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Featured Application: Design of advanced heating systems for smart buildings and optimization
of stocks and maintenance processes in existing heat meter networks.

Abstract: The need to increase the energy efficiency of buildings, as well as the use of local renewable
heat sources has caused heat meters to be used not only to calculate the consumed energy, but also for
the active management of central heating systems. Increasing the reading frequency and the use of
measurement data to control the heating system expands the requirements for the reliability of heat
meters. The aim of the research is to analyze a large set of meters in the real network and predict their
faults to avoid inaccurate readings, incorrect billing, heating system disruption, and unnecessary
maintenance. The reliability analysis of heat meters, based on historical data collected over several
years, shows some regularities, which cannot be easily described by physics-based models. The failure
rate is almost constant and does depend on the past, but is a non-linear combination of state variables.
To predict meters’ failures in the next billing period, three independent machine learning models are
implemented and compared with selected metrics, because even the high performance of a single
model (87% true positive for neural network) may be insufficient to make a maintenance decision.
Additionally, performing hyperparameter optimization boosts the models’ performance by a few
percent. Finally, three improved models are used to build an ensemble classifier, which outperforms
the individual models. The proposed procedure ensures the high efficiency of fault detection (>95%),
while maintaining overfitting at the minimum level. The methodology is universal and can be
utilized to study the reliability and predict faults of other types of meters and different objects with
the constant failure rate.

Keywords: heat meter; district heating;fault detection; predictive maintenance; Machine Learning
(ML); Artificial Neural Network (ANN); Bagging Decision Tree (BDT); Support Vector Machines
(SVM); hyperparameter optimization; ensemble model

1. Introduction

Sustainable development and controlling climate change can only be achieved with a safe and
low-emission energy system. Its transformation involves, i.a., decarbonization of buildings responsible
for approximately 36% of all CO2 emissions in the European Union. Around 40% of the consumption
of final energy is spent on heating and cooling, from which most is used in buildings [1]. This sector is
treated as pivotal in accelerating the reduction of emissions of the energy system. It is also a strategic
industry in the context of energy safety, since according to the forecasts, till 2030, heating and cooling
will account for about 40% of the consumption of renewable energy sources.

Creating smart buildings and cities aims to improve the quality of life of their inhabitants and the
protection of the natural environment. As mentioned in [2], smart grids and smart buildings feature
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optimized asset management, increase operational efficiency, ensure stable power supply, allow for
real-time monitoring of system operation, or enhance the network’s reconfiguration and self-healing
ability. The application of smart meters enables a regular monitoring of power consumption and
provides access to flexible rates [3]. Consequently, advanced heating systems can adjust heat supplies
to weather conditions and contribute to reducing energy grid losses and emissions.

On the other hand, a high number of connected meters and other IoT (Internet of Things) devices
installed in smart buildings, as well as a significant amount of generated data create a challenge for the
operators and maintainers. The impact of smart meters and their reliability on the safety of buildings
and cities is growing [4] and therefore requires further study.

Heat meters are used in central heating systems to calculate the consumed energy both in
multifamily houses and single apartments or offices. Smart heat meters ensure that costs are settled
based on the actual consumption and contribute to saving heat by inhabitants and reducing emissions,
particularly in buildings with many tenants.

Currently, as we found, approximately half of the heat meters installed in Switzerland are read
manually. However, the number of meters read remotely, which belong to smart meters, increases year
by year in Europe [5]. Recording heat consumption with the use of a smart meter can take place in
one-hour intervals or even shorter. The information on the meter state can be directly sent to the
operator, thanks to which it is possible to monitor and manage the network regularly.

It is necessary to develop a uniform communication system to introduce the IoT technology for the
billing of media and enable the delivery of telemetric data to one node. To ensure the interoperability
of connected meters, the OMS (Open Metering System) group [6] was created in 2015 as a non-profit
European organization gathering the leading meter manufacturers and operators. They are working on
the standardization of smart meters (not only electricity meters) and a common communication protocol.

Furthermore, the EU directive from 2012 with amendments from 2018 requires that by 25 October
2020, newly-installed heat meters and heat cost allocators should be remotely readable to ensure
cost-effectiveness and frequent provision of consumption information [7,8]. According to Article 9 of
this document, all Member States should implement intelligent metering systems and smart meters,
only if it is technically possible, financially reasonable, and proportionate in relation to the potential
energy savings.

The reliability of smart meters has a fundamental significance for heat distributors and consumers,
since the quality of collected data, the correctness of billing of heat, and making proper decisions
in managing heat distribution network depend on it. Unfortunately, studies on the smart meters’
reliability are scarce, and most of the published papers focus on electricity meters and the prediction
of power consumption, e.g., [9,10] described a non-intrusive load monitoring (NILM) algorithm to
provide customers with the breakdown of their energy consumption.

The problem of meters’ reliability and failure prediction was addressed by Khairalla et al. [4], who
proposed a fault location algorithm based on upgrading distribution substation smart meters with
synchrophasor measurements. The main downside of this solution was that it required a substantial
integration in the existing infrastructure. The reliability of Smart Electricity Meters (SEM) was also
analyzed in article [11], where a linear regression model was used to predict their time-to-failure.

A smart metering technology and harnessing smart meter datasets with a big data approach
were presented in the comprehensive review [12]. Advanced Metering Infrastructure (AMI) data
were categorized as consumption and event data. The authors claimed that although the analytic
techniques in use were not novel, the volume, velocity, and variance of the AMI collected data enabled
applications such as load profiling, forecasting, intelligent pricing, and capturing irregularities.

The importance of smart meter data analytics (including data acquisition,
transmission, processing, and interpretation) was emphasized in survey [13]. Although the authors
focused mainly on electricity meters, their comments applied to other types of smart devices, as well.
The paper presented a list of widely-used methods and tools; among others, SVM and PCA, which are
also used here (Section 2.4). Unfortunately, failure prediction or reliability analysis was overlooked.
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In smart cities, it is of utmost importance to create a prediction system, thanks to which the
operation of the heat distribution network is well adjusted to the needs of recipients. There are several
examples of using ML algorithms in the context of smart buildings and smart heat meters, usually ANN,
for maintaining a comfortable indoor environment [14,15]. Although such an approach is effective,
it has a significant disadvantage: a new, unique ANN has to be built for every single apartment and
tenant. However, to manage and control large heating systems in smart cities, more general and robust
models are necessary.

The studies on the optimization of the heating system in residential buildings were also
presented in paper [16], where an optimized ANN model determined the optimal start time for
a heating system in a building. Similarly, an ANN was applied in [17] to evaluate the energy input,
losses, output, efficiency, and economic optimization of a geothermal district heating system.

In district heating systems, multi-step ahead predictive ML models of individual consumers’
heat load could be a starting point for creating a successful strategy for predicting the overall heat
consumption [18]. As a consequence, transfer losses, costs of heat purchase, and pumping costs can be
reduced. Facilitating the measuring system is associated with the improvement of the efficiency of
communication with distributed sensors, remote control, and monitoring of technological processes.

Hyperparameter optimization is a relatively new concept in the ML world. Its usefulness was
confirmed for example in [19]. The authors compared Tree of Parzen Estimators (TPE) with the
random search strategy. Prepared experiments showed that TPE clearly outstripped random search
in terms of optimization efficiency. TPE found best-known configurations for each dataset and did
so in only a small fraction of the time allocated to random search. That is why a TPE approach is
followed in this paper. The general Sequential Model-Based Optimization (SMBO) method used for
hyperparameter optimization (Section 2.4) is in line with a procedure described by Bergstra et al. [20],
however adapted to the selected ML algorithms.

In contrast to hyperparameter optimization, the ensemble classifier has enjoyed growing attention
within the computational intelligence and machine learning community over the last couple of decades.
This rather simple idea was deeply explained in [21]. The author emphasized the importance of
diversity in ensembles. Ideally, classifier outputs should be independent. Although diversity can
be achieved through several strategies, usage of different subsets of the training data is the most
common approach. Another less common approach also included using different parameters of the
base classifier (such as training an ensemble of multilayer perceptrons, each with a different number of
hidden layer nodes) or even using different base classifiers as the ensemble members. In this paper,
we use the latter, which ensures the greatest diversity.

2. Materials and Methods

2.1. Heat Meters

A heat meter is a microprocessor-measuring device that calculates the consumption of heat in
kWh by measuring the flow rate of the heat transfer medium (most often it is water, although if the
system is also used for cooling, it can be water with appropriate additives to prevent freezing) and the
difference between supply and return temperature (Figure 1). The meter has an in-built flow meter,
which measures the volume of the flowing medium, and two temperature sensors for the inflow and
outflow fluid.

Temperature sensors consist of a measuring element, that is a thermistor, which is usually
platinum. It changes resistance depending on the temperature. In heat meters, usually Pt100 or Pt500
sensors are used. The higher the resistance of platinum in the sensor (respectively 100 Ω or 500 Ω),
the greater the accuracy of temperature measurement.
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Figure 1. Principle of the heat meter.

2.1.1. Maintenance of Heat Meters

Heat meters are generally considered as reliable. However, like all devices, they sometimes
break down and require technical maintenance. Premature meter failures affect all parties,
i.a., tenants, building managers, and the billing company, significantly disturbing the scheduled
maintenance and causing losses. The consequences include incorrect readings, understated invoices,
and customer complaints.

The replacement of meters is a complex logistical process, which must be planned in detail.
The old meters have to be removed from the network and delivered to a service center or recycled.
The installation of new meters is usually done in stages, and it is convenient to carry out the service
works in a limited area before proceeding to the next one. It is necessary to arrange meetings with
building managers or tenants.

The whole procedure can generate high costs related to the work of qualified installers,
planning and delivering of components, final inspection of the installed devices, and updating the
operational data regarding meters. It is often more efficient to replace a functioning device during
a scheduled maintenance check if there are any indications of a possible failure in the next billing
period. Developing a method for predicting the occurrence of the meter failure in the subsequent
period is the subject of this article.

Heat meters are as a rule the subject of planned maintenance. In the majority of the European
countries, their verification should take place every five years due to metrological requirements.
During this time, heat meters accumulate mineral deposits from water (especially warm and hot),
which results in wear of mechanical elements due to being moved by the stream flowing through the
equipment. To mitigate this problem, regular checks are done, aimed at investigating the quality of
water used for heating.

Reverification is time consuming. Heat meters have to be dismounted from the network and
delivered to the verification point. For the verification period, the older heat meters are replaced with
the new ones, which have a valid heat meter verification marking. However, currently, the majority
of the companies plan only one verification visit due to logistical costs. Once the verification is done,
the dismounted heat meters are installed in other locations. Before the verification, the heat meters are
cleaned, regulated, and sealed so that they could work for another five years, meeting metrological
requirements. It is not uncommon that heat meters are verified two or even three times.

The users decide to replace them due to three reasons: new equipment has a longer warranty than
the older verified one (five years instead of two years); the new heat meter is much more technologically
advanced; or the old heat meter was broken, and repair is impossible or useless.
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2.1.2. Review of Typical Faults

The most common causes of meters’ failures include:

• Failure of the flow transducer (in a mechanical meter) caused by the accumulation of deposits on
mechanical elements. The repair involves exchanging the rotor or the whole transducer.

• Failure of temperature meter: Most frequently, this occurs in non-mechanical heat meters and is
usually caused by rodents (rats) damaging the conductors. The repair is based on the replacement
of the temperature meter.

• Exhaustion of the battery: Despite the theoretical calculations that mounted batteries should work
for 5–7 years (exceeding the required verification period), it frequently happens that the batteries
run out already after 2–3 years. The repair of such equipment requires only the replacement of
the battery.

2.2. Data

Information on installation, operation, and replacement of heat meters has been accumulated over
the last ten years in a relational database. The meter is a subject of a cyclical readout of its current value
necessary to calculate the energy consumption in a defined billing period. Potential failure should be
detected at the latest at the time of meter readout. The billing period usually lasts 12 months (but it
can also last 6, 18, or 24 months) and starts at the beginning of the chosen month (often it is January,
June, or September). Some modern smart meters also store the monthly values, although they do not
impact the final billing.

The discussed database also includes many other items of information used for the billing of
utilities (approximately 150 relational tables; some of them consist of 20 million records; in total, 250 GB
of data), as well as data regarding other types of meters (water meters and heat distributors). However,
the authors decided to focus on the heat meters addressed in the introduction. The available data may
offer clues to many questions concerning the operation of heat meters. For economic reasons, the most
significant problem is detecting and predicting a failure; thus, the data were prepared for this purpose.

After data preparation and initial statistical analysis, sixteen parameters were selected for further
processing (Table 1).

Table 1. Sixteen selected features.

Name Description Type

Age
Life of the meter in months
from the moment of installation
to the last readout or failure

N number

ZIP
Postal code of flat/office, in which
the meter is installed N number

Floor Floor where the meter is installed N number
FlatType Type of usable area String of letters

RoomType Type of area String of letters

AccConsumption
Consumption from the moment of registration
in the system R Number

CurrentConsumption Consumption in the last settlement period R Number
CommType Type of communication with the meter String of letters

Producer Name of the manufacturer of the meter String of letters
RatingFactor Equalization factor R number

BillingNo Next number of the settlement period N number
CurrentValue Last recorded value of the meter R number

AvgConsumption Average consumption in all settlement periods R Number
MaxConsumption Maximum consumption in the settlement period R Number
MinConsumption Minimum consumption in the settlement period RNumber

CalculatedAge
Calculated age of the meter in months:
CurrentValue/AvgConsumption R number



Appl. Sci. 2019, 9, 3719 6 of 17

The type of the usable surface (e.g., flat, office, or storeroom), as well as the type of room
(e.g., room, kitchen, bathroom, and corridor) were represented by enumerations. In case of an unclear
situation, the value “other” was used. The authors decided to distinguish sixteen types of rooms
and five types of usable surfaces. Since some models accept only numbers, each type of room was
assigned a successive natural number. The same was done in the case of meters’ manufacturers
(16 different values).

The rating factor is a real number from the interval (0–1]. It is used in the case of rooms with
an increased consumption of heat, e.g., due to adjacency to external walls of the building. This ensures
a fair distribution of the heating costs of the whole building between all tenants, irrespective of the fact
of whether they have an external flat or not.

An important parameter is also the method of communication with the equipment (CommType).
There are four communication types:

• bus: meters regularly send their updates to the central panel installed in the same building, which
also collects data from other meters by cable connection;

• funk: similar to the bus, but the connection of the meter with the control panel does not require
the additional wiring system;

• walk by: on specific days (programmed), the meter sends data, which have to be collected by the
technician sent to the neighborhood and equipped with the receiving device;

• without a module: the reading has to be done manually directly on the meter.

The correction and normalization of the dataset were described in more detail in [22].

2.3. Data Analysis

Preparation of data and selection of observation parameters theoretically enables building
prediction models. In practice, however, it is necessary to better understand data, on which the
studies were conducted [23]. By its very nature, a machine learning model is acutely sensitive to
the quality of the data. Because of the huge volume of data required, even relatively small errors
in the training data can lead to large-scale errors in the output. Finding and analyzing the relations
between particular parameters enables drawing correct conclusions and the proper interpretation of
the results [24]. Apart from this, such knowledge can be useful by selecting the appropriate machine
learning model or its parameters [25].

The code in this project was written in Python, which offers advanced tools for machine learning
and data analysis. In order to train and evaluate the selected models, the following components and
applications were used:

• Python 3.6.3;
• Keras 2.2.0: open source library for creating neural networks
• TensorFlow 1.8.0: open source library written by the Google Brain Team for linear algebra and

neural networks;
• Scikit-learn 0.19.1: open source library implementing many different methods of machine learning.

2.4. Machine Learning Algorithms

The developed ML classifier was aimed to predict meters’ failures in the next billing period.
To ensure a high degree of independence, three significantly-different machine learning algorithms
were used: SVM (Support Vector Machine) with the RBF kernel, ANN (Artificial Neural Network),
and BDT (Bagging Decision Trees) in standard implementations. The underlying theory can be found
in [26–30].

Next, the general method of hyperparameters’ optimization was employed to improve prediction
efficiency. At the end, the optimized SVM, ANN, and BDT models were used to build an ensemble
classifier (Supplementary Materials). The purpose of this procedure was to obtain a model able to
make the best prediction concerning the failure rate of meters, while maintaining its generalization,
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i.e., minimizing overfitting. The Python code of the optimized models, ensemble model and
hyperparameter optimisation procedure is available online at: https://github.com/PatrykPalasz/ML-
algorithms-and-hyperparameteroptimisation.git.

For training the selected models, the default parameters of the algorithms were used, as well as
all the features of the observations presented in Table 1. Building and evaluating models were always
based on the same dataset (51,890 records), randomly divided into the training set (80%, 41,512 records)
and the testing set (20%, 10,378 records).

3. Results and Discussion

3.1. Statistical Analysis

One of the first steps in exploratory research is usually constructing a correlation matrix [31].
Frequently, its analysis allows eliminating the irrelevant parameters and may be a starting point for
PCA analysis. Apart from that, the correlation matrix may reveal some dependencies between
particular variables, their mutual relations, and potential redundancies [32]. To visualize such
information, a thermal map was applied. By analyzing the correlations presented in Figure 2, a very
weak relation of failure from all other parameters (the last row of the matrix) can be observed.

Figure 2. Correlation matrix: heat map.

The highest correlation coefficient at 0.26 had a parameter of a current meter value. Such
a correlation value was relatively small and is usually omitted. On this basis, it can be concluded
that failures did not directly depend on any single meter feature, but perhaps on some nonlinear
combination of state variables.

https://github.com/PatrykPalasz/ML-algorithms-and-hyperparameteroptimisation.git
https://github.com/PatrykPalasz/ML-algorithms-and-hyperparameteroptimisation.git
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A very strong correlation can be observed between the meter age and the number of billings
(nearly one). Presumably, one of these parameters would be unnecessary (redundant) in further
analysis. A little smaller, but also significant correlation can be seen between the maximum and the
current energy consumption. Furthermore, this relation was rather apparent and did not require any
more explanations.

There were no rows below the current meter value, which demonstrated higher correlation
with other parameters and could be treated as linearly independent. Attention is drawn only to the
small correlation between the manufacturer and the type of communication, which was at 0.4. This
indicates the situation where manufacturers specialize themselves in making meters for particular
communication types, but also the maintenance company is supplied with particular types of meters
not only by the selected manufacturers.

During the analysis of the correlation matrix, it should not be forgotten that a strong correlation
does not necessarily imply that correlation is causation.

3.1.1. Communication Type

Because the minimization and predictability of failures was crucial for cost optimization,
we examined the dependence of failures on selected parameters. The impact of the meter communication
type is presented in Table 2.

Table 2. Dependence of failure on the type of communication.

Communication Type Meter # Failure # % of Failures

Walk by 1045 18 1.72%
Funk 10,996 1716 15.61%
Bus 12,631 1778 14.08%

Without communication 27,577 8273 30.00%

The meters of the “walk by”-type had a very low percentage of failures, but the sample was
small in relation to other types of communication, so the conclusion that they were the most reliable
was a bit premature. Meters without a communication module failed almost twice as often as those
with communication. We can certainly conclude that the meters with remote communication, in other
words, the new generation of devices, were far less likely to fail.

Using the methods presented in [22], the distribution of the probability vector can be determined.
In Figure 3, each state from 1–10 represents the age of the meter in years. It can be observed that
there was a significant difference in failures between meters with and without communication, also
in the long term. The linearity visible in that figure confirmed that the failure intensity was weakly
dependent on the meter’s operating time. Moreover, information about stationary distribution allowed
for better planning of inventory.

Therefore, in the context of smart meters and smart buildings, devices with remote reading are
definitely a better choice. Not only are they more “user friendly” (the presence of the resident is not
required during readings), but also more reliable.
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Figure 3. Stationary probability distribution.

3.1.2. Producer

Similarly to the grouping by the type of communication, violin charts with the division into the
producers are presented (Figure 4). Due to the sensitivity of the data, the numbers were used instead
of the brand names. Analyzing violin plots, it is worth noting that the curves of the Kernel Density
Estimator (KDE) represent the probability density, not the cardinality of the considered set. In other
words, the area under the curve equaled 100%. More information about how the KDE was created
can be found in [33]. A single violin in the presented plot describes two sets: left-hand without and
right-hand with failures (blue and orange, respectively), which are not in the same scale in terms of
absolute numbers. To interpret the data, the locations and number of picks, as well as the shape of the
curve itself need to be compared.

Figure 4. Consumption and failures by producer.

In particular, Manufacture Nos. 2 and 4 had their maxima without failure above consumption
of 20,000 kWh, which suggests that purchases were abandoned. In the case of Producer No. 10,
the failures were slightly delayed in relation to the number of new meters, but it was difficult to draw
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any more specific conclusions here. It was notable that the KDE curves of failure were in general
longer and had relatively small maxima, which indicated that the occurrence of failure was random
for almost any manufacturer.

Table 3 is the complement of the violin charts. The failure results presented here were certainly
influencing the Rapp’s purchasing policy. On the one hand, we had a strong leader (Producer No. 16),
which maintained the failure rate of its devices at a relatively low level of 13%. On the other hand,
we observed diversification and an attempt to become independent of this producer. The reason to
withdraw the meters of Producer No. 2 was the high failure rate of over 90%, even in a few years.

Table 3. Failures by producer in numbers.

Producer Meter # Failure # % of Failure

1 2555 290 11.35%
2 118 114 96.61%
3 1674 281 16.79%
4 671 303 45.16%
5 713 187 26.23%
6 823 345 41.92%
7 1708 438 25.64%
8 1494 603 40.36%
9 1832 443 24.18%
10 2026 332 16.39%
11 1853 600 32.38%
12 2440 234 9.59%
13 3348 1859 55.53%
14 3506 655 18.68%
15 3977 2059 51.77%
16 23,511 3042 12.94%

The above observation strongly supported the thesis that statistical analysis performed on a big
dataset can create significant savings and should be used in the process of designing and maintaining
smart buildings.

3.2. Reliability Analysis

The cumulative heat consumption is a meter feature, which can be treated as an equivalent of
operating time. In article [22], we showed that the probability of failures follows a Weibull distribution.
With the k parameter close to one, it is simply the exponential distribution:

f (t) = λe(−λt) (1)

It is characterized by the constant intensity of failures, i.e., λ = 3.08 ∗ 10−5. This means that failures
occur as external random events and do not depend on usage time. Instead, they appear randomly
with the fixed intensity. Such a feature is called a “memoryless” of the exponential distribution and
implies that if we know that in moment x the element was fit for use, thus, counting from that moment,
the fitness time had the same distribution as a distribution of a new element [34–36].

It can be stated that during these ten years, the intensity of failures of the heat meter was weakly
dependent on the usage time. It is a fundamental assumption since it enables the prediction of failures,
which are independent of the history of operation. We did not have to possess information on how
and when the equipment was used; if we know its state variables, it is entirely sufficient. The above
conclusion, as well as correlation matrix suggested the selection of algorithms of machine learning that
perform well in classification problems with non-linear separable classes.
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3.3. Machine Learning

3.3.1. Metrics

There are many different metrics that can be used to compare the performance of trained ML
models; each has its strengths and weaknesses (compare [37,38]). Due to the character of the data
(high predominance of records without failure; approximately 80%), as well as the goal of the model
(equally important as predicting failure is predicting whether the meter will continue working),
we focused on two metrics: Area Under the ROC Curve (AUC) and Matthews Correlation Coefficient
(MCC). The MCC takes values from [−1, 1] (more means better), and AUC takes values from [0, 1],
whereby 0.5 means a random classifier. Detailed information about each of metrics can be found
in [39]. For a more comprehensive image, also accuracy, precision, recall, and f1 for both classes will
be provided.

Figure 5 shows the results of the BDT, ANN, and SVM models in various metrics. It can be noted
that MCC-S and recall for a positive class were relatively weak. This indicated that the developed
models were good only for the correct prediction of an event that a meter will not fail, but the correct
prediction of breakdown was more challenging. The same conclusion can be reached by analyzing
Figure 6, which presents a part of the confusion matrix regarding true predictions (true positive
and true negative). Differences of a few or several percent were more difficult to accept, and their
minimization was thus the target of hyperparameter optimization.

Figure 5. Average metrics for 10 tries: before optimization.

Figure 6. True Positive and true negative: before optimization.



Appl. Sci. 2019, 9, 3719 12 of 17

As far as the performance of individual algorithms was concerned, BDT turned out to be the
best and SVM the worst (Figure 6). All models were much less successful in detecting meter failure
than predicting survival for the next billing period. Although we had not yet optimized the tested
models, their overall performance was very good. This resulted mainly from preprocessing and data
normalization, as well as the proper selection of parameters.

3.3.2. Hyperparameter Optimization

Hyperparameter optimization is a problem of finding a minimum of a certain objective function,
the domain of which is the space of parameters of the examined model. The parameters can be
continuous, discrete, or categorical, and additionally, they can be dependent on each other [19]. It is
worth highlighting that calculating the objective function is extremely expensive: it involves the full
training and evaluation of the model.

There are different strategies of looking for optimum hyperparameters. The easiest way is
“manual” tuning. However, it requires expert knowledge of the model and data, which does not
foster generalization. The other strategy is either full or the random search of the parameters’ domain,
the so-called “grid search”. Checking all combinations is usually unrealistic due to the high costs.
It has been confirmed that random search can work well in the case of a model with many parameters,
out of which only some play a key role in its quality [40]. The next method of searching for optimum
parameters of a classifier is an SMBO (Sequential Model-Based Optimization) method. To put it simply,
it consists of constructing a surrogate model approximating the objective function, the minimum of
which we look for. Most frequently, GP (Gaussian Process), RFR (Random Forest Regressions), or TPE
(Tree-structured Parzen Estimator) are used as surrogate models. The selection of subsequent domain
points (values of hyperparameters) is calculated in order to optimize the selection function; here,
we usually used the EI function (Expected Improvement). Such a strategy often provides the best
results and eliminates the element of randomness [41].

To optimize the hyperparameters of models described in this paper, SMBO with TPE model was
chosen. As the objective function, the AUC metrics was applied.

After optimizing the hyperparameters, each of the models improved its performance, especially in
failure detection. This was also the main goal of the optimization that was achieved. It can be noticed
that the larger the hyperparameters of the tested model, the easier it can be optimized. The neural
network noted the highest progress in each metric (compare Figure 7). Significant progress was also
visible in the SVM model.

Figure 7. Models’ metrics after optimization.

In general, most of the metrics showed progress in the range of 3–5%, which is a very good result,
especially considering that the quality of the examined models before the optimization exceeded 92%.
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3.4. Ensemble Model

To increase the efficiency of predictions, an ensemble classifier was built from three independent
models: SVM, ANN, and BDT. Similarly, to random forests, an ensemble is a meta-classifier that
internally uses several, preferably strongly independent models, respectively aggregating their
predictions to generate the result [42]. The choice of algorithms in that case cannot be accidental.
For example, the logistic regression method would be a bad choice because the selected parameters of
heat meters are linearly independent (Figure 2). The assumption about the differentiation of models is
important because similar classifiers make the same mistakes, so the final group model would only
duplicate them. Sufficient differentiation can be achieved for the same algorithms by the appropriate
division of the training set into subsets (bagging). It also happens that subsets of data attributes are
used instead of data subsets. In this paper, the authors decided on a different approach, namely the
use of already trained (and optimized) models and building of a collective classifier using the most
popular voting algorithms with weights. The results of the obtained ensemble classifier can be seen
in Table 4.

Table 4. Ensemble classifier: average for 10 tries.

Metric Result

MCC-S 97.34%
AUC 96.45%
f 1avg 98.22%
f 11 95.81%
f 10 98.82%

Recallavg 98.32%
Recall1 93.34%
Recall0 99.56%

Precisionavg 98.15%
Precision1 98.42%
Precision0 98.08%
Accuracy 98.15%

For the most important metrics (MCC and AUC), the ensemble classifier was better than the
average of the optimized models by more than one percent, which gave 22% and 29%, respectively,
of the total possible improvement. The increase in detectability of failures by more than 1.5% for the
Precision1, Recall1, and f 11 metrics was also important.

4. Conclusions

It is not possible to replace at once all heat meters currently being in use. Therefore, we need
to characterize the existing devices much better to be able to implement the idea of smart buildings.
The knowledge needed for data analysis and model building is available to researchers and fairly
well established [43]. Access to large datasets containing information about the operation of already
installed devices in residential buildings is currently relatively easy. The analysis of these data
(in Sections 3.1 and 3.2) provided significantly new knowledge about their operation. This is as
an intermediate step in the implementation of heat meters into smart buildings.

The reliability of heat meters, especially of those with remote communication, seems to be good
enough for smart city applications, and optimization of heat consumption (Figure 3 shows a failure
rate around 11%). We discovered that the failure intensity of the heat meters was random and weakly
dependent on the time of their use and followed a Weibull distribution (Section 3.2), which was
in line with the studies on electricity meters [11]. In addition to statistical analysis, a selection of
machine learning algorithms, including neural networks and an ensemble model for heat meters’
failure prediction, was implemented.
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Currently, most applications of machine learning are primarily based on neural networks.
It is understandable that this method is very flexible and probably the only one suitable for
solving many types of problems such as regression, classification, clustering, and reinforcement.
Consequently, the alternative types of algorithms are rarely considered. We showed that prior
exploratory data analysis, the right choice of parameters, hyperparameters’ optimization, and building
the ensemble classifier can significantly enhance the quality of predictions and create a solution
that outperforms the results of an individual neural network. As studies using hyperparameter
optimization are not common, this encouraged us to present this issue a bit more widely. We also
showed that this is an important step to improve the efficiency of machine learning models.

The presented data analysis and the results of created models led to the following findings
and implications:

• The intensity of failures of heat meters was almost independent of the operating time.
• Due to the high reliability of the meters and their considerable cost, condition-based or predictive

maintenance of heat meters was justified and possible. It was shown in Section 3.2 that the
mandatory five-year verification period could be extended.

• Collecting different parameters about devices in use made sense even if they are not required at
the moment. This allowed building more general and better ML models in the future.

• Heat meter data allowed building a ranking list of their producers and optimize deliveries.
• Heat meters with remote communication were twice as reliable as the ones with manual reading.

This article is one of the few that dealt with the reliability and predictability of heat meters’
failures. It is also, according to our knowledge, the first attempt to use more independent ML models
based on a single database. Achieving the result above 95% for the AUC metric by the model, while
maintaining overfitting at the minimum level, was a remarkable outcome.

As stated in [24], many ML methods are very sensitive to the type and quality of the data.
We selected and prepared the data with extra care to ensure the quality of the classifier, but it is not
certain whether equally good efficiency could be achieved for meters and data derived from other
sources. Due to the fact that the training data were supplied by only one meters’ operator, the models
can be biased. However, the presented approach and methodology of model construction should
perform well independent of data sources.

The implemented methodology is so universal that it will be utilised to study the reliability
and predict failures of other types of meters, e.g., water meters or heat cost allocators. Besides fault
prediction, a similar approach can also be implemented to predict water usage, heat consumption or
periods when such consumption is minimal. This knowledge can be used to optimize the costs of
media transmission as well as to reduce costs for individual users [18]. Similar approach was shown
in [44], but it was based on an adaptive neuro-fuzzy network.

The developed machine learning model and the acquired knowledge will be used in the design
of new heating systems, as well as for optimization of stocks and maintenance activities in the
existing heat meter networks, which will bring significant benefits for their operators, tenants, and
the environment. In particular, the optimization of meters’ maintenance in large buildings will allow
companies to save both time and resources. Such optimization is also crucial for the tenants, who
are the end users of heat meters. It does not only shorten the time needed for their presence during
replacement, but it also guarantees the accurate meter readings and fair distribution of heating costs.

Supplementary Materials: The source code of the optimized SVM, ANN and BDT models, ensemble model, and
hyperparameter optimization procedure is available online at: https://github.com/PatrykPalasz/ML-algorithms-
and-hyperparameteroptimization.git. Due to the sensitivity and ownership of the data, the datasets used will not
be publicly available. Under special circumstances, access can be granted by Rapp Enserv AG. In that case, please
contact Rapp Enserv, Hochstrasse 100, 4018 Basel, +415859577744.
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The following acronyms are used in this manuscript:

ANN Artificial Neural Network
AMI Advanced Metering Infrastructure
AUC Area Under the ROC Curve
BDT Bagging Decision Tree
EI Expected Improvement
GP Gaussian Process
IoT Internet of Things
LDA Linear Discriminant Analysis
MCC Matthews Correlation Coefficient
MDPI Multidisciplinary Digital Publishing Institute
ML Machine Learning
NILM Non-Intrusive Load Monitoring
PCA Principal Component Analysis
RBF radial basis function
RFR Random Forest Regressions
ROC Receiver Operating Characteristic
SEM Smart Electricity Meters
SMBO Sequential Model-Based Optimization
SVM Support Vector Machine
TPE Tree-structured Parzen Estimator
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