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Abstract: Massive IoT including the large number of resource-constrained IoT devices has gained
great attention. IoT devices generate enormous traffic, which causes network congestion. To manage
network congestion, multi-channel-based algorithms are proposed. However, most of the existing
multi-channel algorithms require strict synchronization, an extra overhead for negotiating channel
assignment, which poses significant challenges to resource-constrained IoT devices. In this paper,
a distributed channel selection algorithm utilizing the tug-of-war (TOW) dynamics is proposed
for improving successful frame delivery of the whole network by letting IoT devices always
select suitable channels for communication adaptively. The proposed TOW dynamics-based
channel selection algorithm has a simple reinforcement learning procedure that only needs to
receive the acknowledgment (ACK) frame for the learning procedure, while simply requiring
minimal memory and computation capability. Thus, the proposed TOW dynamics-based algorithm
can run on resource-constrained IoT devices. We prototype the proposed algorithm on an
extremely resource-constrained single-board computer, which hereafter is called the cognitive-IoT
prototype. Moreover, the cognitive-IoT prototype is densely deployed in a frequently-changing
radio environment for evaluation experiments. The evaluation results show that the cognitive-IoT
prototype accurately and adaptively makes decisions to select the suitable channel when the real
environment regularly varies. Accordingly, the successful frame ratio of the network is improved.

Keywords: reinforcement learning; multi-armed bandit; IoT; distributed channel selection

1. Introduction

Massive Internet of Things (IoT) has gained great research attention. Its objective is to connect
a wide range of devices to share data and information with each other. Massive IoT targets various
applications such as smart cities, environmental monitoring, and health-care monitoring systems.
Computing Technology Industry Association (CompTIA) has predicted that the number of connected
devices will reach over 50 billion units by 2020 and 125 billion by 2030 [1]. However, the majority of
such connected devices have low processing power, limited storage capacity, and energy constraints.

The network congestion becomes an issue as the sheer number of connected devices increases
over a network. IoT devices generate enormous traffic on the communication path, which creates
network congestion. To manage network congestion, a multi-channel technology is proposed to be
applied to the wireless communication network, which can benefit from the parallel transmission and
reduced interference. Numerous multi-channel-based algorithms [2,3] are proposed to dynamically
select channels for communication for improving the IoT network performance. All these related
works are proposed based on time-slotted channel hopping (TSCH), which is a mechanism to improve
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the reliability of an IoT network and included in the IEEE 802.15.4e standard [4]. The fundamental
principle of TSCH is the scheduling of the time slots and channels for each communication in an
IoT network, which can simultaneously decrease the frequency of communications and improve the
network performance.

However, most of the existing multi-channel algorithms require strict synchronization,
an extra overhead for negotiating channel assignment, which poses significant challenges
to resource-constrained IoT devices. In addition, the current available IoT devices,
especially resource-constrained IoT devices, have only one simple half-duplex radio transceiver,
which does not satisfy the strong assumptions of operating on multiple channels simultaneously in
most of existing works.

In contrast, to implement self-decision and self-learning in a wireless network system, recently,
numerous reinforcement-learning-based approaches have been proposed to improve the wireless
communication systems. In [5], a reinforcement learning solution and simulation analysis were
given for heterogeneous cellular networks to select multiple radio access technologies (RAT).
Channel assignment schemes were proposed for cognitive radio networks (CRNs) that address the
tradeoff of rate maximization and network connectivity in [6,7]. The problem of assigning channels
has been modeled as a multi-armed bandit (MAB) [8] problem, and accordingly, the MAB algorithm
was proposed to explore and exploit suitable channel assignment.

The work in [9–11] proposed an efficient, yet simple MAB algorithm, called the tug-of-war
(TOW) dynamics, which could make decisions accurately and rapidly following a change in the
environment. The work in [12,13] proposed to apply the TOW dynamics to a cognitive radio system
and WLAN. In the above-mentioned related work, the experiments showed network performance
improvement on the application of the TOW dynamics.

In this paper, a reinforcement-learning-based channel selection algorithm utilizing the TOW
dynamics [9–11] is proposed. In this proposal, a simple learning procedure for updating the
reward estimates only needs to check whether the ACK frame is received or not. Meanwhile,
minimal memory and computation capability for the learning procedure are required. Thus, the
proposal can run on resource-constrained IoT devices. The proposal only focuses on the medium
access control (MAC) layer procedure modification. We prototype the proposed algorithm on
a resource-constrained single-board computer (SBC), which is hereafter called the cognitive-IoT
prototype. Moreover, evaluation experiments deploying the cognitive-IoT prototype with high density
in a frequently-changing radio environment are conducted. The evaluation results show that the
cognitive-IoT prototype accurately and adaptively makes decisions to select channels respecting
fairness among IoT devices when the real environment regularly varies.

2. IoT System

2.1. IEEE 802.15.4-Oriented Wireless Technology for IoT

The IEEE 802.15.4 standard [4], characterized by low power, low cost, high reliability, and
simplicity in the industrial, scientific, and medical (ISM) frequency band, is one of the key enabling
technologies for IoT deployment. Therefore, the IEEE 802.15.4-oriented wireless devices have
been widely deployed in many applications such as smart homes, environmental monitoring,
and industrial automation.

The IEEE 802.15.4g amendment [14] defines new PHY in the 920-MHz band for smart utility
application and focuses on range. Three alternative PHYs, i.e., frequency shift keying (FSK), offset
quadrature phase shift keying (O-QPSK), and orthogonal frequency division multiplexing (OFDM) are
supported. FSK and O-QPSK are conventional well-known modulation techniques, while OFDM is
commonly used in advanced systems. Any IEEE 802.15.4g-compliant chip must implement a PHY
with two-FSK modulation and a 50-kbps data rate. All other PHYs are optional. Each PHY allows
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further parametrization with data rates ranging from 6.25 kbps–800 kbps. In this work, the proposal
only focuses on the MAC layer procedure, which is introduced as below.

Depending on the massive IoT requirements, a PAN consists of one PAN coordinator or a gateway
and multiple sensors and transmits the data to the coordinator or gateway with a simple star topology.
In addition, the carrier sense multiple access algorithms with collision avoidance (CSMA/CA)
algorithm is utilized as the radio channel access method for IoT devices. To satisfy the requirements of
massive IoT, typically, a non-beacon-enabled mode, employing a simple unslotted CSMA/CA and
direct transmission, is used to relieve the strict synchronization and minimize unnecessary protocol
overheads. Three variables for attempting transmission, i.e., number of back-offs (NB), contention
window (CW), and back-off exponent (BE), are maintained for each device. NB is the number of times
required to back-off while attempting the current transmission based on the CSMA/CA algorithm. CW
defines the number of back-off periods that need to be clear of the channel activity before transmitting.
BE is the back-off exponent to determine the number of slots that a device has to wait before accessing
a channel.

Figure 1 describes an unslotted CSMA/CA algorithm. Initially, the NB, CW, and BE are initialized
as 0, 2, and macMinBE, respectively. Then, the device delays for a random back-off duration in the
range from 0–2BE − 1. Subsequently, the PHY layer detects whether the channel is idle or not by
performing a clear channel assessment (CCA). If the channel is assessed as idle, the MAC layer
proceeds with the remaining CSMA/CA algorithm steps, including the frame transmission and
acknowledgment (ACK) frame reception. If the ACK is received correctly, it terminates with a
transmission success status, otherwise it terminates with a transmission failure status. If the channel
is assessed to be busy, the MAC layer increments both the NB and BE by one, ensuring that the
BE ≤ aMaxBE, and the CW is set as two. If NB ≤ macMaxCSMABacko f f s, the CSMA/CA algorithm
starts the back-off again. Otherwise, it terminates with a failure status.

Figure 1. Unslotted CSMA/CA algorithm of IEEE 802.15.4. CCA, clear channel assessment.
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2.2. System Model

In this work, the studied IoT system model is considered to be maximally reasonably simple for
the target applications of massive IoT, such as a monitoring application. First, an IoT network, where
IoT devices that can only select one of multiple available channels to deliver the frame each time, was
established. Extremely simple applications such as a switch or a sensor were mainly considered for
each resource-constrained IoT device. Therefore, it was not intended for exchanging numerous frames
with much resource usage and large memory capacity. Consequently, these IoT devices were resource
constrained, using a battery, equipping one simple half-duplex transceiver, and turning off the radio
periodically to save energy. Thus, it was practically difficult to run a complex algorithm on it.

Moreover, generally, IoT network topologies are star- or tree-based, with the data collected by
groups of sensors and sent to a collector or border router. In this work, the IoT devices are assumed to
be associated with a gateway with a star topology, as shown in Figure 2, because the star topology
is simple enough so that power consumption could be reasonably low for resource-constrained IoT
devices. To minimize power consumption, resource-constrained IoT devices assumed in this work do
not conduct any complicated process such as channel measuring, data frame receiving, or forwarding.

Figure 2. System model.

In addition, each IoT device accesses the channel for transmission following the procedure of IEEE
802.15.4 non-beacon-enabled mode, in which synchronization is not necessary. Each time an IoT device
wakes up when it has to transmit a data frame, it selects a channel for the data frame transmission and
performs the CSMA/CA algorithm (see Figure 1), as discussed in Section 2.1, to send the data frame.
Regardless of the success of the current frame transmission, the IoT device goes to the sleep mode for a
predetermined “sleep interval” duration to save power.

3. Problem Formulation

3.1. Multi-Armed Bandit Problem

MAB [8] is a statistical model that balances exploration and exploitation to solve recurring decision
problems. A common real-world comparison for this problem is a gambler facing a collection of slot
machines (“bandits”) at a casino, with each machine having an “arm” to pull. Each machine has an
unknown distribution and expected payout, and the goal is to select arms that maximize the winnings
by a sequence of lever pulls. After each attempt, the gambler must decide which slot machine to play
given the current knowledge about their payouts.

Formally, an MAB is defined with K arms with unknown reward probabilities (p1, p2, ..., pK),
which is the fundamental challenge of solving the MAB problem. At each round t, the player plays
arm k ∈ 1, ..., K and obtains a reward. Therefore, the player has to play machines strategically to both
maximize the reward and discover information about the arm rewards, denoted as Xk. The target is to
maximize the accumulated rewards, E {∑∞

t=1 Xt}.
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3.2. Channel Selection Problem as an MAB Problem

According to the system model introduced in Section 2.2, the objective of the distributed channel
selection problem for IoT devices is to maximize the total frames successfully transmitted via an
optimal channel selection strategy. We assumed distributed channel selection processes for multiple
IoT devices with no prior coordination. Each IoT device can select a set K = {1, ..., k} of available
channels. Here, k refers to the index of the channel. For simplicity, we assumed that each IoT device
can access one channel at a time. The distributed channel selection problem of IoT device belongs to
the class of MAB.

The challenge in distributed channel selection problem is similar to that in the MAB problem:
an IoT device (player) has K channels (slot machines), the kth of which has successful frame
transmission possibility pk, k ∈ K (reward probability). The IoT device does not know the values of the
pks and must sequentially select a channel to send the data frame (select a machine to play). The target
is to maximize the total successful frame transmission (overall gain) for a total of T transmissions
(plays). The distributed channel selection problem and MAB problem share the same concept, which
is summarized in Table 1.

Table 1. Channel selection problem as the multi-armed bandit (MAB) problem.

MAB Problem Distributed Channel Selection Problem

Player IoT device
Slot machine Wireless channel
Reward: coin Reward: number of transmission successful frames over the selected channel
Objective: maximize the total number of coins Objective: maximize the total number of successful frame transmissions

An IoT device selects channel k∗(t) ∈ K at current time t. If the IoT device sends the data frame
over a selected channel k∗ successfully, the selected channel, k∗, receives a reward. We assume that
the IoT devices follow a generalized version of the unslotted CSMA/CA algorithm introduced in
Section 2.2 For more details, if channel k∗(t) is selected, an IoT device will wait the time specified by
the generated random number. At the end of the waiting period, the IoT device senses the selected
channel again, and if it is found to be busy, it will generate another random number following
the CSMA/CA algorithm. It will then detect the selected channel, k∗(t), again until reaching the
predetermined maximum challenge time. If the selected channel, k∗(t), is still found busy when
reaching the maximum retry time, the IoT device will discard the data frame and recognize the current
data frame transmission as failed.

However, if the selected channel, k∗(t), is assessed as idle, the data frame will be transmitted by
the IoT device. Moreover, if the ACK frame is received successfully from the destination of the data
frame transmitted previously, then the IoT device will recognize the transmitted data frame over the
selected channel, k∗(t), as a success. If the ACK frame is not received successfully from the destination
of the data frame transmitted previously, then the IoT device will recognize the transmitted data frame
over the selected channel, k∗(t), as failed. Regardless of the success of the current data transmission,
the IoT device will enter sleep and possibly select a different channel to access when it wakes up the
next time.

The challenge stems from the uncertainty in the successful frame transmission probability, pk(t),
imposing a trade-off between the exploration learning pk(t), and exploitation by selecting the channel
with the highest estimated successful frame transmission probability, pk(t), based on the currently
available information. An IoT device employs a strategy that will select channel k ∈ K to access
at current time t according to any possible causal information pattern obtained from the previous
t− 1 observations. This is done to maximize the accumulated reward, Xk(t), i.e., the total successful
frame transmission.
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4. TOW Dynamics-Based Strategy

Many algorithms [15–18] have been proposed to solve the MAB problem. In this paper,
the strategy used to solve the distributed channel selection problem is referred to the tug-of-war (TOW)
dynamics [9–12]. Despite the simplicity, the high efficiency of TOW dynamics has been analytically
validated in making a series of decisions for maximizing the total sum of stochastically-obtained
rewards in an environment where the reward probability frequently changes [9–12]. The main
methodology of [9–12] is summarized below. The essential element of the TOW dynamics is the
consideration of a volume-conserving physical object, e.g., the incompressible liquid (blue) is assumed
in a branched cylinder shown in Figure 3, which implies a non-local correlation between the terminal
parts. Specifically, the volume increase in one part is immediately compensated by the volume decrease
in the other part(s). Here, the n-machine MAB is considered. For each machine (branch) k at time t, let
Xk(t) correspond to the displacement of machine k. Thus, the reward estimates of each machine can
be obtained by Equation (1),

Qk(t) = Nk(t)− (1 + ω)Lk(t) = Qk(t− 1) + ∆ Qk(t) (1)

where k ∈ (1, ..., n). Here, Nk denotes the accumulated counts of selections of machine k, while Lk
denotes non-rewarded counts of machine k until time t. ∆ Qk(t) is given by Equation (2).

∆Qk(t) =

{
+1 if rewarded

−ω if non-rewarded
(2)

Figure 3. tug-of-war (TOW) dynamics for n-machine MAB.

Accordingly, based on the conservation laws in TOW dynamics, the displacement of machine k
can be estimated by Equation (3),

Xk(t + 1) = Qk(t)−
1

n− 1 ∑
k′ 6=k

Qk′ (t) + osck(t) (3)

where n is the total number of arms. The incompressible liquid oscillates autonomously according to
Equation (4) [12]. There are many possibilities of adding the oscillations. In [11], the influence of osc
on the efficiency of decision making as studied, which is outside of the scope of this paper. For the
sake of simplicity, we used A = 0.5 for all machines in this paper.

osck(t) = Acos(2πt/n + 2(k− 1)π/n) (4)
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The estimated reward probability, denoted as pk(t), can be obtained by Equation (5),

pk(t) =
Rk(t)
Nk(t)

. (5)

where Rk(t) = Nk(t) − Lk(t) counts the number of times of getting rewards when machine k is
played Nk times until time t. Consequently, the TOW dynamics-based strategy evolves according to
a particular simple rule: if machine k is played at each time t, +1 or −ω is added to Xk(t + 1) when
rewarded and non-rewarded, respectively. To explore the appropriate weight parameter of ω, the
expected value of reward estimates of machine k can be obtained by Equation (6).

E[Qk(t)] = {pk −ω(1− pk)}Nk (6)

Here, the highest and the second highest estimated reward probability among n machines can be
obtained given by Equation (5), denoted as p1st and p2nd, respectively. Accordingly, the highest and the
second highest expected value of reward estimates among n machines can be obtained by Equation (6).
To achieve always selecting the machine with the highest reward estimates, the following forms could
be expressed,

p1st −ω(1− p1st) > 0

p2nd −ω(1− p2nd) < 0
(7)

and these expressions can be rearranged into the form:

p1st <
ω

1 + ω
< p2nd (8)

In other words, the weight parameter ω should satisfy the above condition Inequality (8) so that
the selection correctly represents the largest reward estimates. One way of ensuring Inequality (8) is to
take an ω that satisfies Equation (9).

ω

1 + ω
=

p1st + p2nd
2

. (9)

From Equation (9), we obtain the appropriate value of weight parameter ω given by Equation (10)
to use the TOW dynamics-based strategy for selecting the correct machine that maximizes the reward.

ω =
p1st + p2nd

2− p1st − p2nd
. (10)

It is implied from the above description that the TOW algorithm has an equivalent learning rule
for a system that can update the reward estimates simultaneously, which would be able to make
decision with high efficiency for a variety of real-world applications. In [12,13], the TOW dynamics
was proposed to be utilized in wireless cognitive radio and WLAN systems respectively to improve
the multi-user channel allocations of the cognitive radio efficiently.

In this paper, the TOW dynamics-based strategy is proposed to solve the distributed channel
selection problem in massive IoT, which is modeled as the MAB problem (see Section 3.2). The
objective is to maximize the total successful frame transmissions. The TOW-dynamics-based strategy
is applied to explore the appropriate channel selection in the proposal by simply checking the ACK
frame reception. The learning rule of the proposal is based on Equation (1).

Meanwhile, the estimated reward probability pk(t) (see Equation (5)) is actually obtained by
Equation (11) according to the massive IoT system procedure in the proposal.

pk(t) =
No. of ACK received over channel k until time t

No. of data frame sent over channel k until time t
(11)
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Then, the appropriate ω can be explored as given by Equations (10) and (11).
In addition, because the wireless channels are frequently changing, a parameter, denoted as the

forgetting ratio α, is used for controlling how much the past experiences influence. Then, Qk(t) is
proposed to be rewritten as Equation (12).

Qk(t) = αQk(t− 1) + ∆ Qk(t) (0 < α ≤ 1) (12)

Above, the closer α is to zero, the fewer estimated Qk(t) are influenced by the past experiences.
In contrast, the closer α is to one, the more estimated Qk(t) are influenced by the past experiences.
Accordingly, Xk(t) of each available channel can be determined by Equation (3). Then, the IoT device
will select the channel, k∗ = arg maxk∈K Xk(t + 1), once it wakes up the next time.

5. Proposal: TOW Dynamics-Based Channel Selection Algorithm and Its IoT
Prototype Implementation

In this section, the proposed TOW dynamics-based channel selection algorithm and its prototype
implementation are described. The proposed algorithm works extremely simply. Accordingly,
only minimal memory and computation capability are necessary to implement the algorithm on
a resource-constrained IoT device. The IoT device conducts the proposed channel selection algorithm
to update the accumulated reward estimates, Xk(t + 1), of the all available channels simultaneously
following the learning process described in Section 4.

Based on the system model and problem formulation introduced in Sections 2.2 and 3.2
respectively, the IoT device initially wakes up and randomly selects a channel from the available
K channels. As mentioned in Section 3.1, if the IoT device sends the data frame over selected channel
k∗ and receives the ACK frame from the destination, then the IoT device will recognize the data
transmission as a success over the selected channel, k∗, which implies that it is rewarded, and ∆Qk∗

given by Equation (2) is set as +1. Otherwise, if the IoT device does not receive the ACK frame,
it will recognize the data transmission over the selected channel, k∗, as failed, which implies that it is
unrewarded, and ∆Qk∗ is set as −ω(t).

Figure 4 shows the flowchart of the proposed procedure for each IoT device. Essentially, the
proposed procedure follows the same procedure as that of the non-beacon-enabled mode of IEEE
802.15.4. Therefore, the IoT device periodically goes to the sleep mode to save power after sending a
data frame. Each IoT device initializes Qk(0), Rk(0), and Nk(0) at t = 0. Once the IoT device wakes
up at t = 0, it sends the data frames over the selected channel k∗(0) = arg maxk∈K Xk(0). Because
the Xk(0) is randomly set to the same value for all available channels initially, the IoT device actually
randomly selects a channel to send data frames at t = 0. Meanwhile, the count of transmissions over
channel k∗(0), denoted as Nk∗(0), is incremented by one.

If the IoT device receives the ACK frame successfully, the channel k∗(0) is rewarded,
and ∆Qk∗(0) = +1 is added to Qk∗(0). Meanwhile, the counts of rewards Rk∗(0) is incremented by
one accordingly. Otherwise, the selected channel k∗(0) is unrewarded, and ∆Qk∗(0) = −ω(0) is added
to Qk∗(0) for updating. Regarding those unselected channels k(k 6= k∗) at t = 0, ∆Qk(k 6=k∗(0))(0) = 0.
The reward estimates of the unselected channels are given by Qk(k 6=k∗(0))(1) = Qk(0) accordingly.

Then, Xk(1) of each available channel is updated by Equation (3) for the next time t = 1.
Meanwhile, the reward probability estimate of the selected channel k∗, i.e., pk∗(1), is updated for
the next time t = 1 according to Equation (11). In addition, the appropriate value of weight parameter
ω(1) is also updated adaptively based on Equation (10) for the next time t = 1 Then, the IoT device
goes to sleep mode again and wakes up at t ++ (t = 1 here) to send a data frame over the selected
channel with the highest Xk(1), which has been calculated at t = 0.

We implemented the proposed channel selection algorithm on an SBC shown in Figure 5. As
described above, the cognitive-IoT prototype only needs to receive the ACK frame to explore the
channel selection strategy. Concurrently, the proposed TOW dynamics-based learning process only
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requires adding one or subtracting ω to update the reward estimate. Therefore, to implement the
proposal, only addition and subtraction are necessary based on the procedure of the proposal.
Thus, minimal memory and computation capability are enough for prototyping the proposed
reinforcement-learning-based channel selection algorithm. More details of the processes of the
algorithm running on the cognitive-IoT prototype are summarized in Algorithm 1.

Figure 4. Flowchart of the proposed scheme.

Figure 5. Cognitive-IoT prototype.
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Algorithm 1 TOW dynamics-based channel selection algorithm for the cognitive-IoT prototype m ∈ M.

1: Initialize Qk(0), Rk(0), Nk(0).
2: while wake time t = 1, 2, 3... is not expired do

3: Initiate channel access parameters, i.e., NB, CW, BE
4: Select channel k∗ = argmaxXk(t)(∀k ∈ K)
5: while NB < macMaxCSMABacko f f s do

6: Delay for random (2BE − 1)
7: Perform clear channel assessment (CCA)
8: if Channel is assessed as idle then

9: Transmit the data frame
10: Nk∗(t) + +
11: if the data frame is transmitted, and the corresponding ACK frame is received then

12: Data transmission succeeded
13: Set ∆Qk∗(t) = +1
14: Increment Rk∗(t) by one (Rk∗(t) + +)
15: else

16: Data transmission failed
17: Set ∆Qk∗(t) = −ω(t)
18: end if
19: Update Qk(t) given by Equation (12)
20: Update Xk(t + 1) given by Equation (3)
21: Update pk∗(t + 1) given by Equation (11)
22: Update ω(t + 1) given by Equation (10)
23: else if Channel is assessed as busy then

24: Update NB = NB + 1 and BE = min(BE + 1, macMaxBE)
25: Continue
26: end if
27: end while
28: Enter sleep mode for 1000 ms
29: t = t + 1
30: end while

The cognitive-IoT prototype was developed on a well-used SBC, Lazurite 920 MHz [19]. Lazurite
is equipped with the IEEE 802.15.4g radio-compatible transceiver supporting a 50-kbps data rate in the
920-MHz band. An ultra-low power 16-bit microcontroller (ML620Q504H) and 64 KB ROM are used
in Lazurite. In addition, Lazurite’s operating voltage range is 1.8 V∼5.5 V, while the operating current
range is 7 µA∼mA The photographs of the cognitive-IoT prototype are shown in Figure 5.

6. Performance Evaluation

To validate that the cognitive-IoT prototypes make the decisions to select the suitable channels
to transmit adaptively, a series of experiments were conducted. A photograph of the experiment
setting is shown in Figure 6. The cognitive-IoT prototypes (see Figure 7) were deployed in a 1 m × 1 m
area with high density, where they communicated with three gateways (see Figure 8) operating on
different channels with a star topology, following the proposed procedure introduced in Section 5.
The deployment and topology were static throughout the experiments.
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Figure 6. Photograph of the experiment setting.

Figure 7. Cognitive-IoT prototypes.

Figure 8. Gateways.

In addition, the bandwidth of all three available channels was 200 kHz. Each IoT node had
a 1000-ms sleep interval. α was chosen as 0.995 in the experiments. Table 2 summarizes the
experiment parameters.
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Table 2. Experiment Parameters.

Parameters Worth

Available channels 924.6 MHz (CH44), 925.8 MHz (CH50), 927.0 MHz (CH56)
Number of cognitive-IoT prototypes 30

Data rate (kbps) 50
Transmission power (mw) 20

Sleep mode interval of the cognitive-IoT prototype (ms) 1000
α 0.995

Furthermore, to validate that the cognitive-IoT prototypes select suitable channels adaptively, the
externally-offered loads that were generated by the IEEE 802.15.4e IoT devices were added to evaluate
the effectiveness of the cognitive-IoT prototypes in four different test scenarios, which are summarized
in Table 3. The sleeps internal of all the IEEE 802.15.4e IoT devices was set as 100 ms.

Table 3. Externally-offered load added in the experiment environment.

Test Scenario Details

Ld = (0, 0, 0) No externally-offered load added

Ld = (0, 2, 3) Two IEEE 802.15.4e IoT devices operating on CH50 are added, and three
IEEE 802.15.4e IoT devices operating on CH56 are added

Ld = (0, 1, 4) One IEEE 802.15.4e IoT device operating on CH50 is added, Four IEEE
802.15.4e IoT devices operating on CH56 are added

Ld = (0, 0, 5) Five IEEE 802.15.4e IoT devices operating on CH56 are added

First, to evaluate that the cognitive-IoT prototypes can improve the successful frame delivery
of the network by adaptively selecting the suitable channel to send the frame, the Frame Successful
Ratio (FSR) (see Equation (13)) was compared with that of the evenly assigned (EA) IoT devices. Here,
the EA IoT devices represent the IEEE 802.15.4e IoT devices on which we implemented the standard
procedure of IEEE 802.15.4e on the same SBC with the cognitive-IoT prototype shown in Figure 5.
These EA IoT devices were set up to operate statically on the assigned channels where devices were
EA on each available channel. Because the EA IoT devices operated based on the standard procedure
of IEEE 802.15.4e, the EA IoT devices were not be able to change their channel once their operating
channel was pre-determined. Each EA IoT device periodically went to sleep to save energy, which is
the same as the cognitive-IoT prototype. The sleep intervals of all the EA IoT devices were set to the
same as those of the cognitive-IoT prototypes, i.e., 1000 ms.

FSR =
∑M

j=1 ∑K
i=1 Rj

i

∑M
j=1 ∑K

i=1 N j
i

(13)

where M is the number of devices and, accordingly, j is the index of the device. Meanwhile, K is the
number of available channels, and i is the index of the available channel. The FSR results are shown in
Figure 9. In the Ld = (0, 0, 0) test scenario, the FSR of the cognitive-IoT prototype was practically the
same as that of the EA IoT devices. As for the other test scenarios with an added externally-offered
load, i.e., Ld(0, 2, 3), Ld(0, 1, 4), and Ld(0, 0, 5), the FSR results of the cognitive-IoT prototypes were
typically higher than those of the EA IoT devices. This was because the cognitive-IoT prototypes
generally adaptively selected appropriate channels to send the data frames successfully, whereas the
EA IoT devices used the assigned channels, which became congested and failed to send the data
frames. It can be stated that by employing the proposed TOW-dynamics-based algorithm to select
suitable channels adaptively, the cognitive-IoT prototype improved the FSR of the network.
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Figure 9. Frame Successful Ratio (FSR) results.

Second, because it was important for the IoT devices to send the data frames unbiasedly,
the well-used Jain’s fairness index (FI) (see Equation (14)) for the data transmission of the IoT devices
was measured.

FI(p1, p2, ..., pM) =
(∑M

j=1 pj)2

M ∑M
j=1(pj)2

(14)

where M is the number of devices and, accordingly, j is the index of device, while 0 ≤ FI ≤ 1, A larger
value represents a more reasonable frame transmission achieved by the IoT devices. Figure 10 shows
the results of the FIs of the cognitive-IoT prototypes and EA IoT devices.

Figure 10. FI results.

As shown in Figure 10, the FI values of both the cognitive-IoT prototypes and EA IoT devices
were nearly one when all the available channels were equivalently “idle”, i.e., Ld: (0, 0, 0). However,
for the other test scenarios, i.e., Ld: (0, 2, 3), Ld: (0, 1, 4), and Ld: (0, 0, 5), the FI values of the EA IoT
devices decreased because some of the EA IoT devices failed to send the data frames owing to channel
congestion, whereas some of them can do this successfully This led to unfairness in the EA IoT devices.
By contrast, in all the test scenarios, the FI values of the cognitive-IoT prototypes were typically kept
nearly one.
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Furthermore, for validating that the cognitive-IoT prototypes adaptively selected the channels,
in the experiments, the number of successful frame transmissions over each available channel was
observed. We initiated the experiment with test scenario Ld: (0, 0, 0) and then changed the test
scenarios in the middle of the experiment, i.e., testing Ld: (0, 0, 5) for 10 min, Ld: (0, 1, 4) for 15 min, Ld:
(0, 2, 3) for 15 min, and Ld: (0, 0, 0) for 15 min subsequently (see Figure 11). The results were tracked
and are shown in Figure 11. It can be observed from Figure 11 that the number of successful frame
transmissions over the CH56 decreased to almost zero immediately after the test scenario changed
to Ld: (0, 0, 5) when an externally-offered load was added to CH56. In addition, it is observed from
Figure 11 that the cognitive-IoT prototypes started to select CH56 again when the externally-offered
load became lighter, i.e., Ld: (0, 1, 4) and Ld: (0, 2, 3), than before, i.e., Ld: (0, 0, 5). It can be stated that
the cognitive-IoT prototype achieved selecting the optimal channel accurately and adaptively.

CH44 CH50 CH56
Ld(0, 0, 0)

Ld(0, 0, 5) Ld(0, 1, 4) Ld(0, 2, 3) Ld(0, 0, 0)

Figure 11. Number of frame transmissions over each available channel.

7. Conclusions

In this paper, a reinforcement-learning-based channel selection algorithm applying TOW
dynamics was proposed. The proposal had a simple learning processes that only needed to check
whether the ACK frame was received to update the reward estimates. Concurrently, simple learning
processes only needed minimal computation capability and memory. Thus, the proposal was able to
run on resource-constrained IoT devices. We prototyped the proposal on a resource-constrained
SBC. In addition, evaluation experiments densely deploying the cognitive-IoT prototypes in a
often changing wireless environment were conducted. The evaluation results showed that the
cognitive-IoT prototypes accurately and adaptively made decisions to select channels respecting
fairness among IoT devices when the real environment regularly varied. In future work, the
proposed reinforcement-learning-based channel selection scheme can be used to select the channel
considering more aspects such as channel quality. Moreover, to evaluate the utilization of the developed
cognitive-IoT prototype to massive IoT application such as the monitoring system, field experiments
that deployed cognitive-IoT prototypes in an architecture monitoring IoT system [20] will be conducted
in further research.
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