9183746 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/2076-3417/9/18/3746?type=check_update&version=1
http://dx.doi.org/10.3390/app9183746
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 3746 2 0f 20

computer for movement and then feedback to the host. The task of the host computer includes two
aspects: Proportional integral derivative (PID) control of the slave computer’s motion and processing
of the visual information obtained by Kinect. The robot identifies objects (tennis balls here) by YOLO
and then calculates the specific position of the target. We used a laptop or Jeston TX1 as the host
computer. Through the unique mechanism of the robot operating system (ROS), communication is
established between host computer and the slave computer.

Vision
Kinect YOLO
Tennis position Host
Mobile information computer
phone or P52 > Jeston TX1
controller
Encoder
Speed pulse
number

Arduino Mega 2560

AN
Pin signal
Lower
Encoder . .
L298N Drive machine
rigger Module

interrupt

Response

voltage

Encoder Motor

Figure 1. Structural block diagram of tennis robot.

The deep neural network has a very good detection effect and is widely used in the field of
target detection. However, many problems need to be considered when deploying the neural network
to embedded devices, such as the multiple layers of the network and the huge number of model
parameters. Meanwhile, to obtain a better recognition effect, a lot of time needs to be spent training
with more data. YOLOV3 extracts features based on the Darknet-53 network, the volume of the
convolution calculation is large, the network is deep and complex, and the number of weights is
also very large. These features are not conducive to our application to mobile robots. For our usage
scenario, we hope that the network model can be better deployed on mobile devices and embedded in
development boards. We also hope that it will be lighter and more agile. On the other hand, the deep
neural network usually needs to be iterated many times with a large data set to get a good recognition

Appl. Sci. 2019, 9, 3746 3 0f 20

effect. For our research, we only need to recognize tennis balls. Since the images of tennis balls
downloaded from the network are usually dissatisfactory, we need to take pictures manually when
preparing the data sets, which is time-consuming and labor-intensive. Therefore, we want to only
utilize a small number of iterations of mini data sets to train the network model to meet the basic
identification requirements.

In our application scenarios, there are usually multiple tennis balls in the picture, and these balls
are very likely to overlap. In addition, without the GPU, YOLOv3 detects a picture at a speed of about
12s, which is too slow for a robot. So, we wanted our detection algorithm to not only ensure high
accuracy but also work at a faster speed.

Based on the above factors, we made the following improvements to the YOLOv3 model.
Our intelligent tennis robot is shown in Figure 2.

o Wereplaced the original Darknet-53 with the lightweight network MobileNetv1. We optimized
the speed by reducing the number of convolution calculations, model depth, and weights.

e We designed the residual block which can be added to MobileNetv1. For the detection effect,
we referred to the idea of the residual block in the DenseNet network and designed a residual
block without increasing the network’s burden and depth. We added it to the network structure
of MobileNetv1 and then got a good detection effect.

(a) Front view (b) Side and top view

Figure 2. Photos of our tennis robot from different angles.

Considering that tennis balls may be scattered everywhere on the tennis court, if our robot can
first find the most concentrated place of tennis balls and then identify and pick up tennis balls there,
it will save a lot of time and improve efficiency. We drew on the idea of the maximum clique problem
(MCP) to solve this problem.

The MCP, also known as the maximum independent set problem, is a classical combinatorial
optimization problem in graph theory. It is an important problem in the real world and is widely used
in market analysis, scheme selection, signal transmission, computer vision, fault diagnosis, and other
fields. The problem can be formally defined as follows: Given an undirected graph G = (V,E),
where V is a non-empty set, called a vertex set, E is a set of disordered binary tuples composed of
elements in V, called edge sets. In an undirected graph, all disordered pairs of vertices are commonly
represented by brackets “()”. If U € V, for any two vertices u and v belonging to U, we can get
(u,v) € E. Then, U is a complete subgraph of G. The complete subgraph U of G is the group of G.
The largest group of G is the largest complete subgraph of G.

In this paper, we regard each tennis ball scattered on the ground as a point, obtain their position
coordinates with the depth camera, and calculate the distances between them. If the distance is less
than the average value of the sum of all distances, it is considered that there is a connection between the

Appl. Sci. 2019, 9, 3746 4 0f 20

two tennis balls, so the problem of picking up tennis balls efficiently can be modeled as the maximum
clique problem. Under the framework of tensorflow, we use the method of combining the pointer
network (Ptr-Net) with the backtracking algorithm (BA) to solve the MCP. After training the Pointer
Network, we use the backtracking algorithm to deal with the network output prediction results,
which not only reduces the dimensions of the original problem, but also greatly improves the accuracy
of the output results. In this way, we can find the gathering point of the tennis balls and pre-process
the motion path for the tennis robot.

The chapters of this paper are arranged as follows: firstly, Section 1 introduces the background
and significance of this study and briefly introduces the function and principles of our tennis robot.
Then, Section 2 briefly introduces YOLO, MobileNet, and ResNet and explains how to combine them to
realize the function of tennis detection. Section 3 introduces the solution of MCP based on Ptr-Net and
BA and explains how to apply it to the path preprocessing of the tennis robot. Section 4 introduces how
to make data sets and compares the training and testing results of different models. It also introduces
the training process and results of solving MCP with Ptr-Net and BA. Finally, Section 5 summarizes
the work of this paper.

2. Tennis Ball Detection with Improved YOLOvV3 Algorithm

With the development of computer vision, a large number of excellent research results have
been achieved in the field of object recognition. These results not only have certain theoretical
significance, but also have extraordinary practical value, which can provide us with great convenience.
In particular, various detection algorithms based on deep learning have replaced the traditional object
recognition methods.

Conventional object recognition methods include using a gradient vector histogram (HOG) [2]
for pedestrians in a video, using various animal and vehicle detection methods in still images,
face recognition using Haar features [3]. These types of traditional identification methods have
low recognition rates. They usually take more time to complete the entire recognition process.
Additionally, the generalization ability is poor. The emergence of a series of requirements, such as the
diversification of recognition objects, diversity of recognition angles, and recognition of background
complexity in identification tasks, has brought more challenges to the research of object recognition.
Deep learning focuses on studying how to automatically extract multi-layer feature representations
from data and uses a series of nonlinear transformations to extract features from raw data in a
data-driven manner, avoiding the drawbacks of manual feature extraction. The convolutional neural
network (CNN) [4] has been widely and successfully applied to image classification tasks, making it
the gold standard for image classification.

Methods based on the convolution neural network can be divided into two categories: one is based
on region nomination and the other is based on regression. The regional nomination-based approach
is represented by the R-CNN series: R-CNN [5], SPP-Net [6], fast R-CNN [7], and faster R-CNN [8].
Although various improvements have been made, it still adopts the step-by-step detection strategy of
first extracting candidate frames and then classifying based on candidate frames. The FPS of the faster
R-CNN only reaches seven frames per second (f/s), which is far from reaching real-time requirements.
YOLO is a regression-based detection algorithm [9]. It first uses the regression method to directly
predict the bounding box coordinates and classification of an object from an image. The detection
speed reaches 45 f/s. However, due to the single scale and proportion of the candidate frame selection,
the accuracy is reduced when the speed is increased. Redmon J successively proposed the YOLOv2 [10]
and YOLOV3 [11] detection algorithms, among which YOLOvV3 has a better detection effect. It uses
the depth residual network to extract image features and achieves multi-scale prediction, which is
implemented on the COCO data set. Additionally, the mAP achieves an effect of 57.9%. In the
target detection field, YOLOV3 can ensure accuracy and a detection rate of 51 ms, achieving better
detection results.

Appl. Sci. 2019, 9, 3746 5 of 20

2.1. Brief Introduction to YOLO

The main idea of YOLO is to use the whole picture as the input of the network, directly returning
the position of the bounding box and the category to which the bounding box belongs in the output
layer. YOLOVS3 is the latest version of YOLO and has many important improvements. In terms of
basic image feature extraction, YOLOv3 adopts a network structure called Darknet-53 (containing
53 convolutional layers) instead of using Darknet-19. It draws on the practices of the residual network
and sets up shortcut connections between some layers. Besides, tail activation function is also changed
from softmax to sigmoid, and the number of anchor boxes is changed from five to three.

The way to implement YOLO is that each grid is predicted to have bounding boxes, and each
bounding box is predicted to have a confidence value in addition to its position. This confidence
represents the confidence that the predicted box contains the object and the quasi-predictive
information of the box prediction. The value is calculated as follows:

Pr(Object) x Ioug;;ga 1)

If an object falls in a grid cell, the first item is taken as 1; otherwise, it is given a value of 0.
The second item is the value of the predicted bounding box and the actual IoU.

In the test, the class information of each grid prediction is multiplied by the confidence information
predicted by the bounding box to obtain the class-specific confidence score for each bounding box:

Pr (Class;|Object) x Pr(Object) x IOUg;gC}l‘ = Pr (Class;) x IOUgr‘gé‘ . 2)

As shown in Equation (2), the product of the category information of each grid prediction and
the confidence of each bounding box is the probability that the box belongs to a certain category.
After obtaining the class-specific confidence score of each box, the threshold is set and filtered.
The boxes with low scores are dropped and non-maximum suppression processing is performed
on the reserved boxes to get the final test results.

YOLOV3 applies a residual skip connection to solve the vanishing gradient problem of deep
networks and makes use of an up-sampling and concatenation method that preserves fine-grained
features for small object detection.

It is well known that YOLOv2 uses pass-through to detect the fine-grained features.
However, in YOLOV3, object detection is done using three different scale feature maps. We can
see from Figure 3 that after the 79th layer, the measurement result of a scale is obtained through the
lower convolutional layers. The feature map used here for detection has 32 times down-sampling
compared with the input image. For example, if the input is 416 x 416, the feature map here is
13 x 13. Since the down-sampling factor is high, the receptive field of the feature map is relatively
large. Therefore, it is suitable for detecting objects with a relatively large size in the image. In order to
achieve fine-grained detection, the feature map of the 79th layer starts to be up-sampled (upstream
sampling convolution from the 79th layer to the right) and then merged with the 61st layer feature
map, thus obtaining the 91st layer, which is thinner. The feature map of the granularity is also obtained
through several convolutional layers to obtain a feature map which is down-sampled 16 times from
the input image. It has a medium-scale receptive field and is suitable for detecting medium-scale
objects. Then, the 91st layer feature map is again up-sampled and merged with the 36th layer feature
map (concatenation). Finally, a feature map of eight down-samplings relative to the input image is
obtained. It has the smallest receptive field and is suitable for detecting small objects. In YOLOvV3,
the k-means algorithm used in YOLOV2 also exists, and nine a priori boxes are clustered to detect
objects of different sizes. In addition, for the classification of predicted objects, it is also changed from
softmax to logistic, which can support the existence of multiple tags for an object [11].

Appl. Sci. 2019, 9, 3746 6 of 20

7
f?—\

‘ENXwXww\

o

_\e\a\w-

B Convolution layer

Route layer

o

I Up-sample layer
M Detection layer
& Addition

@ Concatenation

- Futher layers

B

Figure 3. Network structure of you only look once (YOLOV3).

2.2. Configuration of the Improved Network Structure

In order to solve the problem of the large computational complexity and low computational
efficiency of traditional convolution operations, the standard convolution operation in the YOLOV3
model is transformed into a separable convolution operation. We utilize MobileNetv1 instead of
Darknet-53 and YOLOV3 to extract features. The latter three resolution grafting networks further
detect the possibility, confidence, and categories of targets in each cell. These three resolutions are still
13 x 13,26 x 26, and 52 x 52, respectively.

However, if we use standard optimization algorithms, such as the gradient descent method,
to train a general network or other popular optimization algorithms without these shortcuts or jump
connections, we will find that with the deepening of the network, training errors will decrease first
and then increase. In theory, the training performance will be better with a deeper theoretical network.
However, if there is no residual network, it is more difficult to train a deeper theoretical network with
an optimization algorithm. Actually, with the deepening of the network, the number of training errors
will increase. So, while simplifying the network, we still consider a joining shortcut. The residual
network can map equally through the following two alternatives when the dimensions do not match:

e Add channels directly by zero padding.
Multiply the W matrix and project it into a new space. The implementation is implemented by
1 x 1 convolution, which directly changes the number of filters of 1 x 1 convolution.

In order not to increase the network burden, we still choose to make a shortcut between the layers
of dimension matching. Combined with the network structure of MobileNetv1, the convolution layer
is the structure of step two and step one, alternately; the step size of layers 14-23 is one; and five
jump connections are added between the 14th layer and the 23rd layer to form a new residual block.
The final network structure is shown in Figure 4.

The 8th and 98th layers of the original network are route layers. The reason for this design is
that the deep layer network has a good expressive effect. Compared with the deep layer network,
the shallow layer network has a better performance. Based on this idea, this paper adjusts the
parameters of the original network and retains the route layer.

Appl. Sci. 2019, 9, 3746 7 of 20

The main contributions of our improvements are depth-wise separable convolution and residual

block. Their principles are given in the following text.
g gl

J’// L/ U// U// ‘&

._>+~ ——>+— -—>+~ ——>+»—' ' -
8y 43 V v
7 “ s

21314 1516 17 1819 20 a2 2425 26 27

ii\

,ly

i Convolution layer “d
Route layer b

W Up-sample layer 4

[Detection layer

@& Addition

® Concatenation
- Futher layers

_—\\-

A A\ A\ A\ AN

Figure 4. Network structure of the improved YOLOvV3.

2.2.1. Depth-Wise Separable Convolution

MobileNet is a model that reduces the size of the model and speeds up the inference. Depth-wise
(DW) convolution and point-wise (PW) convolution are used to extract features. These two operations
are also called depth-wise separable convolution, as shown in Figure 5. The benefit of this is that it is
theoretically possible to reduce the time complexity and spatial complexity of the convolutional layer.
It can be seen from Equation (3) that since size K of the convolution kernel is usually much smaller
than the number of output channels C,,, the computational complexity of the standard convolution is
approximately K? times that of the combination of DW and PW convolution [12].

. Depth-wise Separable CONV 1 1 1
Complexity Standard CONV 1 TR ©)

l

Depth-wise 33

RelU

Point-wise 1x1

1/ RelU

Figure 5. Structure of MobileNetv1.

The main idea is to decompose the traditional volume integral into a depth separable convolution
with 1 x 1 convolution. The depth separable convolution means that each channel of the input feature

Appl. Sci. 2019, 9, 3746 8 of 20

map corresponds to a convolution kernel, so that each channel of the output feature is only related
to the channel corresponding to the input feature map. This convolution operation can significantly
reduce the size of the model. As shown in Figure 6, for the original convolutional layer, the input
feature map has M channels, Dy x Dy is the size of the output feature map, the number of channels is
N, and there are N convolution kernels of size Dy x Dj. The convolution kernel convolves each feature
map of the input, and the convolution calculation of each feature map mainly depends on the size of
the generated feature map. Since each pixel of the feature map is output, it is a convolution operation.
When the outputis Dy x Dy, each feature map performs a Dy x Dy convolution operation. The amount
of computation per convolution is related to the size of the convolution kernel. Convolution is the
matrix multiplication, so the computation is Dy x Dy. Then, the calculation required for a convolution
kernel is Dy x Dy x Dy x Dy x M. If the number of convolution kernels is N, the total calculation
amount is Dy X Dy X Dy x Dy x M x N. For MobileNet’s convolution calculation, when the input
is a feature map of M channels, the operation is performed by Dy x D; convolutions. The output
feature map size is Dy X Dy, and the operation amount is Dy X Dy x Dy x Dy x M. The number
of convolution kernels is the same as that of the input channel, and there is no superimposition
between channels, just one-to-one correspondence. In the traditional convolution, M feature maps are
superimposed on each other, and all feature map inputs are convolved by N convolution kernels [13].

SAND ST

/

/ ayay4 1 . 1 , ,
/ / / /
// D J J J
D D o o |
«— N—> Dx «— M —>
(a) Standard convolution filters (b) Depthwise convolutional filters
M// ,// // ",// // ’/// / '//

S S S S

/S ,// /S / / //
o o O O

1 < N—>

(c) The 1 x 1 Convolutional filters called pointwise convolution
in the context of depthwise separable convolution

Figure 6. Structure of standard convolution filters and depthwise convolutional filters.

2.2.2. Resnet

The original network structure of YOLOv3 draws on the idea of the residual network. Darknet-53
goes from layer O to layer 74, including 53 convolution layers and 22 res layers. The res layers come
from ResNet. When the network layer becomes deeper and deeper, the parameter initialization
will generally move close to 0. When the parameters of the shallow network are updated during
the training process, it is easy to cause gradient dispersion or the gradient explosion phenomenon,
and shallow parameters cannot be updated. This phenomenon is not caused by over-fitting but by the
learning parameters of the redundant network layers that are not constantly mapping.

ResNet was jointly proposed by He K and Zhang X in 2015. ResNet takes inspiration from a new
idea. If we design a network layer and there is an optimal network level, the designed deep network
often has many redundant network layers. Then, we hope that these redundant layers can complete
the identity mapping and ensure that the input and output through the identity layer are identical.
The identity layer will be judged by the network when training. As shown in Figure 7, it can be seen
that x is the input to this layer of residual blocks, also known as the residual of F(x). x is the input

Appl. Sci. 2019, 9, 3746 9 0f 20

value, and F(x) is the output after the first layer of linear change and activation. Figure 7 shows that in
the residual network, before the second layer is linearly changed and activated, F(x) adds this layer of
input value x, and then activates and outputs. Adding x before the second layer activates the output
value. This path is called a shortcut connection. In general, ResNet changes the layer-by-layer training
of deep neural networks to phase-by-stage training [14]. The deep neural network is divided into
several sub-segments, each of which contains a relatively shallow number of network layers, and then
the shortcut connection method is used to make each small segment train the residuals. Each small
segment learns a part of the total difference (total loss) and finally reaches an overall smaller loss.
It controls the spread of the gradient well, as well as avoids the situation where the gradient disappears
or the explosion is not conducive to training [15].

Weight layer

Fﬂ‘:} RelLU

Weight layer

Fle)+x RelU

RelU

Figure 7. Residual learning: a building block.

The architectures of the plain network and the residual network are shown in Figure 8.
The difference is that, unlike the plain network, ResNet adds all jump connections and adds a shortcut
every two layers to form a residual block.

| |

conv conv

| !
conv conv

! =
conv conv

| |
conv conv

——
conv conv

| |
conv conv

} =

(a) Plain network (b) Residual network

Figure 8. Architectures of the plain network and residual network.

Appl. Sci. 2019, 9, 3746 10 of 20

3. Path Preprocessing of the Tennis Robot

After the detection of tennis balls, the improved YOLOv3 algorithm can print labels, confidence,
coordinates, and other information on the terminal. The coordinates include x, y, w, and k. x and
y represent the coordinates of the central point of the object, and w and h represent the width and
height, as shown in Figure 9a. YOLOv3 recognizes the coordinate information of the obtained object
and sends it to Kinect to extract the depth information. Kinect can acquire color image and depth
information. It can also transform depth image data into the actual depth information of each pixel.
According to the imaging principle of the Kinect camera, we can finally get the x, y, and z coordinates
in the real world for every tennis ball, as shown in Figure 9b, and calculate the distances between them.
Then, we can use the MCP method for path preprocessing.

sports ball : 86 %

(216.78312800525, 275.062612681875, 126.62146935125, 128.2291635372812)
sports ball : 62 %
(471.104980469875, 190.45710637625, 101.3672156754688, 166.3249699525) (0.4730464433889106, -08.1613147074119574, 0.8102521999783133)

(-0.2693832908427596, 0.10849983255300436, 0.6775163660543879)

(a) Two-dimensional coordinate information of tennis balls (b) Three-dimensional coordinate information of tennis
after the completion of YOLO detection balls relative to the camera (x—y-z)

Figure 9. Coordinate information of tennis balls.

3.1. Solving the Maximum Clique Problem by the Pointer Network and Backtracking Algorithm

In 1957, Hararv and Ross first proposed the deterministic algorithm for solving the maximum
clique problem. Since then, researchers have proposed a variety of deterministic algorithms to solve
the MCP. However, with the increase in the complexity of the problem, such as the vertices and edge
density, the deterministic algorithm cannot effectively solve these NP-hard problems.

In the late 1980s, researchers began to use heuristic algorithms, such as the sequential greedy
heuristic algorithm, genetic algorithm, neural network algorithm and so on, to solve the Maximum
Clique Problem and achieved satisfactory results in terms of time performance and results. The only
drawback is that it is not always possible to find the global optimal solution. Sometimes, we can only
find near optimal values [16].

The main method used in this paper is to combine the backtracking algorithm with the
pointer network.

The backtracking algorithm is also known as the “general problem solving method”. It can search
for all or any solution of a problem systematically. It is a systematic and jumping search algorithm.
This method, based on the root node, traverses the solution space tree according to the depth-first
strategy and searches for the solution satisfying the constraints. A process called “pruning” is used to
select nodes. When searching for any node in the tree, it first determines whether the corresponding
partial solution of the node satisfies the constraint conditions or exceeds the bounds of the objective
function. Then, it judges whether the node contains the solution to the problem. If not, it skips the
search for the subtree with the node as the root. The search continues along the subtree with the node
as its root according to the depth-first strategy.

Pointer networks, referred to as Ptr-Nets, are variants of the attention model and
sequence-to-sequence (Seq2seq) model. Instead of converting one sequence into another, they produce
a series of pointers to the elements of the input sequence. The most basic usage is to sort elements
of variable length sequences or collections. Pointer networks have been widely used to solve
combinatorial optimization problems and have achieved good results [17]. For example, Oriol V
solved TSP problems in [18] by using a pointer network. Gu S S solved the knapsack problem in [19].
Combining these papers, we find that pointer networks are effective for solving such problems. As a
result, we applied them to solve the maximum clique problem in this paper [20].

After training the pointer network, the maximum clique solution given by the network
can be obtained. However, since the prediction accuracy of the network is not satisfactory,
sometimes, the output result is not a clique or the clique is contained in these nodes. Therefore,

Appl. Sci. 2019, 9, 3746 110f20

we should further use BA to solve the prediction results. In this way, we can not only reduce the
dimensions of the original problem but also improve the accuracy of the output results.

3.1.1. Backtracking Algorithm
The basic steps of the Backtracking Algorithm for solving problems are as follows:

Define the solution space of the problem.
Determine the structure of the solution space that is easy to search.
Search for the solution space by the depth-first method, and remove invalid searches with the

Pruning function.

Given an undirected graph G, the problem of solving the MCP can be considered as the problem
of selecting a subset of the vertex set V of graph G. So, the subset tree can be used to represent the
solution space of the problem. The current extension node Z is located at the level i of the solution
space tree. Before entering the left subtree, it is necessary to make sure that every vertex from vertex i
to the selected vertex set has an edge connection. Before entering the right subtree, you must make
sure that there are enough optional vertices to make it possible for the algorithm to find a larger clique
in the right subtree.

The graph G is represented by the adjacency matrix, n is the vertex number of G, cn stores
the vertex number of the current clique, and bestn stores the vertex number of the largest clique.
Also,cn + n — i is the upper bound function that enters the right subtree. When cn + n — i<bestn,
a larger clique cannot be found in the right subtree. The right node of Z can be cut off by the Pruning
function [21].

For the graph shown in Figure 10, this process can be represented by Figure 11.

Figure 10. A graph containing five points.

bestn=0
cn=0

:1

bestn=3 ‘\
A

Figure 11. Tree for solving the maximum clique problem by the backtracking method.

Appl. Sci. 2019, 9, 3746 12 of 20

3.1.2. Architecture of Pointer Networks

Pointer networks are also Seq2seq models. They are based on an improvement in the attention
mechanism that overcomes the “output heavily dependent input” problem in the Seq2seq model.
The meaning of “output heavily dependent on input” simply means that the output sequence is
selected from the input. For different input sequences, the length of the output sequence depends on
the length of the input.

As shown in Figure 10, the method of selecting a point is called pointer. This converts attention
into a pointer to select elements in the original input sequence [22]. The attention mechanism learns
the weight relationship and the implicit state and then predicts the next output according to them.
Ptr-Net directly passes through softmax, pointing to the most likely output element in the input
sequence selection.

For the training data set, each line is a piece of data, the input is separated from the output by the
word “output”, and the input is a graph represented by a matrix. In the Pointer Network, the model
first defines four input parts, which are the input and length of the encoder, the prediction sequence,
and the length of the decoder. Then Ptr-Net processes the input and converts it to embedding, which is
the same length as the number of hidden neurons in the long short-term memory (LSTM). The solution
is to first extend the input and then call the function for 2D convolution. After processing the input,
the input shape changes to [batch, max _ enc _ seq — length, hidden _ dim] [23]. According to the
number of LSTM layers in the configuration, we build the encoder and input the processed input into
the model to get the output and the final state of the encoder [24]. After that, we add a start output
to the front output, and the start output of the addition will also be the initial input to the encoder,
as shown in Figure 12.

Unlike Seq2seq, the input to the Ptr-Net is not the embedding of the target sequence, but the
output of the encoder at the corresponding location is based on the value of the target sequence.
Similarly, a multi-layer LSTM network is built into the Ptr-Net, where we enter only one value for each
batch for each decoder and then loop through the entire decoder process. In the Ptr-Net, two arrays
are defined to hold the output sequence and softmax values for each output.

=y
v

v
'
v
v
'

|4—4—4:4—4—

v
{&B
!

v
v

|q—4—1—4—4—
|4—4—4—4—4—
|4—4—4—4—4—
|4—4—4—4—4—

|4—Q:4—4—4—

v
'
v
v
&3

> > > > > > > > > —>

TIIIIITTTT

aql a2 q3 a4 a5 a6 q7 a8 q9 q10

<« € €
|4—4—4—4—

T11T

q3 q4 q5 q6

|_,|
|_,|

B —i —

Figure 12. Solving the maximum clique problem (MCP) using pointer networks (encoder in blue,
decoder in red).

Appl. Sci. 2019, 9, 3746 13 0f 20

3.2. The Combination of Backtracking Algorithm and Pointer Networks

At first, we train the Ptr-Net to only get the solution to the MCP. We find that the accuracy is
not so satisfactory. After comparing the predicted answers and the optimal values of the Ptr-Net,
we find that the difference between them is not great. The output of the Ptr-Net very likely contains
the largest group.

So, we use a method that combines the Ptr-Net with BA. After the Ptr-Net predicts the answer,
a judgment is made on the result. If the output result is the optimal value of MCP, it is printed out
directly. If not, the maximum clique is continuously found in the predicted selected points by the BA
method. The flow chart is shown in Figure 13.

(start)
Y
Pointer Network

!

approximate solution

N Backtracking
Algorithm

'&f

solution |<€

Y
(end)

Figure 13. Flowchart of our method.

4. Experimental Results and Analysis
4.1. The Experiment of Tennis Ball Detection

4.1.1. Making the Tennis Ball Data Set

Our purpose was to make an intelligent robot that can automatically locate and pick up tennis
balls. Because the perspective of the robot is different from that of human beings and the shape
of the tennis balls is relatively singular, we did not use online tennis ball pictures to make data
sets, but rather, used a manual shooting method. In the process of production, we changed the
background, light, and angle and also the number of tennis balls on a picture to make the robot adapt
to the situation of multiple tennis ball recognition. At the same time, the training model correctly
distinguished tennis balls from other similar objects by using circular objects such as basketballs as the
background. The Label Image tool was used to make label files for the data sets and to train data sets.
We can see some examples of tennis ball data sets in Figure 14.

Appl. Sci. 2019, 9, 3746 14 of 20

(b) Pictures taken under different lighting conditions

Figure 14. Examples of tennis ball data sets.

4.1.2. Experimental Results and Analysis

During the training process, all models were iterated 2000 times by the same data set. The batch
was set to 64, and the number of subdivisions was set to 16. The initial learning rate of YOLOv3 was
0.001, and the rate of the other two models was 0.01. The evaluation criteria of the target detection
algorithms were mainly divided into the following: Recall, IoU (intersection over union), and Precision.
For a specific test set, P (Positive) target represents the detected target and correspondingly, N (negative)
represents the non-detected target. T (true) represents the target being detected and the result being
correct, and F (false) represents the target not being detected correctly. Thus, after a data set is detected,
the following four target results will be generated: TP, FP, TN, and FN. Their meanings are as follows:

TP (true positive): which should be detected and is detected.

FP (false positive): which should not be detected but is detected.

TN (true negative): which should be detected but is not detected.

FN (false negative): which should not be detected and is not detected.

Recall refers to the percentage of correctly detected samples. The formula for calculating the ratio

of total measurements is as follows: TP

R=_—"" . 4

TP+ FN @)

Precision refers to the correct detection of the detected target. The formula for calculating the
proportion of the number of measurements is as follows:

TP

P=TpFp

)

Appl. Sci. 2019, 9, 3746 15 of 20

The value of IoU can be understood as the coincidence degree between the predicted frame and
the marked frame in the original picture. It is a measure of the deviation of single target detection [15].

Figures 15-17 provide the IoU and Loss curves of the YOLOv3 algorithm, the YOLOv3 algorithm
after adding MobileNet, and the YOLOV3 algorithm with residual block and MobileNet separately.

T T T T T T T 1.0 —-
14t
13+ 0.8
11t
1.0} 5
4 2
108 <
g‘ c
s s
j=]
@
[-4
05
R
0.1
400 660 860 l,O‘UD 1‘2‘00 1,4‘00 1,6:00 l,BlOO 2,000 : 10,600 20,600 30,(‘)00 40,‘000 50,600 60,000
batches batches
(a) Loss curve of YOLOv3 (b) IoU curve of YOLOv3
Figure 15. Loss and IoU curves of YOLOv3.
14 - : - - , - ,
13+ s
L1f
1.0+
2
=
w08
g g
o f
z g
o
Q
0.5 o
(i B L (e ey e
01f
400 660 860 l,O‘UD 1‘2‘00 1,4‘00 1,6:00 l,B‘OO 2,000 o 10.600 20,;}00 30,600 40,600 50,;)00 601600 70,000
batches batches
(a) Loss curve of MobileNet-YOLOv3 (b) IoU curve of MobileNet-YOLOv3
Figure 16. Loss and intersection over union (IoU) curves of MobileNet-YOLOv3.
14 T T T T T T T
13} P
11
1.0
=
Qo
92 08 o
(=} >
;1' <
& s
o
05 &
[T
01lf
400 660 80‘0 l,O‘(}D 1‘2‘00 1,4‘00 1,6:00 l,B‘OO 2,000 : 10,[‘)00 20,(‘)00 30,(‘)00 40,600 50,600 60,000
batches batches

(a) Loss curve of MobileNet-Res-YOLOv3 (b) IoU curve of MobileNet-Res-YOLOv3

Figure 17. Loss and IoU curves of MobileNet-Res-YOLOvV3.

Appl. Sci. 2019, 9, 3746 16 of 20

From the above curves and images, it can be seen that the loss function decreases continuously
with training and finally approaches saturation. The final results are all 0.1. Especially for the
MobiletNet + ResNet + YOLO model, the final loss function is obviously less than 0.1. The IoU
curves show that the improved algorithm can use a bounding box to mark objects in the image well,
and the matching degree between the prediction frame and the actual frame is relatively high, which is
basically similar to the results of the original YOLOv3 network.

We recorded the Recall, IoU, and precision of three different models with a threshold of
0.5, and also compared their running speeds and weights. The speed was based on the average
time required to detect a picture, these two experimental results were compared under different
conditions. One was run on a PC with Intel Core i7-7700K CPU and NVIDIA GeForce GTX 1070 GPU,
64-bit operating system. The other was run on a laptop with Intel Core i5-6200U CPU, 64-bit operating
system without GPU.

Table 1. Performance comparison.

Recall IoU Precision Detection Speed(GPU/CPU) (s) Weight (M)

YOLO 67.70% 93.19% 77.18% 0.0322/12.59 246.3
MobileNet + YOLO 75.22% 87.48% 83.91% 0.0160/6.46 138.6
MobileNet + ResNet + YOLO 75.41% 88.95% 88.33% 0.0163/6.13 138.7

Table 1 shows that the biggest advantage of the improved algorithm is that its speed is about
twice as fast as that of the original YOLOV3 algorithm, and the size of the model is reduced by half.
Although the training parameters are reduced, the Precision of the model described in this paper is
also greater than that of the original YOLOv3 model.

We compared the detection results of different lighting conditions using our improved model
(MobileNet + ResNet + YOLOv3). There are three main situations:

Good outdoor light;
Dim background, such as a cloudy day or sunset;
Artificial lighting.

The examples of the test data sets are shown in Figure 18.

The precision of these three situations was 88.33%, 62.97%, and 77.78%. From Figure 18c, we can
see that in the case of dim light, the detection effect will become worse. If the light is very dim,
even tennis balls can not be detected. However, the presence of artificial light sources with good
illumination has little influence on the detection results. From these results, we can see that the
detection network needs good lighting conditions. In the case of clear illumination, the artificial light
has little influence on the detection results.

(@) Detection results under conditions of good light

Figure 18. Cont.

Appl. Sci. 2019, 9, 3746 17 of 20

(b) Detection results under conditions of a dim background

(c) Detection results under conditions of artificial lighting

Figure 18. Detection results of the improved model under different lighting conditions.

We also see that after training, the model can be well adapted to different detection environments
and backgrounds. In the presence of multiple tennis balls, it can still accurately locate each tennis ball
and obtain great detection results.

4.2. Experiment of the Solving Maximum Clique Problem

4.2.1. Data Structure and Generation of The MCP

In order to facilitate Ptr-Net training, we used a symmetric matrix to represent the connections
among vertices: “1” represents an edge connection between two vertices, “0” represents no connection.
According to this method, the graph shown in Figure 10 can be represented by the matrix shown below:

(6)

== O RO
[= N = i o B Y
_ O O = O
_ O O O =
O R =R

When making training data sets and test data sets, the input matrix is separated from the answers
of maximum cliques by the word “output”.
The steps of data set generation are as follows:

e The random matrix is used to represent the connections among nodes in the graph. At least two
points in the graph are connected. When the Matlab program randomly generates the matrix,
the probability of the value of each position in the matrix being “1” is more than 0.4.

Appl. Sci. 2019, 9, 3746 18 of 20

e One hundred sets of data representing the connections among graphs are generated, and the
MCP is solved by the backtracking algorithm method, and the answer obtained is regarded as the
optimal value.

The input matrix and the optimal result are stitched together into the text as the training data set.

e The above three steps are repeated to create the validation data set, which has the same format as
the training data set.

Data in five different dimensions (10, 20, 30, 40 and 45) were trained and tested. The training data
set and the test data set had one hundred sets of data respectively.

4.2.2. Experimental Results and Analysis

The maximum clique problem for different dimensions was trained at least 70,000 times with
one hundred sets of data. Since we used the BA to calculate the optimal value, the corresponding
accuracy rate was 100%. The results of the experiment for MCPs with 10, 20, 30, 40, and 45 dimensions
are shown in Table 2.

Table 2. Accuracy of results from different dimensions.

Dimension Method Time for 100 Groups (s) Accuracy

10d BA 0.636 /
Ptr-Net + BA 0.107 72.25%
20d BA 0.684 /
Ptr-Net + BA 0.219 83.46%
30d BA 1.166 /
Ptr-Net + BA 0.282 88.9%
40d BA 1.700 /
Ptr-Net + BA 0.418 78.6%
45d BA 2.120 /
Ptr-Net + BA 0.447 81.5%

In order to evaluate the effect of the training result of the model, “Accuracy” is defined as follows:
the sum of the number of points of the maximum clique solved by the model divided by the sum
of the number of points contained in the optimal result of the MCP. Its mathematical expression is
as follows:

Sumof B

Accuracy = Sumof C

X 100%,)
where B is the output answer after training and C is the optimal result.

It can be seen from the experimental data that the method of combining Ptr-Nets with BA can not
only solve the MCP but can also achieve an accuracy level of more than 70% when the dimension is
below 50. The performance is acceptable for real applications.

With the information shown in Table 2, we generated the time plots of the two algorithms for
solving the MCP, as shown in Figure 19. We can clearly see the advantage of the algorithm in terms of
time. For Ptr-Net, the solution of the problem can be calculated in batches after loading the model once.
However, for the traditional deterministic algorithm, the total computation time was superimposed
according to the amount of input data. As the dimension of the MCP increased, the time required for
Ptr-Net increased slowly.

Appl. Sci. 2019, 9, 3746 19 0f 20

2.5

15

0.5

10d 20d 30d 40d 45d

=t BA Ptr-Net+BA

Figure 19. Time graphs of the two algorithms for solving the maximum clique problem.

5. Conclusions

This paper used the lightweight network MobileNet with a separable convolution method
and added residual blocks. We showed that under the condition that the network structure is
reasonable, the redundant network parameters are removed and the operation speed is improved.
Finally, the speed is twice as fast as before, and the weight of the network is reduced to half of the
original. This will greatly speed up the rate of network model invocation for embedded devices and
realize real-time detection. Of course, while improving the speed, we also ensured that the accuracy
was satisfactory. In future work, we will continue to explore whether there are other methods to
improve the accuracy of single target recognition without expanding the number of calculations
required. The improved network will be more suitable for embedded development boards, such as the
PYNQ development boards produced by XILINX. We also used the methods of pointer network and
backtracking algorithm to pretreat the identified tennis balls, focused on the tennis balls by solving the
maximum clique problem, and proved its feasibility through experiments. These results provide a
good start for the application of the deep neural network in intelligent robots and hardware devices.

Author Contributions: Conceptualization, S5.G. and W.Z.; methodology, S.G., W.Z,, YJ. and Z.Y.; software,
W.Z,; validation, W.Z., Y.J. and Z.Y.; investigation, S.G. and Z.Y.; writing—original draft preparation, 5S.G., W.Z.
and Y.J.; writing—review and editing, S.G., W.Z., Y.J. and Z.Y.; visualization, W.Z. and Y.].; supervision, S.G.;
project administration, S.G.; funding acquisition, S.G.

Funding: The work described in the paper was supported by the National Science Foundation of China under
Grant 61876105.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gu,S,; Chen, X,; Zeng, W.; Wang, X. A Deep Learning Tennis Ball Collection Robot and the Implementation
on NVIDIA Jetson TX1 Board. In Proceedings of the 2018 IEEE/ ASME International Conference on Advanced
Intelligent Mechatronics (AIM), Auckland, New Zealand, 9-12 July 2018.

2. Deniz, O., Bueno, G.; Salido, J.; De la Torreb, F. Face Recognition using Histograms of Oriented Gradients.
Pattern Recognit. Lett. 2011, 32, 1598-1603. [CrossRef]

3. Ian, W.P; John, F. Facial Feature Detection using Haar Classifiers. |. Comput. Sci. Coll. 2006, 21, 127-133.

4. Krizhevsky, A,; Sutskever, I.; Hinton, G. ImageNet Classification with Deep Convolutional Neural Networks.
in Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe,
NV, USA, 3-6 December 2012.

http://dx.doi.org/10.1016/j.patrec.2011.01.004

Appl. Sci. 2019, 9, 3746 20 of 20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.
23.

24.

Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and
Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern
Recognition, Columbus, OH, USA, 23-28 June 2014; pp. 580-587.

Purkait, P.; Zhao, C.; Zach, C. SPP-Net: Deep Absolute Pose Regression with Synthetic Views. In Proceedings
of the British Machine Vision Conference (BMVC 2018), Newcastle, UK, 3-6 September 2018.

Girshick, R. Fast R-CNN. arXiv 2015, arXiv:1504.08083.

Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137-1149. [CrossRef] [PubMed]

Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection.
arXiv 2015, arXiv:1506.02640 .

Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21-26 July 2017; pp. 6517-6525.
Redmon, J.; Farhadi, A. YOLOvV3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767 .

Xu,].X,; Lin, T.C,; Yu, T.C,; Tai, T.; Chang, P. Acoustic Scene Classification Using Reduced MobileNet
Architecture. In Proceedings of the 2018 IEEE International Symposium on Multimedia (ISM), Taichung,
Taiwan, 10-12 December. 2018.

Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam,
H. Mobilenets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017,
arXiv:1704.04861.

Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-scale Image Recognition.
arXiv 2014, arXiv:1409.1556.

Szegedy, C.; loffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, Inception-ResNet and the Impact of Residual
Connections on Learning. arXiv 2016, arXiv:1602.07261.

Carraghan, R.; Pardalos, PM. An Exact Algorithm for the Maximum Clique Problem. Oper. Res. Lett.
1990, 9, 3750-382. [CrossRef]

Bello, I; Pham, H.; Le Q.V.; Norouzi, M.; Bengio, S. Neural Combinatorial Optimization with Reinforcement
Learning. arXiv 2016, arXiv:1611.09940.

Vinyals, O.; Fortunato, M.; Jaitly, N. Pointer Networks. arXiv 2015, arXiv:1506.03134.

Gu, S.; Hao, T. A Pointer Network Based Deep Learning Algorithm for 0-1 Knapsack Problem. In Proceedings
of the Tenth International Conference on Advanced Computational Intelligence (ICACI), Xiamen, China,
29-31 March 2018.

Gu, S.; Hao, T.; Yang, S. The Implementation of a Pointer Network Model for Traveling Salesman Problem on
a Xilinx PYNQ Board. In Proceedings of the International Symposium on Neural Networks, Minsk, Belarus,
25-28 June 2018; pp. 130-138.

Rolfe, T. Backtracking Algorithms. Dr. Dobbs |. 2004, 29, 48-51.

Kool, W.; Hoof, H.V.; Welling, M. Attention Solves Your TSP, Approximately. Statistics 2018, 1050, 22.
Keneshloo, Y.; Tian, S.; Reddy, C.K.; Ramakrishnan, N. Deep Reinforcement Learning For Sequence to
Sequence Models. arXiv 2018, arXiv:1805.09461.

Bay, A.; Sengupta, B. StackSeq2Seq: Dual Encoder Seq2seq Recurrent Networks. arXiv 2017, arXiv:1710.04211.

® (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.1016/0167-6377(90)90057-C
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Tennis Ball Detection with Improved YOLOv3 Algorithm
	Brief Introduction to YOLO
	Configuration of the Improved Network Structure
	Depth-Wise Separable Convolution
	Resnet

	Path Preprocessing of the Tennis Robot
	Solving the Maximum Clique Problem by the Pointer Network and Backtracking Algorithm
	Backtracking Algorithm
	Architecture of Pointer Networks

	The Combination of Backtracking Algorithm and Pointer Networks

	Experimental Results and Analysis
	The Experiment of Tennis Ball Detection
	Making the Tennis Ball Data Set
	Experimental Results and Analysis

	Experiment of the Solving Maximum Clique Problem
	Data Structure and Generation of The MCP
	Experimental Results and Analysis

	Conclusions
	References

