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Abstract: The energy dissipated in hysteretic damping is independent of cyclic frequency, which
agrees with the experimental results of energy dispersion of many materials under cyclic loading.
Despite these desirable properties, hysteretic damping suffers from a notable drawback; the direct
integration solution of the equation of motion is divergent. In this paper, a virtual initial condition is
proposed to address the instability of the solution. The new method develops virtual initial conditions
associated to the real initial conditions, which make the direct integration solution eliminate the
divergence term of the complementary solution and converge to the exact solution. The stability and
accuracy of the proposed direct integration method are demonstrated to be effective in solving the
divergence problem by the comparison of the numerical and theoretical solutions on the free and
forced vibration of a system with hysteretic damping.

Keywords: hysteretic damping; direct integration method; virtual initial condition; free vibration;
forced vibration

1. Introduction

Damping is the natural property of a vibration system, which dissipates vibration energy.
The widely used models to represent damping in a system are the viscous model and the hysteretic
model [1–3]. Viscous damping, whose force is proportional to the velocity, is the most popular model
due to the mathematical convenience. However, it implies a dissipated energy per a vibration cycle
depending on the frequency. Hysteretic damping, whose force is proportional to the displacement
and in phase with the velocity, leads to a dissipated energy per cycle which is independent of the
frequency [4,5]. Experiments on structural materials indicate that the energy dissipation is independent
of the cyclic frequency [6–8]. In those cases, the hysteretic damping is more precise. However, there
are some drawbacks in the solution of the equation of motion with hysteretic damping for both the
frequency domain analysis and the direct integration method in the time domain, which hinders the
wider application of hysteretic damping models.

The frequency domain approach solves the hysteretic damping system by using the Fourier
transform for the equation of motion [9–11], but it has two main drawbacks [12,13]. (1) Part of transient
response may be neglected which may underestimate the response at the initial time and (2) in theory,
it is only applicable for the linear elastic system due to the application of the superposition principle,
so it cannot be used to analyze the true nonlinear response. For the approximate solution of a nonlinear
system, Idriss and Seed [14] proposed an equivalent linearization method, which was widely used in
the nonlinear seismic response of soil site and soil-structure interaction [15–18].

In a time-domain analysis, the numerical method is widely used because of its high efficiency,
and because it can analyze the nonlinear problems as well [19–23]. However, the result from the
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numerical method is divergent when the direct integration method is used to solve the hysteretic
damping systems, even if the integration procedure is unconditionally stable [24]. To develop the
hysteretic damping in the time domain, a common method is to transfer the hysteretic damping into
the approximate viscous damping. Henwood [25] used the forcing frequency to replace the natural
frequency. Thus, the hysteretic damping matrix can be transferred to a viscous damping matrix, which
is independent of frequency. Chen [26] proposed an integral-differential equation (IDE) in the time
domain for the free vibration of a single degree-of-freedom (SDOF) system by using viscous damping
depending on the frequency to equivalent hysteretic damping. Zhou [27] combined the standard linear
constitutive models to approximate the hysteretic damping constitutive model in the time domain,
and then applied the time-step integral calculation to hysteretic damping model.

However, until now, the improvement in the direct integration of a hysteretic damping system
is still very slow, and the divergence of the results of the direct integral method has not been solved.
In theory, there are two kinds of unstable solutions for the direct integration method. One is caused by
the instability of the numerical method, and the other is caused by the divergent solution of the equation
itself. The instability of the direct integration method of the hysteretic damping model is caused by the
latter one since the pair of eigenvalues of the SDOF hysteretic damping are complex numbers and
opposite to each other. The complementary solution of the equation is a linear combination of the
two eigenvalue exponential functions. Therefore, the eigenvalue with a positive real part will cause
a divergent solution, which is contrary to the natural and physical phenomenon. In the theoretical
solution, the divergent term can be arbitrarily omitted, but it is kept in the direct integration procedure.
Recently, Sun [28] proposed a time-domain numerical method based on the interpolation of excitation,
which is a semi-analytic direct integration method, by using the theoretical solution in each step.

Therefore, the key to the stability of the direct integration method of a hysteretic damping system
is to eliminate the divergent term in the recursive process. In this paper, we propose to use virtual
initial conditions to address the instability of the solution. The proposed method constructs virtual
initial conditions by the real part of the displacement and velocity of the previous step, as well as the
load condition, so that the direct integration solution converges to the exact solution. Except for the
initial conditions, all the procedures of the proposed method are the same as the direct integration
method for the governing equation of motion with viscous damping. Then, the stability and accuracy
of the proposed direct integration method are demonstrated by the comparison of numerical and
theoretical solutions on the free and forced vibration of the SDOF system with hysteretic damping.

2. Equation of Motion and the Direct Integration Method

The governing equation of motion of a single-degree-of-freedom (SDOF) system with hysteretic
damping in forced vibration can be expressed as [29]

m
..
u + (1 + iη)ku = f (t), (1)

where m and k are the mass and stiffness, respectively, η is the hysteretic damping factor, i =
√
−1,

..
u and u are the acceleration and displacement of the SDOF, respectively, and f (t) is the applied force.
This equation is to be solved for the displacement, u(t), subjected to the initial conditions as

u(0) = u0 and
.
u(0) = v0, (2)

where u0 and v0 are the displacement and velocity at the time t = 0.
For the direct integration method, let the time axis be divided into small intervals of equal

length ∆t, and let tn = n∆t(n = 0, 1, 2, . . . . N) be the division times. The response of displacement,
velocity, and acceleration at the discrete time instants tn are un,

.
un, and

..
un. The applied force f (t) at tn

is fn.
So far, several direct integration methods have been proposed to obtain the solution at time tn+1

assuming that the solutions at times ti (i = 0, 1, 2, . . . . n) are known. The Newmark method is used to
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investigate the stability of the solution of the hysteretic damped equation in the following illustration.
In the Newmark method, the velocity and acceleration at time tn+1 can be expressed as

.
un+1 =

γ

β∆t
(un+1 − un) + (1−

γ

β
)

.
un + (1−

γ

2β
)

..
un∆t, (3)

..
un+1 =

1
β∆t2 (un+1 − un) −

1
β∆t

.
un − (

1
2β
− 1)

..
un, (4)

in which parameter γ and β are parameters that can be determined to obtain integration accuracy and
stability. Substituting Equation (4) into Equation (1) gives:

k̂un+1 = f̂n+1, (5)

where k̂ = (1+ iη)k+ 1
β∆t2 m and f̂n+1 = fn+1 + [ 1

β∆t2 un +
1
β∆t

.
un +( 1

2β − 1)
..
un]m. Solve the displacement,

un+1, by Equation (5), then
.
un+1 may be determined from Equation (3) and the acceleration may be

determined from the following expression deduced from Equation (1):

..
un+1 =

fn+1 − (1 + iη)kun+1

m
. (6)

It is well known that the Newmark method is unconditionally stable for γ = 1
2 and β = 1

4 , which
is called the average acceleration method. However, the results obtained by the average acceleration
method will blow up for the hysteretic damping system, giving meaningless results. The reason is
that the solution will converge to the divergent solution which is caused by the divergent member of
the complementary solution of Equation (1) if the real-valued initial condition is used directly in the
Newmark method. Therefore, in this paper, a modified initial condition in each time step is proposed
to address the unstable phenomenon for direct integration.

3. The Formulation for the Virtual Initial Condition

3.1. The Virtual Initial Condition for Free Vibration

For a system in free vibration, the right-hand member of Equation (1) vanishes and gives

m
..
u + (1 + iη)ku = 0. (7)

The solution for the homogeneous equation is

u = Ceλt, (8)

in which C is a constant and λ is eigenvalue. Substituting Equation (8) into Equation (7) leads to the
algebraic equation:

λ2m + (1 + iη)k = 0. (9)

The solutions of Equation (9) are
λ1 = s, λ2 = −s, (10)

s = ω(a− ib), (11)

where ω =
√

k/m is the undamped natural frequency, a =

√
−1+
√

1+η2

2 , b =

√
1+
√

1+η2

2 . The two
eigenvalues are opposite numbers to each other. The general solution of Equation (7) is

u = C1est + C2e−st. (12)



Appl. Sci. 2019, 9, 3707 4 of 12

The constant C1 and C2 in terms of the real-value initial conditions of Equation (2) may be
determined from

C1 =
su0 + v0

2s
, C2 =

su0 − v0

2s
. (13)

Since the real part of s is a positive quantity, there would be a growing response along the time for
the right-hand first member C1est, which is a divergent term which is contrary to the physical rule and
should be omitted. Therefore, by introducing C1 = 0 the correct general solution can be expressed as

u = Ce−st, (14)

where C is a complex constant. Applying the initial condition of Equation (2) gives

C = u0 − i
v0 +ωau0

ωb
. (15)

In the analytical solution, the divergent member can be omitted to obtain the exact solution of
Equation (14). However, the direct integration solution converges to Equation (12). Therefore, it is
crucial to make Equation (12) equal to Equation (14). In this paper, the virtual initial conditions uv1

0
and vv1

0 are proposed to achieve this goal. The total initial conditions are the sum of the real initial
conditions and corresponding virtual initial conditions, that is

ut
0 = u0 + uv1

0 , vt
0 = v0 + vv1

0 . (16)

Substituting Equation (16) into Equation (13), and making Equation (12) equal to Equation (14), gives

s(u0 + uv1
0 ) + (v0 + vv1

0 )

2s
= 0, (17)

s(u0 + uv1
0 ) − (v0 + vv1

0 )

2s
= u0 − i

v0 +ωau0

ωb
. (18)

Solving the two algebraic Equations (17) and (18) leads to

uv1
0 = −i

v0 +ωau0

ωb
. (19)

vv1
0 = i[

a
b
(v0 +ωau0) +ωbu0]. (20)

It can be seen that the virtual initial conditions are purely imaginary. The usual real initial
conditions are

u0 = Re(ut
0), v0 = Re(vt

0). (21)

It can be observed that the complete initial conditions are complex, but only the real parts can
be observed and measured. The corresponding unobserved imaginary part should be the indivisible
member of the initial condition. After introducing the virtual initial conditions, the general solution of
Equation (7) is naturally exact, the real part of which is the observable solution and free decay.

3.2. The Virtual Initial Conditions for Harmonic Force

If f (t) is a harmonic force with forcing frequency θ, written as Aeiθt, the particular solution of
Equation (1) is

u = Xeiθt, (22)
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where X = A
−θ2m+(1+iη)k The complementary solution is the free vibration response given by

Equation (12). The complete solution is the sum of the complementary and particular solutions.

u = Dest + Ee−st + Xeiθt. (23)

The constants D and E are determined by the initial conditions. To illustrate conveniently, the virtual
initial conditions associated with the real zero initial condition are deduced first. On applying the zero
initial condition with u(0) = 0 and

.
u(0) = 0 to Equation (23), the constants D and E are deduced.

D =
−s− iθ

2s
X, E =

iθX − sX
2s

. (24)

Similar to the free vibration, the right-hand first term Dest is the divergent term and contrary
to the physical rule, which should be omitted. The complete solution that is satisfied with physical
meaning is

u = C f e−st + Xeiθt. (25)

On making use of u(0) = 0 and
.
u(0) = 0 to Equation (25), the constant Cf is deduced as

C f = −Re(X) − i
θIm(X) − aωRe(X)

bω
, (26)

where Re(X) is the real part of X, and Im(X) is the imaginary part of X.
The direct integration solution converges to Equation (23), therefore, let Equation (23) be equal to

Equation (25) by making use of the virtual initial condition uv2
0 and vv2

0 . Subjected to initial displacement
uv2

0 and initial velocity vv2
0 , the constants D and E in Equation (23) are determined from

D + E + X = uv2
0 , (27)

sD− sE + iθX = vv2
0 . (28)

Solving the two algebraic Equations (27) and (28) leads to

D =
suv2

0 + vv2
0 − sX − iθX

2s
, E =

suv2
0 − vv2

0 − sX + iθX

2s
. (29)

On making use of the identity between Equations (23) and (25), one obtains

suv2
0 + vv2

0 − sX − iθX

2s
= 0,

suv2
0 − vv2

0 − sX + iθX

2s
= C f . (30)

Then, it leads to

uv2
0 = C f + X = i

(bω− θ)Im(X) + aωRe(X)

bω
, (31)

vv2
0 = −sC f + iθX = i

aθIm(X) + (bθ− a2ω− b2ω)Re(X)

b
. (32)

The virtual initial conditions uv2
0 and vv2

0 are also purely imaginary. The member C f e−st in
Equation (25) is free adjoint vibration which is independent of the real initial conditions but depends
on the load. uv2

0 and vv2
0 are artificial load-dependent initial conditions which are developed to make

the direct integration solution converges to the exact solution.
Equations (31) and (32) are deduced by the assumption that the system is initially at rest.

For a system with non-zero initial conditions, the virtual initial conditions defined by Equations (31)
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and (32) should be augmented by the addition of the free vibrational solution defined by Equation (19)
and (20). Then the total initial conditions of harmonic responses are

ut
0 = u0 + uv1

0 + uv2
0 , vt

0 = v0 + vv1
0 + vv2

0 . (33)

3.3. The Virtual Initial Conditions for Arbitrary Force

Assuming the SDOF system with hysteretic damping is subjected to real-valued force g1(t), which
varies arbitrarily with time, it is necessary to establish a dual force in the time domain analysis [30].
Then, the governing equation of motion can be written as

m
..
u + (1 + iη)ku = f (t) = g1(t) + ig2(t), (34)

in which g1(t) is the observable force, and g2(t) is the corresponding dual force. By using discrete
Fourier transforms (DFT), g1(t) can be expanded to the sum of a series harmonic function, that is

g1(t) =
A0

2
+

N/2−1∑
j=1

(
A j cosθ jt + B j sinθ jt

)
+

AN/2

2
cosθN/2t, (35)

where θ j =
2π j
N∆t (j = 0, 1, 2, . . . , N/2−1,N/2), ∆t is time intervals of discrete, Fourier coefficients A0, A1,

A2, . . . , AN/2 and B1, B2, . . . , BN/2−1 can be determined from

A j =
2
N

N−1∑
l=0

g1(tl) cos(θ jtl), j = 0, 1, 2, . . . , N/2− 1, N/2, (36)

B j =
2
N

N−1∑
l=0

g1(tl) sin(θ jtl), j = 1, 2, . . . , N/2− 1, (37)

where ti = l∆t (l = 0, 1, 2, . . . , N−1) is the discrete value of t, g1(tl) is the discrete value of g1(t).
Then dual loading g2(t) can be expressed as

g2(t) = η
A0

2
+

N/2−1∑
j=1

(
A j sinθ jt− B j cosθ jt

)
+

AN/2

2
sinθN/2t. (38)

So,

f (t) =
A0

2
(1 + iη) +

N/2−1∑
j=1

(
A j − iB j

)
eiθ jt +

AN/2

2
eiθN/2t. (39)

Equation (39) denotes that arbitrary force can be expressed as the sum of a series of harmonic
forces, so the complete solution is the sum of a series of harmonic forces.

u =
N/2∑
j=0

(
D jest + E je−st + X jeiθ jt

)
. (40)

The right-hand first term D jest is a divergent term and contrary to the physical rule and should be
omitted, so the complete solution which is satisfied with physical meaning is

u =
N/2∑
j=0

(
C f je

−st + X jeiθ jt
)
, (41)
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where X0 = A0
2k , X j =

A j−iB j

−θ2
j m+(1+iη)k

(j = 1, 2, . . . , N/2−1), and XN/2 =
AN/2

2(−θ2
N/2m+(1+iη)k)

.

On making use of u(0) = 0 and
.
u(0) = 0 to Equation (41), the constant Cfj is deduced.

C f j = −Re(X j) − i
θ jIm(X j) − aωRe(X j)

bω
( j = 0, 1, 2, . . . , N/2). (42)

Similar to the harmonic force, the virtual initial condition associated with each term can be
determined from Equations (31) and (32) for the zero initial condition. Therefore, the virtual initial
condition for arbitrary force can be expressed as

uv3
0 =

N/2∑
j=0

(
C f j + X j

)
, (43)

vv3
0 =

N/2∑
j=0

(
−sC f j + iθ jX j

)
. (44)

Then the total initial conditions for a system with non-zero initial conditions are

ut
0 = u0 + uv1

0 + uv3
0 , vt

0 = v0 + vv1
0 + vv3

0 . (45)

Algorithm 1 summarizes the above-described procedure, which can be implanted into the computer.
The procedure can also be used to calculate the free vibration and harmonic force with slight modification.
Let fn = uv3

n = vv3
n = 0 for free vibration. The harmonic force is the particular example of the arbitrary

force, which only keeps one term with the with forcing frequency θto calculate uv3
n and vv3

n . It is noted
that step 2.4 is used to calculate the virtual initial condition for each time step n to eliminate the effect of
the round-off and improve the accuracy. Then the stability is dependent on the β, γ.

Algorithm 1 Newmark method with the virtual initial condition for arbitrary force.

Step 1.0 Initial calculation
1.1 DFT for g1(t) to calculate coefficients Aj and Bj by Equations (36) and (37).
1.2 ut

0 = u0 + uv1
0 + uv3

0 , vt
0 = v0 + vv1

0 + vv3
0

1.3
..
ut

0 =
f0−(1+iη)kut

0
m

1.4 select ∆t, β, γ
1.5 k̂ = (1 + iη)k + 1

β∆t2 m

Step 2.0 Calculations for each time step
2.1 f̂n+1 = fn+1 + [ 1

β∆t2 ut
n +

1
β∆t

.
ut

n + ( 1
2β − 1)

..
ut

n]m

2.2 un+1 = f̂n+1/k̂
2.3

.
un+1 =

γ
β∆t (un+1 − un) + (1− γ

β )
.
un + (1− γ

2β )
..
un∆t

2.4 uv1
n+1 = −i Re(vn+1)+ωaRe(un+1)

ωb , vv1
n+1 = i[ a

b (Re(vn+1) +ωaRe(un+1)) +ωbRe(un+1)]

2.5 ut
n+1 = Re(un+1) + uv1

n+1 + uv3
0 , vt

n+1 = Re(vn+1) + vv1
n+1 + vv3

0

2.6
..
ut

n+1 =
fn+1−(1+iη)kut

n+1
m

Step 3.0 Repetition for the next time step. Replace n by n + 1 and implement step 2.1 to 2.6 for next time step.

4. Example Case Study

4.1. Free Vibration

This example case study analyzes an SDOF with free vibration, which has m = 1, k = 4π2, and
η = 0.1, considering the free vibration with the initial condition:

u0 = 1 and v0 = 0. (46)
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From Equation (14), the correct theoretical solution is

u = (1− 0.05i)e(−0.314+6.291i)t. (47)

However, the wrong solution by Equation (12) with only the real initial conditions is

u =
1
2

e(0.314−6.291i)t +
1
2

e(−0.314+6.291i)t. (48)

In this example, the problem was solved by the Newmark method with γ = 1
2 , β = 1

4 .
The numerical results obtained using ∆t = 0.01s are compared with the theoretical solution, as shown
in Figure 1, in which NMV is numerical result obtained by algorithm 1, NMR is numerical result
obtained by the Newmark method with real-valued initial conditions.
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It can be seen from Figure 1 that if directly using the real initial conditions u0 = 1 and v0 = 0
by the Newmark method, the displacement blows up to give meaningless results which converge to
the wrong solution of Equation (48). However, the displacement with initial conditions ut

0 and vt
0 by

Equation (16) converges to the correct theoretical solution of Equation (47). Therefore, the Newmark
method is stable, but the solution is unstable for the real initial conditions. After applying the proposed
virtual initial condition, the divergent term is eliminated to make the solution stable.

4.2. Harmonic Vibration

This example case study analyzed an SDOF subjected to harmonic force, eiθt, with θ/ω = 0.25,
η = 0.1, m = 1, k = 4π2, u0 = 0, v0 = 0. The correct theoretical solution by Equation (25) is expected
to be

u = (−0.027 + 0.002i)e(−0.314+6.291i)t + (0.027− 0.0028i)e1.571it, (49)

and the wrong solution by Equation (23) with only the real initial conditions is

u = (−0.01 + 0.0009i)e(0.314−6.291i)t + (−0.0167 + 0.0019i)e(−0.314+6.291i)t + (0.027− 0.0028i)e1.571it. (50)

The solution of the steady-state response is

u = (0.027− 0.0028i)e1.571it. (51)

The problem was also solved by the Newmark method with γ = 1
2 , β = 1

4 . The numerical results
obtained using ∆t = 0.01s are compared with the theoretical solution, as shown in Figure 2, as well as
the solution of steady-state response. Obviously, the displacement blows up again for initial conditions
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u0 = 0 and v0 = 0, and it converges to the wrong solution of Equation (50). The result is stable and
converges to the correct theoretical solution of Equation (49) for initial conditions ut

0 and vt
0. Therefore,

for forced vibration, the unstable numerical solution is induced by the free adjoint vibration, which
includes the divergent term. The virtual initial condition removed the divergent term so that the
numerical solution is the same as the theoretical solution.
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The numerical results of NMV are the total response which includes transient vibration and
steady-state vibration. The transient response will decay exponentially with time, and only the
steady-state vibration will remain. However, the peak displacement of the correct theoretical solution
by Equation (49) is about 1.6 times than that of steady-state response at the initial stage. Since the
solution in the frequency domain is only the steady-state vibration, it represents that neglecting the
effects of transient response would lead to unreliable results in engineering design.

4.3. Seismic Excitation

This example case study analyzed an SDOF with m = 1, k = 4π2, and η = 0.1 subjected to seismic
excitation with ground acceleration

..
ug(t). The equivalent real-valued force g1(t) is

g1(t) = −m
..
ug(t). (52)

In this example, acceleration
..
ug(t) was the ground motion recorded at a site in Whittier Narrows,

California during the Whittier earthquake of 1 October 1987. The force g1(t) is shown in Figure 3.
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Figure 4a compares the proposed Newmark method with virtual initial conditions with the
correct theoretical solution by Equation (41) and the frequency domain method, and Figure 4b shows
the Newmark method with the real-valued initial conditions (NMR) and the wrong solution by
Equation (40) with the real initial conditions. The Newmark method’s parameters are γ = 1

2 , β = 1
4 ,

and the integration time interval is ∆t = 0.02s.
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frequency domain solution; (b) wrong theoretical solution and NMR.

Figure 4a,b further confirm that the divergence of the numerical solution is caused by the divergent
term of complementary solution. The Newmark method would converge to the wrong theoretical
solution for initial conditions u0 = 0 and v0 = 0. However, after introducing the virtual initial
conditions, the Newmark method would converge to the correct theoretical solution. The difference
between the NMV and frequency domain method is in the initial stage. Therefore, the frequency
domain method would obtain reasonable results if the response is relatively small at the beginning
of vibration.

5. Conclusions

In this paper, a direct integration virtual initial conditions method is developed for the numerical
solution of the free or forced vibration of a hysteretic damped system. Based on extensive theoretic
derivations and numerical analysis, the following conclusions can be drawn:

(1) For free or forced vibration of a hysteretic damped system, the stability of numerical methods is
the same as that of a viscously damped system. The divergence of numerical results is caused
by the divergent term of the complementary solution if using the real-valued initial conditions.
The virtual initial conditions can remove the divergent term, and make the numerical solution
converge to the exact theoretical solution.

(2) The virtual initial conditions are purely imaginary. For free vibration, the virtual initial conditions
depend on the real-valued initial conditions, and for forced vibration, the virtual initial conditions
depend on the amplitude of the force.

(3) The solution in the frequency domain can only obtain the steady-state vibration. However,
the proposed direct integration method can accurately calculate the transient response, which
results in a reasonable estimation for whole vibration history and is, thus, recommended for
practical applications.

In the future, the direct integration virtual initial conditions method is recommended to be
further developed for the multi-degree-of-freedom system with hysteretic damping and non-linear
dynamic response.



Appl. Sci. 2019, 9, 3707 11 of 12

Author Contributions: Conceptualization, D.P.; methodology, D.P. and X.F.; investigation, X.F. and W.Q.;
writing—original draft preparation, X.F.; writing—review and editing, D.P.

Funding: This research was funded by the Open Foundation of State Key Laboratory of Disaster Reduction in
Civil Engineering (SLDRCE15-01).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chopra, A.K. Dynamics of Structures: Theory and Applications to Earthquake Engineering; Prentice-Hall:
Englewood Cliffs, NJ, USA, 1995.

2. Bert, C.W. Material damping: An introductory review of mathematical models, measures, and experimental
techniques. J. Sound Vib. 1973, 29, 129–153. [CrossRef]

3. Lazan, B.J. Damping of Material and Members in Structural Mechanics; Pergamon Press: London, UK, 1968.
4. Rinaldin, G.; Amadio, C.; Fragiacomo, M. Effects of seismic sequences on structures with hysteretic or

damped dissipative behaviour. Soil Dyn. Earthq. Eng. 2017, 97, 205–215. [CrossRef]
5. Maiti, S.; Bandyopadhyay, R.; Chatterjee, A. Vibrations of an Euler-Bernoulli beam with hysteretic damping

arising from dispersed frictional microcracks. J. Sound Vib. 2018, 412, 287–308. [CrossRef]
6. Zhou, L.; Su, Y.S. Cyclic Loading Test on Beam-to-Column Connections Connecting SRRAC Beams to

RACFST Columns. Int. J. Civ. Eng. 2018, 16, 1533–1548. [CrossRef]
7. Sheng, M.; Guo, Z.; Qin, Q.; He, Y. Vibration characteristics of a sandwich plate with viscoelastic periodic

cores. Compos. Struct. 2018, 206, 54–69. [CrossRef]
8. Martakis, P.; Taeseri, D.; Chatzi, E.; Laue, J. A centrifuge-based experimental verification of Soil-Structure

Interaction effects. Soil Dyn. Earthq. Eng. 2017, 103, 1–14. [CrossRef]
9. Singiresu, S.R. Mechanical Vibrations; Addison-Wesley Publishing Company: New York, NY, USA, 1990.
10. Pavlou, E.A. Dynamic Analysis of Systems with Hysteretic Damping; Rice University: Houston, TX, USA, 1999.
11. Chakraborty, G. On Response of a Single-Degree-of-Freedom Oscillator with Constant Hysteretic Damping

Under Arbitrary Excitation. J. Inst. Eng. (India) Ser. C 2016, 97, 579–582. [CrossRef]
12. Lacayo, R.; Pesaresi, L.; Groß, J.; Fochler, D.; Armand, J.; Salles, L.; Schwingshack, C.; Allen, M.; Brake, M.

Nonlinear modeling of structures with bolted joints: A comparison of two approaches based on a time-domain
and frequency-domain solver. Mech. Syst. Signal Process. 2019, 114, 413–438. [CrossRef]

13. Schriefer, T.; Hofmann, M. A hybrid frequency-time-domain approach to determine the vibration fatigue life
of electronic devices. Microelectron. Reliab. 2019, 98, 86–94. [CrossRef]

14. Idriss, I.M.; Seed, H.B. Seismic response of horizontal soil layers. J. Soil Mech. Found. Div. 1968, 94, 1003–1031.
15. Star, L.M.; Tileylioglu, S.; Givens, M.J.; Mylonakis, G.; Stewart, J.P. Evaluation of soil-structure interaction

effects from system identification of structures subject to forced vibration tests. Soil Dyn. Earthq. Eng. 2019,
116, 747–760. [CrossRef]

16. Khodakarami, M.I.; Lashgari, A. An equivalent linear substructure approximation for the analysis of the
liquefaction effects on the dynamic soil–structure interaction. Asian J. Civ. Eng. 2018, 19, 67–78. [CrossRef]

17. Nampally, S.; Padhy, S.; Trupti, S.; Prasad, P.P.; Seshunarayana, T. Evaluation of site effects on ground
motions based on equivalent linear site response analysis and liquefaction potential in Chennai, South India.
J. Seismol. 2018, 22, 1075–1093. [CrossRef]

18. Sonmezer, Y.B.; Bas, S.; Isik, N.S.; Akbas, S.O. Linear and nonlinear site response analyses to determine
dynamic soil properties of Kirikkale. Geomech. Eng. 2018, 16, 435–448. [CrossRef]

19. Clough, R.W.; Penzien, J. Dynamics of Structures; McGraw-Hill: New York, NY, USA, 1975; pp. 194–198.
20. Poul, M.K.; Zerva, A. Efficient time-domain deconvolution of seismic ground motions using the equivalent-linear

method for soil-structure interaction analyses. Soil Dyn. Earthq. Eng. 2018, 112, 138–151. [CrossRef]
21. Liang, F.; Chen, H.; Huang, M. Accuracy of three-dimensional seismic ground response analysis in time

domain using nonlinear numerical simulations. Earthq. Eng. Eng. Vib. 2017, 32–43. [CrossRef]
22. Coleman, J.; Bolisetti, C.; Whittaker, A. Time-domain soil-structure interaction analysis of nuclear facilities.

Nucl. Eng. Des. 2016, 298, 264–270. [CrossRef]
23. Rostami, S.; Shojaee, S. Development of a Direct Time Integration Method Based on Quartic B-spline

Collocation Method. Iran. J. Sci. Technol. Trans. Civ. Eng. 2019, 43 (Suppl. 1), 615–636. [CrossRef]

http://dx.doi.org/10.1016/S0022-460X(73)80131-2
http://dx.doi.org/10.1016/j.soildyn.2017.03.023
http://dx.doi.org/10.1016/j.jsv.2017.09.025
http://dx.doi.org/10.1007/s40999-018-0288-x
http://dx.doi.org/10.1016/j.compstruct.2018.07.110
http://dx.doi.org/10.1016/j.soildyn.2017.09.005
http://dx.doi.org/10.1007/s40032-016-0249-6
http://dx.doi.org/10.1016/j.ymssp.2018.05.033
http://dx.doi.org/10.1016/j.microrel.2019.04.001
http://dx.doi.org/10.1016/j.soildyn.2018.09.038
http://dx.doi.org/10.1007/s42107-018-0008-5
http://dx.doi.org/10.1007/s10950-018-9751-z
http://dx.doi.org/10.12989/gae.2018.16.4.435
http://dx.doi.org/10.1016/j.soildyn.2018.04.032
http://dx.doi.org/10.1007/s11803-017-0401-1
http://dx.doi.org/10.1016/j.nucengdes.2015.08.015
http://dx.doi.org/10.1007/s40996-018-0193-1


Appl. Sci. 2019, 9, 3707 12 of 12

24. Zhu, M.; Zhu, J. Studies on stability of step-by-step methods under complex damping conditions. Earthq. Eng.
Eng. Vib. 2001, 21, 59–62. (In Chinese) [CrossRef]

25. Henwood, D.J. Approximating the Hysteretic Damping Matrix by a Viscous Matrix for Modelling in the
Time Domain. J. Sound Vib. 2002, 254, 575–593. [CrossRef]

26. Chen, J.T.; You, D.W. An integral–differential equation approach for the free vibration of a SDOF system with
hysteretic damping. Adv. Eng. Softw. 1999, 30, 43–48. [CrossRef]

27. Zhou, Z.; Liao, Z.; Ding, H. A time-domain complex-damping constitutive equation. Earthq. Eng. Eng. Vib.
1999, 19, 37–44. (In Chinese) [CrossRef]

28. Sun, P.; Yang, H.; Zhao, W.; Liu, Q. The time-domain numerical calculation method based on complex
damping model. Earthq. Eng. Eng. Vib. 2019, 39, 203–211. (In Chinese) [CrossRef]

29. Ribeiro, A.M.R.; Maia, N.M.M.; Silva, J.M.M. Free and Forced Vibration with Viscous and Hysteretic Damping:
A Different Perspective. In Proceedings of the 5th International Conference on Mechanics and Materials in
Design, Porto, Portugal, 24–26 July 2006. [CrossRef]

30. Zhu, M.; Zhu, J. Some problems in frequency domain solution of complex damping system. World Earthq. Eng.
2004, 1, 23–28. (In Chinese) [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.13197/j.eeev.2001.04.010
http://dx.doi.org/10.1006/jsvi.2001.4136
http://dx.doi.org/10.1016/S0965-9978(98)00061-1
http://dx.doi.org/10.13197/j.eeev.1999.02.006
http://dx.doi.org/10.13197/j.eeev.2019.02.203.sunpx.022
http://dx.doi.org/10.13140/2.1.3019.5207
http://dx.doi.org/10.3969/j.issn.1007-6069.2004.01.004
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Equation of Motion and the Direct Integration Method 
	The Formulation for the Virtual Initial Condition 
	The Virtual Initial Condition for Free Vibration 
	The Virtual Initial Conditions for Harmonic Force 
	The Virtual Initial Conditions for Arbitrary Force 

	Example Case Study 
	Free Vibration 
	Harmonic Vibration 
	Seismic Excitation 

	Conclusions 
	References

