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Abstract: With the popularity of smartphones and the development of microelectromechanical
system (MEMS), the pedestrian dead reckoning (PDR) algorithm based on the built-in sensors of
a smartphone has attracted much research. Heading estimation is the key to obtaining reliable
position information. Hence, an adaptive Kalman filter (AKF) based on an autoregressive model
(AR) is proposed to improve the accuracy of heading for pedestrian dead reckoning in a complex
indoor environment. Our approach uses an autoregressive model to build a Kalman filter (KF), and
the heading is calculated by the gyroscope, obtained by the magnetometer, and stored by previous
estimates, then are fused to determine the measurement heading. An AKF based on the innovation
sequence is used to adaptively adjust the state variance matrix to enhance the accuracy of the heading
estimation. In order to suppress the drift of the gyroscope, the heading calculated by the AKF is used
to correct the heading calculated by the outputs of the gyroscope if a quasi-static magnetic field is
detected. Data were collected using two smartphones. These experiments showed that the average
error of two-dimensional (2D) position estimation obtained by the proposed algorithm is reduced by
40.00% and 66.39%, and the root mean square (RMS) is improved by 43.87% and 66.79%, respectively,
for these two smartphones.

Keywords: smartphone; pedestrian dead reckoning; heading estimation; autoregressive model;
adaptive Kalman filter

1. Introduction

Location-based-services (LBSs) have developed rapidly in recent years, and their application
brings great convenience to people’s lives [1]. The core idea of LBSs is to determine a user’s location
quickly and effectively [2]. Outdoors, the global navigation satellite system (GNSS) provides accurate
and reliable locations in open-sky environments, but it faces the challenges of signal blockage and
invisibility in an indoor environment. With the development of indoor positioning technology,
various positioning methods, based on WiFi [3], Bluetooth [4], ultra-wide band (UWB) [5], and inertial
sensors [6], have been applied for personal navigation, emergency rescue, and tracking [7]. With the
popularity of smartphones and the development of microelectromechanical system (MEMS), indoor
positioning technology based on smartphones has found wide application in pedestrian navigation [8].

MEMS inertial sensors have become an appropriate choice for pedestrian navigation because
they are small, low-cost, and completely autonomous [9]. Pedestrian navigation based on inertial
measurement units (IMUs) can be divided into two categories [10]. One is the strap-down inertial
navigation system (SINS) and the other is pedestrian dead reckoning (PDR) based on a human-motion
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model. SINS based on a three-axis accelerometer and three-axis gyroscope can provide high-frequency
three-dimensional positions, velocities, and attitudes. Good results were obtained from the use of the
error of velocity to establish an observation equation for personal navigation [11]. Gu et al. [12] applied
SINS for a foot-mounted inertial pedestrian navigation system (PNS), with 0.3% accuracy of location
estimation for walking distance. However, these methods require extra MEMS sensors, which are not
suitable for LBSs based on a smartphone’s built-in sensors. Zhuang et al. [13] applied SINS for PNS using
the error of velocity from SINS and step estimation as the observation, and considering zero-velocity
update technology (ZUPT) and zero-angular rate update (ZARU) as constraints. The experiment
showed that the accuracy of navigation parameters was greatly improved. Kuang et al. [10] used the
velocity, position, pseudo-velocity, and pseudo-position as observations, and a tri-axial accelerometer
and tri-axial magnetometer of the quasi-state (QS) were introduced into observations for SINS.
The accuracy of position was greatly improved compared to the previously mentioned experiment.
However, the error of navigation parameters solved by SINS gradually accumulates because of the
integral. Estimation of the user’s position by PDR can be divided into four procedures: Step detection,
step-length estimation, heading estimation, and position calculation [14]. Common methods of step
detection include peak detection, cross-zero, autocorrelation algorithm and dynamic time warp [15,16].
The peak-detection algorithm is relatively optimal for step detection. Both linear and nonlinear models
can be used for step-length estimation to estimate the moving distance of pedestrians [17,18]. In general,
an accurate heading is the key to estimating the position of PDR, and some methods have been used
to obtain the heading [19]. Afzal et al. [20] estimated the heading by magnetometer, and analyzed
the influence of various environments on magnetic field strength. Zheng et al. [21] used the raw
output of a gyroscope to update the heading by quaternion, and the position gradually deviated from
the reference trajectory with time. Kang et al. [22] fused these headings calculated by the outputs
of a magnetometer and gyroscope, and stored by the previous estimate, to determine the current
heading, which was better than the heading calculated by a single sensor. Valenti et al. [23] used the
quaternion of accelerations, magnetic field strength, and the outputs of a gyroscope to build a linear
Kalman filter (KF) for heading estimation. Rennaudin et al. [24] applied the acceleration, magnetic
field strength in QS, and the outputs of gyroscope to estimate the heading by extended Kalman filter
(EKF). The linearization of the coefficient matrix by EKF was unstable, and the accuracy of linearization
was perhaps not high enough. An unscented Kalman filter (UKF) does not require linearization of the
coefficient matrix, and has at least second-order approximation accuracy. Therefore, UKF has a better
result than EKF. Yuan et al. [25] used UKF for pedestrian navigation, and the mean heading error
was less than 10◦. Although UKF can achieve relatively high accuracy, it requires a certain amount of
computation. The magnetic field is susceptible to contamination in complex indoor environments, and
this can cause deviation of heading estimation [26]. Due to the accumulation of errors, a gyroscope is
insufficient for long-term heading estimation [27]. Therefore, an accurate heading is still a challenge
for pedestrian navigation with a smartphone.

Inaccurate prior knowledge of stochastic models and model function error will affect the accuracy
of KF, and the adaptive Kalman filter (AKF) can address this problem. Mohamed et al. [28] used
the innovation-based adaptive estimation (IAE) to adjust the state noise matrix or measurement
noise matrix, showing that an AKF was better than KF. Chang et al. [29] applied the square of the
Mahalanobis distance to detect model function error, and a fading factor was introduced to inflate the
prior covariance to reduce the influence of inaccurate model functions. Jiang et al. [30] used two factors
to adjust the measurement noise matrix, and a hypothesis test was introduced to avoid interference
from abnormal states. Wu et al. [31] applied a two-stage function to obtain an adaptive factor, and
a robust-adaptive KF was used to estimate the pedestrian heading. Li et al. [32] adaptively adjusted
the measurement noise matrix according to the level of acceleration. Currently, AKF has been widely
used in various fields of navigation, but is rarely applied in PDR.

This paper proposes a method of adaptive heading estimation. A novel heading prediction based on
an autoregressive model (AR) prediction model is introduced to KF, and the current heading—determined
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by fusing these headings calculated by the gyroscope, obtained by the magnetometer and stored by the
previous estimate—is used as the measurement of KF. Taking into account model function error and
inaccurate prior noise, AKF is used to improve the accuracy of heading estimation. The change rate of
the total magnetic field is used to detect its QS, and the heading calculated by gyroscope is corrected
by the feedback of the estimated heading by AKF in QS. In order to intuitively and precisely express
the accuracy of heading estimation, the estimated heading was used for the position estimation of PDR.
Two kinematic experiments are used to verify this algorithm.

2. Heading Estimation Based on an AR Model

A smartphone contains a variety of sensors, and it is an effective device for pedestrian navigation.
When a smartphone is used for navigation, it is held in the hand more than 87% of the time [26], so we
assume that the heading of a pedestrian is consistent with the smartphone in this paper. That phone is
held in the hand of a pedestrian. The heading is determined by the KF based on AR model in this paper.

2.1. KF Process

The state equation and measurement equation of a linear discrete KF system can be expressed as{
xk = Φk,k−1xk−1 + wk−1
zk = Hkxk + vk

(1)

where xk−1 and xk represent the state vector at times k− 1 and k, respectively; Φk,k−1 is the state transition
matrix; zk is the measurement vector; Hk is the measurement matrix; and wk−1 and vk are zero-mean
white noise, whose variances can be expressed as Qk−1 and Rk, respectively.

2.2. AR Model

The AR model not only satisfies the polynomial constraint of state variables, but also can reduce the
noise by the criterion of minimizing the mean-square error (MMSE) using redundant observations [33].
In order to enhance the accuracy of heading estimation, we use the AR model to build KF.

Here, we suppose that the current heading can be predicted by the previous S samples:

attk =
S∑

s=1

hsattk−s (2)

where attk is the current heading and hs is the coefficient matrix of the AR model.
Without loss of generality, the current heading can be fitted by L polynomials,

attk =
L∑

l=1

al(tk)
l (3)

where al is the coefficient matrix of polynomials, tk = kT, and T is the sample interval.
Substituting Equation (3) into Equation (2), we can obtain

(k + 1)l =
S∑

s=1

hs(k + 1− s)l, l = 0, 1, ..., L (4)

When l= 0, we can obtain the equation as follows

S∑
s=1

hs = 1 (5)
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Similarly, the recursive expression of Equation (4) can be obtained by

S∑
s=1

hssl = 0, l = 1, 2, ..., L (6)

In summary, Equations (5) and (6) can be expressed in matrix form as follows.

Aµk = b (7)

where uk =
[

h1 h2 · · · hS
]T

, b =
[

1 0 · · · 0
]T

,

A =


1 1 · · · 1
1 2 · · · S
...

...
. . .

...
1 2L

· · · SL


(L+1)×S

(8)

When S = L + 1, the matrix A is nonsingular, and Equation (7) has a unique solution. When
S > L + 1, the AR model has redundant observations. Namely the AR model not only satisfies the
polynomial constraint but also can reduce the noise by extra observations.

2.3. Derivation of AR Model under KF Frame

In this section, the AR model is introduced into KF. The state equation of KF based on the AR
model can be expressed as follows,

xAR
k = ΦAR

k,k−1xAR
k−1 + wAR

k (9)

where xAR
k−1 =

[
attk−1 attk−2 · · · attk−S

]T
, wAR

k is the state noise, its variance matrix is QAR
k , and

the state transition matrix is

ΦAR
k,k−1 =



h1 h2 · · · hS−1 hS
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


S×S

(10)

Therefore, KF based on AR model prediction can be expressed as follows.

xk,k−1(µk) = Φk,k−1(µk)xk,k−1 (11)

Pk,k−1(µk) = Φk,k−1(µk)Pk−1,k−1ΦT
k,k−1(µk) + Qk−1 (12)

Ck(µk) = HPk,k−1HT + Rk (13)

Kk(µk) = Pk,k−1(µk)HTC−1
k (µk) (14)

xk,k(µk) = xk,k−1(µk) + Kk(µk)
[
zk −Hxk,k−1[µk]

]
(15)

Pk,k(µk) = [I −Kk[µk]H]xk,k−1(µk)Pk,k−1(µk) (16)

where P is the state variance matrix, Ck is the variance matrix of the innovation sequence, and K is the
gain matrix.
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We know from Equations (11)–(16) that KF based on the AR model needs to know µk. A cost
function based on MMSE can be constructed as follows

minµT
k Pk−1,k−1µ

T

subject to Aµk = b
(17)

Equation (17) can be solved by the Lagrangian multiplication operator [34]

L(µk,λ) = µT
k Pk−1,k−1µk − λ

T(Aµk − b) (18)

where λ is a Lagrange multiplier.
Taking the partial derivatives with respect to µk and λ for Equation (18) and setting them to zero.

We can get 
∂L{µk,λ
∂µk

= 0
∂L{µk,λ
∂λ = 0

(19)

We can obtain µk by solving Equation (19),

µk = P−1
k−1,k−1AT

(
AP−1

k−1,k−1AT
)−1

b (20)

We can see from Equation (20) that the solution of µk uses the information polynomial and state
variance. Thus, compared to traditional KF, KF based on the AR model can effectively reduce the noise.

2.4. The Adaptive Kalman Filter

KF based on the AR model can work well if the model function and noise statistic are both
accurately known. However, the model function is an approximate expression. Moreover, a smartphone
may be shaken due to human motion when the pedestrian is holding the smartphone for navigation,
which makes the noise statistic unreliable. Therefore, it is necessary to adaptively adjust the noise for
obtaining reliable filtering results.

To reduce the influence of inaccurate state noise, we use an adaptive method based on the
innovation sequence to adjust the state covariance matrix [35].

Substituting Equation (14) into Equation (16), we can get

Pk,k = Pk,k−1 −KkCkKT
k (21)

Substituting Equation (12) into Equation (21), the state noise covariance can be got as follows.

Qk = Pk,k − Fk,k−1Pk−1,k−1FT
k,k−1 + KkCkKT

k (22)

We can get the approximate solution of the state noise covariance based on Equation (22).

Q̂k = KkĈkKT
k (23)

The covariance matrix of innovation can be obtained by averaging the innovation sequence over
N windows.

Ĉk =
1
N

N−1∑
j=0

vk− jvT
k− j (24)

where vk = zk −Hkxk,k−1 is the innovation vector.
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3. The Calculation of Measurement Vector for Heading Estimation

In this section, we discuss the calculation of measurement vector in KF for heading estimation.
In general, two methods are used to calculate the heading. One is based on the outputs of the
magnetometer, and the other is obtained from raw gyroscope data

3.1. Heading Estimation by Magnetometer

The accelerometer, that measure specific force, can be used to obtain roll and pitch, and the
heading can be solved by the leveled magnetic field intensity that is obtained by using roll and pitch.
Many references discuss the solution of roll and pitch using acceleration, so we mainly discuss the
heading calculated by magnetometer in this section. In this paper, the smartphone axis is show in
Figure 1.

Figure 1. The body coordinate system of smartphone.

Due to the building structure and materials, the magnetic field is more susceptible to contamination
by hard iron, soft iron, and scale factors. This causes bias in magnetometer outputs; hence it is necessary
to calibrate the magnetometer. The commonly used calibration method is ellipsoid fitting [36,37].

After the magnetometers are calibrated, the heading can be solved from calibrated magnetic field
intensities. Firstly, the magnetic field intensities can be leveled by roll and pitch.

Mx

My

Mz

 =


cosθ sinγ sinθ sinγ cosθ
0 cosθ − sinθ

− sinγ cosγ sinθ − sinγ cosθ


T

mx

my

mz

 (25)

where
(
mx, my, mz

)
and

(
Mx, My, Mz

)
are the geomagnetic field intensities in the body frame and

navigation frame, respectively, and γ and θ are the roll and pitch, respectively, calculated from the raw
acceleration data.

Then, taking into account the local magnetic declination, the heading can be calculated by:

ψmag = arctan
(

mx cosθ−mz sinγ
mx sinγ sinθ+ my cosθ+ mz cosγ sinθ

)
+D (26)

where ψmag is the heading and D is the magnetic declination. γ and θ, calculated by accelerations,
can be expressed as follows:

γ = arctan

 ax√
a2

y + a2
z

 (27)

θ= −arctan
(

ay

ax ∗ sin(γ) + az ∗ cos(γ)

)
(28)
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where
(
ax, ay, az

)
are the accelerations in the body frame.

3.2. Heading Estimation Based on Gyroscope

The relative heading can be calculated using the raw outputs of a gyroscope, and the absolute
heading can be obtained when the initial heading is known. The quaternion heading can be directly
derived from the outputs of the gyroscope [25].

•
q =

1
2

M(ω)q =
1
2


0 −ωx −ωy −ωz

ωx 0 ωz ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0




q1

q2

q3

q4

 (29)

where
•
q is the differentiation of the quaternion, ω is the angular rate measured by gyroscope, and M(•)

is the mathematical function of ω.
The quaternion-based update with the angular rate can be obtained from the discrete form of

Equation (29),

qk =

cos
[η

2

]
I +

1
2

sin
[η

2

]
η
2

M[ω]dt

qk−1 (30)

where η =
√
(ωxdt)2 +

(
ωydt

)2
+ (ωzdt)2, dt is the sampling interval, and I is unit vector.

In this paper, the interconversion between quaternion and the Euler angle is required. Their
relationship can be expressed as follows.

θgyro

γgyro

ψgyro

 =


arcsin[2[q3q4 + q1q2]]

arctan
[
−[2[q2q4 − q1q3]], q2

1 − q2
2 − q2

3 + q2
4

]
arctan

[
−[2[q2q3 − q1q4]], q2

1 − q2
2 + q2

3 − q2
4

]
 (31)

3.3. Fused Heading Estimation

The heading estimated by single sensor is noisy due to sensor performance and external disturbance,
and a reliable heading can be determined by fusing headings calculated by different sensors [22].
A heading estimation by fusing these headings that are calculated by a magnetometer, obtained by
gyroscope and stored by previous estimate can be expressed as follows.

ψk =



βmgp
{
βmagψ

mag
k + βgyroψ

gyro
k + βprevψ

prev
k−1 ,ψcor

∆ ≤ ψ
cor
δ

,ψmag
∆ ≤ ψ

mag
δ

βmg
{
βmagψ

mag
k + βgyroψ

gyro
k ,ψcor

∆ ≤ ψ
cor
δ

,ψmag
∆ > ψ

mag
δ

ψ
prev
k−1 ,ψcor

∆ > ψcor
δ

,ψmag
∆ ≤ ψ

mag
δ

βgp
{
βgyroψ

gyro
k + βprevψ

prev
k−1 ,ψcor

∆ > ψcor
δ

,ψmag
∆ > ψ

mag
δ

(32)

where
βmgp = (βmag + βgyro + βprev)−1 (33)

βmg = (βmag + βgyro)−1 (34)

βgp = (βgyro + βprev)−1 (35)

ϕcor
∆ =

∣∣∣ψmag
k −ψ

gyro
k

∣∣∣ (36)

ϕ
mag
∆ =

∣∣∣ψmag
k −ψ

mag
k−1

∣∣∣ (37)

where βprev, βmag, and βgyro are the respective weights of the heading stored by the previous estimate,
the heading calculated by the outputs of the current magnetometer and the heading obtained
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by the gyroscope—ψ
mag
k is the current heading calculated by Equation (26), ψgyro

k is the current
heading calculated by Equation (31), ψprev

k−1 is the heading of previous time updated by KF, ψcor
δ

and
ψ

mag
δ

—are thresholds.

4. The Filter Design of KF Based on AR Model for Heading Estimation

In this paper, KF based on AR model is used to estimate the heading. In Section 2, the AR model
is introduced to build KF for heading estimation, and the heading measurement is introduced in
Section 3. In this section, we sum up the process of KF for heading estimation. In this paper, the current
heading is predicted by the previous four samples in AR model constructed in Section 2, so S is set
as four. The fused heading presented in Section 3.3 is used for the measurement of the KF update.
The state and measurement equations of KF based on AR model for the proposed heading estimation
can be expressed as follows,

The state model can be obtained by

xAR
k (−) = ΦAR

k,k−1xAR
k−1(+) + wAR

k (38)

where, xAR
k (−) =

[
att−k att−k−1 att−k−2 att−k−3

]T
, xAR

k−1(+) =
[

att+k−1 att+k−2 att+k−3 att+k−4

]T
and

ΦAR
k,k−1 is the state transition matrix that can be obtained by Equation (10). att+k−1 is the estimated

heading at time k− 1, att−k is the predicted heading at time k.
The measurement model can be calculated by

ZAR
k = HAR

k xAR
k (−) + VAR

k (39)

where, ZAR
k = ψk that can be calculated by Equation (32), HAR

k =
[

1 0 0 0
]
1×4

.
In this paper, Equations (38) and (39) were constructed to predict and update the KF for

heading estimation.

5. The Detection of a QS Magnetic Field

The geomagnetic field suffers severe perturbations in indoor environments, causing the magnetic
field magnitude to not be constant. However, locations are possible where these magnetic field
magnitudes are constant, and these situations can be considered as QS [38]. The heading calculated
by magnetic field intensity in QS can achieve an accurate result. In this paper, the change rate of the
magnetic field intensity is used to detect QS.

The detection model based on the change rate of magnetic field magnitude is expressed as

ym
k = ok + vk (40)

where ok =
∥∥∥∥ •mk

∥∥∥∥,
∥∥∥∥ •mk

∥∥∥∥ is the change rate of magnetic field magnitude and vk is noise.
The magnetic field can be considered as QS if ok = 0. Therefore, the detection of QS can be

expressed as a binary hypothesis test. Here, the two hypotheses H0 and H1 are

H0 : ∃k ∈ Γn s.t. ok , 0
H1 : ∀ ∈ Γn then ok = 0

(41)

where Γn = {l ∈ N : n ≤ l ≤ n + N − 1}.
The probability density function (PDF) of Equation (40) based on hypothesis H0 can be given by

f (y; ok, H0) =
∏
k∈Γn

1√
2πσ2

ok

exp

 −1
2πσ2

ok

(
ym

k − ok
)2

 (42)
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where σ2
ok

is the noise variance of ok.
We assume that the maximum likelihood estimate (MLE) of ok is ôk, which can be obtained by the

mean of samples as

ôk =
1
N

∑
k∈Γn

ym
k (43)

Therefore, the PDF of H0 can be changed to

f (y; ok, H0) =
∏
k∈Γn

1√
2πσ2

ok

exp

 −1
2πσ2

ok

(
ym

k − ôk
)2

 (44)

For the hypothesis H1, ok = 0, so the PDF of H1 can be obtained by

f (y; H1) =
∏
k∈Γn

1√
2πσ2

ok

exp

 −1
2πσ2

ok

(
ym

k

)2
 (45)

The detection of QS based on the generalized likelihood ratio test (GLRT) can be expressed as

∧ (y) =
f (y; ‖ôk‖, H0)

f (y; H1)
< χm (46)

Substituting Equations (44) and (45) into Equation (46), we can obtain

∧ (y) =
∏
k∈Γn

exp

 1
2σ2

ok

(
ym

k

)2
−

1
2σ2

ok

(
ym

k − ôk
)2

 < χm (47)

Taking the natural logarithm on both sides of Equation (47), we get the test statistics as follows.∣∣∣∣∣∣∣∣ 1
√

N

∣∣∣∣∣∣∣∣
∑
k∈Γn

ym
k

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ < χ′m (48)

where χ′m =
√

2σ2
ok

ln(χm) is the threshold and N is the window size.
If Equation (48) is true, the magnetic field is considered as QS. Then the heading calculated by

Equation (31) can be corrected with the heading updated by Equation (15). Similarly, the roll and pitch
can also be corrected with the solution estimated by KF.

The following algorithm is tabulated for expression of the proposed heading estimation.

Algorithm 1: The heading estimation with KF based on AR model

Step 0. Given S, L with S ≥ L + 2. We set S = 4, L = 1. Step 0.1 Initial state: x0 =
[

z0 z−1 z−2 z−3
]T

,
where z is the measurement heading calculated by Equation (32). Step 0.2 Initial state variance matrix
P0, state noise covariance Q0 and measurement noise covariance R0.

Step 1. Calculation of coefficients matrix: Calculate the coefficient of an AR model by Equation (20), and
calculate the state transition matrix by Equation (10).

Step 2. KF prediction: Performance the KF time update of Equations (11) and (12).
Step 3. KF update: Obtain the measurement vector of heading by Equation (32); Performance the KF

measurement update of Equations (13)–(16); Update the state noise covariance by Equation (23).
Step 4. Correct the heading calculated by gyroscope: If Equation (48) is true, the heading calculated by

Equation (31) is corrected by the updated heading of Step 3.
Step 5. Terminate the process, otherwise return to Step 1.
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6. Position Estimation of PDR Algorithm

6.1. The Principle of PDR Algorithm

The PDR algorithm includes four procedures: Step detection, step-length estimation, heading
estimation, and position calculation. In this paper, peak detection is used for step detection, and the
time interval of two peaks is considered as the time of a step. A linear model is used to estimate the
step-length [39].

SL = a ∗ F + b + v (49)

where SL is the step-length, F is the step frequency, v is noise, and a and b are coefficients dependent on
human motion.

After step detection, step-length estimation, and heading estimation are obtained, the position
can be calculated as follows. {

Nk = Nk−1 + SLk−1 cosϕk−1
Ek = Ek−1 + SLk−1 sinϕk−1

(50)

where N and E are the north and east direction positions, respectively.

6.2. Filter Design of UKF for Position Estimation

In this paper, the position estimation is solved based on the UKF that reference the method
proposed in [38]. After the heading is updated and the step-length is estimated, these values can
be used to estimate the position based on the UKF.

According to Equation (50), a system model of nonlinear formula can be built as follows:

Xk =


Nk
Ek

SLk
ϕk

∆ϕk


=


Nk−1 + SLk−1 cosϕk−1
Ek−1 + SLk−1 sinϕk−1

SLk−1
ϕk−1 + ∆ϕk−1

∆ϕk−1


+ Wk−1 (51)

where, ∆ϕk is the increment of heading at time k, Wk−1 is state noise.
The measurement equations can be obtained by

Zk =


SLk
ϕk

∆ϕk

 =


SLk
ϕk

∆ϕk

+ Vk (52)

where, Vk is measurement noise.
In this paper, Equations (51) and (52) are used to estimate the position at every step. And the

calculated process of UKF can be found in [25,40].

7. Experimental Analysis

7.1. Static Experiment

A Huawei Honor V9 (HV9) and XiaoMi8 (XM8) smartphone were used to collect static data.
The collection time was about 30 min, and the sampling frequency was 50 Hz. Three methods were
used to calculate the heading using these data. The first was the heading calculated by the outputs
of the magnetometer (the method discussed in Section 3.1), the second was the heading obtained
by a gyroscope (the method introduced in Section 3.2), and the last was the proposed method by
this paper.

Figure 2 shows the heading error of different methods. The solid line is the error of heading
calculated by magnetometer (Mag), and we can see that the margin of error is about 5 degrees even
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though the data are static in Figure 2a, and the jump range of error is 1 degree for XM8 in Figure 2b.
The dashed line is the error of heading obtained by gyroscope (Gyr). The error is low and smooth in the
short term, but it gradually accumulates with time, and the maximum error reaches 50 degrees for HV9.
The chain line expresses the error of heading estimated by the proposed method that the AKF based
on AR is used to estimate heading (ProA). We can see from Figure 2 that the drift error of heading is
effectively contained by the proposed algorithm compared with the method of Gyr. Compare with the
method of Mag, the error is smooth and accurate for XM8, however, the result of Pro is worse than that
of Mag for HV9 with time. We can see from Equation (32) that the accuracy of a heading calculated by
Gyr will affect the result of ProA, so the accuracy of ProA is affected by the cumulative error of Gyr in
Figure 2a. Comparing Figures 2a and 2b, we found that the heading calculated by XM8 is better than
that estimated by HV9. That’s because the sensors accuracy of XM8 are better than that of HV9.

Figure 2. Heading error of static data for different methods: (a) The heading error of Huawei Honor
V9 (HV9); (b) The heading error of XiaoMi8 (XM8).

In summary, the heading calculated by a single sensor embedded in a smartphone still has
disadvantages even under great observation.

7.2. Kinematic Experiment

The kinematic data were used to further verify the effectiveness of the proposed algorithm. The site
of data collection was on the third floor of the J9 office building of Shandong University of Science and
Technology, and many iron materials were on site. The floor plan is shown in Figure 3. The tester held
the HV9 and XM8 smartphones in their hand to collect data along the preplanned trajectory.

Figure 3. Trajectory of experiment: (a) Floor plan; (b) Experimental environment.
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Figure 4 shows the calculated heading that used the data collected by the HV9 and XM8, and
true north was used to largely avoid the heading jumps between 0 and 360. Five methods were
used for heading estimation in these kinematic experiments. The first was Mag, the second was Gyr,
the third was proposed in [22] that the current heading was determined by magnetometer, gyroscope
and previous estimate (MGP), the fourth was Pro that is the proposed method in this paper without
the adaptive filter, and the last was ProA that the adaptive filter is used in Pro. And the reference is
the reference heading in Figure 4. Compared to the other four methods, the heading based on the
magnetometer severely jumped for these smartphones, and the maximum jump achieved 30 degrees,
although the heading calculated by magnetic field was close to the reference at some locations. Thus,
it is not appropriate to obtain the heading just using the outputs of the magnetometer for pedestrian
navigation in complex indoor environments.

Figure 4. Heading estimation with different methods for different smartphones: (a) Heading of HV9;
(b) Heading of XM8.

Figure 5 shows the heading errors of the local trajectory marked in A, B, C, and D in Figure 4a, and
Figure 6 shows the heading errors of the local trajectory of Figure 4b. The heading errors of Mag for
HV9 and XM8 are not shown in Figures 5 and 6 because these errors fluctuate widely. However, these
statistical results, of heading errors of these five methods for HV9 and XM8, are all shown in Tables 1
and 2, respectively. In Tables 1 and 2, the mean RMSs of heading error for Mag are 8.62◦ and 10.88◦

for HV9 and XM8, respectively, and these accuracies are not appropriate for pedestrian navigation.
In Figure 5a, most heading errors of Pro and ProA are within 4◦, and these heading errors are smaller
than those of Gyr and MGP. In Figure 5b–d, these heading errors of Pro and ProA are within 2◦, and
these accuracies of heading estimation are better than those of Gyr and MGP. In Table 1, the RMS of
MGP is slightly superior to that of Gyr, and the mean RMS decreases from 2.38◦ to 2.19◦. The accuracy
of Pro is better than that of MGP in every section. The RMS decreases from 2.20◦ to 1.74◦ in the local
trajectory of mark A, the RMS drops from 1.17◦ to 1.09◦ in the local trajectory of mark B, the RMS
reduces from 3.01◦ to 1.26◦ in the local trajectory of mark C, and the RMS decreased from 2.38◦ to 1.55◦

in the local trajectory of mark D. And the mean accuracy increased by 35.62%. In Table 1, the accuracy
of Pro is basically the same as that of ProA. We also can see from these lists of Mean in Table 1 that
these results of heading estimation are bias. The first reason for this bias is that the tester cannot strictly
walk in accordance with the preplanned trajectory, and the other is that the smartphone will inevitably
shake with the movement of the tester. These conditions can cause the biased estimation. We can
see from Table 1, the bias of Pro and ProA is smaller than that of the other methods. In summary,
compared with the heading estimated by Mag, Gyr and MGP, the heading solved by the proposed
algorithm is close to the reference for this experiment.
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Figure 5. Heading error of local trajectory for HV9: (a) Heading error of mark A; (b) Heading error of
mark B; (c) Heading error of mark C; (d) Heading error of mark D.

Figure 6 shows local heading error of Figure 4b. In Figure 6a, most errors of Pro and ProA are
within 4◦, and these errors are smaller than those of Gyr and MGP. In Figure 6b–d, these errors of
Pro and ProA are principally less than 5◦, and these results of Pro and ProA are superior to those of
Gyr and MGP. In Table 2, The RMS of MGP is slightly smaller than that of Gyr, and the mean RMS
is decreased by 1.97%. For these two kinematic experiments, the accuracy of heading estimation for
MGP is better than that of Gyr, and this conclusion is consistent with that of the literature [22]. We can
also see from Table 2 that these accuracies of Pro are better than those of MGP in these four sections.
The RMS decrease from 3.45◦ to 2.25◦ in the local trajectory of mark A, the RMS drops from 3.66◦ to
3.28◦ in the local trajectory of mark B, the RMS reduces from 5.35◦ to 3.39◦ in the local trajectory of
mark C, and the RMS decreases from 5.51◦ to 2.58◦ in the local trajectory of mark D. Compared with
the mean accuracy of MGP, the mean accuracy of Pro increases by 35.86%. In Table 2, the accuracy of
heading estimation is further improved by the adaptive algorithm. The RMS decreases from 2.25◦

to 1.70◦ in the local trajectory of mark A, the RMS drops from 3.28◦ to 2.69◦ in the local trajectory of
mark B, the RMS reduces from 3.39◦ to 2.02◦ in the local trajectory of mark C, and the RMS decreases
from 2.58◦ to 2.19◦ in the local trajectory of mark D. Also, the mean of RMS is improved by 25.35% for
this kinematic data. Similarly, the biased heading estimation can be observed in Table 2, and the bias of
mean for ProA is the smallest among these methods. Compared with these methods of Mag, Gyr and
MGP, these methods of Pro and ProA can obtain the higher accuracy of heading estimation.
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Figure 6. Heading error of local trajectory for XM8: (a) Heading error of mark A; (b) Heading error of
mark B; (c) Heading error of mark C; (d) Heading error of mark D.

Table 1. The statistic of heading errors for HV9.

Mag Gyr MGP Pro ProA

RMS/◦ Mean/◦ RMS/◦ Mean/◦ RMS/◦ Mean/◦ RMS/◦ Mean/◦ RMS/◦ Mean/◦

A 8.28 −0.84 2.40 1.10 2.20 1.00 1.74 0.09 1.74 0.12
B 8.73 −4.32 1.39 0.53 1.17 0.55 1.09 0.49 1.09 0.47
C 9.61 −5.74 3.13 −2.50 3.01 −2.47 1.26 0.05 1.27 0.04
D 7.85 −0.40 2.59 −2.06 2.38 −1.98 1.55 0.43 1.55 0.42

Mean/◦ 8.62 −2.83 2.38 −0.73 2.19 −0.73 1.41 0.27 1.41 0.26

Table 2. The statistic of heading errors for XM8.

Mag Gyr MGP Pro ProA

RMS/◦ Mean/◦ RMS/◦ Mean/◦ RMS/◦ Mean/◦ RMS/◦ Mean/◦ RMS/◦ Mean/◦

A 3.55 −0.08 3.55 2.67 3.45 2.50 2.25 1.07 1.70 0.47
B 10.20 6.50 3.77 0.76 3.66 0.88 3.28 1.85 2.69 −0.36
C 14.76 −10.95 5.41 3.92 5.35 3.99 3.39 2.85 2.02 1.00
D 15.02 −13.00 5.57 −4.58 5.51 −4.58 2.58 2.24 2.19 1.76

Mean/◦ 10.88 −4.38 4.58 0.69 4.49 0.69 2.88 2.00 2.15 0.71

In order to intuitively and precisely express the accuracy of heading estimation, the estimated
heading was used for the positioning estimation of PDR. The method of Mag was not used to estimate
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the position in this section because the heading accuracy is poor, and we designed four programs to
obtain the position estimation of these two kinematic experiments.

(1) The Gyr is used to calculate heading, and UKF is used for position estimation (Gyr-UKF).
(2) The MGP is used to obtain heading, and position is estimated based on UKF (MGP-UKF).
(3) The Pro is applied to estimate heading, and position estimation is obtained by UKF (MGP-UKF).
(4) The ProA is applied to estimate heading, and UKF is used for position estimation (MGP-UKF).

We compare the position estimation of these four methods in this section.
Figure 7 shows the position trajectories calculated by the outputs of the HV9. We can see from

Figure 7 that these position trajectories of Gyr-UKF and MGP-UKF deviate from the reference with
time, and the results of position estimation for these two methods are almost identical. The trajectory is
improved by the method of Pro-UKF, and the position trajectory of ProA-UKF is basically the same as
that of Pro-UKF. Figure 8 shows these trajectories obtained by XM8. We can see that these trajectories
of Gyr-UKF and MGP-UKF deviate from the reference with time, and the trajectory of MGP-UKF
is slighter better than that of Gyr-UKF. The trajectory is improved by the method of Pro-UKF, and
the trajectory is further improved when ProA is used to estimate heading. Therefore, the trajectory
calculated by a ProA-UKF algorithm is more accurate than that obtained by the other three methods.

Figure 7. Trajectories of different heading estimations for HV9.

Figure 8. Trajectories of different heading estimations for XM8.
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In order to provide a reference at each step, these timestamps were recorded when the tester
passed corners, and the coordinates of these corners can be obtained by the reference trajectory and
reference heading. The coordinates of each step between these two corners can be calculated by linear
interpolation in time. In order to accurately analyze the heading, the step-length error is ignored here.
Figure 9 shows the 2D position error of each step using HV9 and XM8. Figure 9a shows the position
error of HV9. When the method of Gyr-UKF and MGP-UKF is used, the position error gradually
accumulates with the walking distance, and the maximum error exceeds 5.5 m. The estimated position
of MGP-UKF is slightly better than that of Gyr-UKF. The position error is improved by the Pro-UKF,
and the maximum error is less than 2.8 m. We can also see that the position error of ProA-UKF is
slightly smaller than that of Pro-UKF. Figure 9b is the position error of XM8 for different methods.
The position error deviates from the reference with time when the Gyr-UKF is used, and the maximum
error is over 5.0 m. The position estimation is slightly improved when MGP-UKF is used. The position
errors are effectively constrained when the proposed algorithm of Pro-UKF is used, and the maximum
error is less than 3.0 m. The position errors are further improved if the adaptive algorithm is used to
estimate the heading, and the maximum error is less than 2.0 m. In Figure 9b, the positions accuracy of
Pro-UKF is worse than those of Gyr-UKF and MGP-UKF at times. We can see from Figure 6c that the
heading error is mostly positive for Pro, that will make the error accumulate, and the heading errors
have positive and negative values for Gyr and MGP that will offset the error accumulation.

Figure 9. Position error of each step with different methods for different smartphones: (a) The position
error of HV9; (b) The position error of XM8.

The corresponding position cumulative error estimation percentages (CEF) of Figure 9 is explained
in Figure 10. In Figure 10a, the CEF within 1.5 m is 24.92% and 25.24% for Gyr-UKF and MGP-UKF,
respectively, and the CEF is raised to 40.38% and 41.01% for Pro-UKF and ProA-UKF, respectively.
The CEF within 2 m are 38.80% and 31.86% for Gyr-UKF and MGP-UKF, respectively. The CEF is
increased to 68.45% for both Pro-UKF and ProA-UKF. When the CEF is about 75%, the position error
is over 4 m for Gyr-UKF and MGP-UKF, and the position error is less than 2.25 m for Pro-UKF and
ProA-UKF. For HV9, the proposed method can enhance the accuracy of position estimation. Figure 10b
shows the CEF of XM8. In Figure 10b, the CEF within 1.5 m is just 20.79% for both Gyr-UKF and
MGP-UKF, the CEF achieves 36.30% for Pro-UKF, and the CEF is, as expected, increased to 97.03% for
ProA-UKF. When the position error is within 2 m, the CEF is 38.94% and 47.52% for Gyr-UKF and
MGP-UKF, respectively, and the CEF is slight improved for Pro-UKF with 50.50%, however, the CEF is
raised to 100% when the ProA-UKF is used. When the CEF is about 75%, the position errors are both
over 3.25 m for Gyr-UKF and MGP-UKF, the error is within 2.50 m for Pro-UKF, and the error is less
than 1.25 m for ProA-UKF. Therefore, we can obtain the conclusion that the proposed algorithm can
improves the accuracy of heading estimation for smartphone.
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Figure 10. Position cumulative error percentages of different methods for different smartphones: (a)
The error percentage for HV9; (b) The error percentage for XM8.

Table 3 shows the statistics of position errors. In Table 3, the mean errors of position estimation for
PDR are 2.67 m, 2.65 m, 1.60 m and 1.59 m for these four respective schemes of position estimation, and
the corresponding RMS values are 3.14 m, 3.10 m, 1.75 m and 1.74 m for the HV9 smartphone. For the
XM8 smartphone, the mean errors are 2.47 m, 2.38 m, 1.81 m and 0.80 m, and the RMS values are 2.73 m,
2.62 m, 1.94 m and 0.87 m for these four respective schemes. The estimated position by ProA-UKF,
where the adaptive filter is used to estimate heading, is better than that by Pro-UKF, the position error
of Pro-UKF is smaller than that of the traditional method and the position error of MGP-UKF is slightly
superior to that of Gyr-UKF. Compared with the method of MGP, the mean error of ProA-UKF is
reduced by 40.00%, and RMS is improved by 43.87% for the HV9. And the mean error is reduced by
66.39%, and the RMS is improved by 66.79% for the XM8. Therefore, the method of heading estimation
proposed in this paper can improve the accuracy of heading estimation, and it directly enhances the
accuracy of position estimation for pedestrian navigation.

Table 3. Statistics of position error with different method for different smartphone.

Gyr-UKF MGP-UKF Pro-UKF ProA-UKF

HV9
Max/m 5.80 5.63 2.75 2.73

Mean/m 2.67 2.65 1.60 1.59
RMS/m 3.14 3.10 1.75 1.74

XM8
Max/m 5.05 4.69 2.89 1.63

Mean/m 2.47 2.38 1.81 0.80
RMS/m 2.73 2.62 1.94 0.87

8. Conclusions

A novel method of heading estimation based on smartphones is proposed in this paper. This
method uses the AR model to build KF, and the current heading—determined by fusing these headings
calculated by magnetometer, estimated by gyroscope and stored by the previous estimate—is used
as measurement value of KF update. To effectively suppress the accumulated error of the heading
estimated by the outputs of the gyroscope, the estimated heading by KF in QS is used to correct the
heading calculated by gyroscope. To improve the accuracy of heading estimation, an AKF based
on the innovation sequence is used to adaptively adjust the state noise covariance. HV9 and XM8
smartphones were used to collect data. In order to intuitively and precisely express the accuracy of
heading estimation, the estimated heading is also used for the position estimation of PDR. The following
conclusions were obtained,

(1) The heading calculated by a magnetometer is susceptible to disturbances in the complex indoor
environment that can cause dozens of degrees bias. Also, it is possible that the heading calculated
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by magnetometer is close to the reference at some locations. The heading estimated by gyroscope
is affected by cumulative error. The heading obtained by the proposed method can not only
reduce the noise but also constraint the cumulative error.

(2) Compared with the mean accuracy of traditional methods for heading estimation, the mean
accuracy of the heading estimated by proposed algorithm is increased by 35.62% and 35.86%,
respectively, for HV9 and XM8. And compared with KF, AKF can further improve the accuracy
of heading estimation.

(3) The estimated heading is used for position calculation of PDR. Compared to traditional methods,
the mean errors of position estimation for the proposed method decrease by 40.00% and 66.39%,
and the corresponding RMS is improved by 43.87% and 66.79%, respectively, for HV9 and XM8
smartphones with different performance sensors.
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