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Featured Application: This study constructs and analyzes the constitutive model of the giant
magnetostrictive material actuator, which provides a theoretical basis for the development of a
new intelligent structure of giant magnetostrictive material.

Abstract: Giant magnetostrictive actuators (GMA) driven by giant magnetostrictive material (GMM)
has some advantages such as a large strain, high precision, large driving force, fast response, high
reliability, and so on, and it has become the research hotspot in the field of microdrives. Research
shows there is a nonlinear, intrinsic relationship between the output signal and the input signal of
giant magnetostrictive actuators because of the strong coupling characteristics between the machine,
electromagnetic field, and heat. It is very complicated to construct its nonlinear eigenmodel, and it
is the basis of the practical process of giant magnetostrictive material to construct its nonlinear
eigenmodel. Aiming at the design of giant magnetostrictive actuators, the magnetization model
based on a free-energy hysteresis model has been deeply researched, constructed, and put forward
by Smith, which combines Helmholtz–Gibbs free energy and statistical distribution theory, to
simulate the hysteresis model at medium or high driving strengths. Its main input and output
parameters include magnetic field strength, magnetization, and mechanical strain. Then, numerical
realization and verification of the magnetization model are done by the Gauss–Legendre integral
discretization method. The results show that the magnetization model and its numerical method
are correct, and the research results provide a theoretical basis for the engineering application of
giant magnetostrictive material and optimized structure of giant magnetostrictive material actuators,
which have an important practical application value.

Keywords: giant magnetostrctive material; microactuator; free energy; hysteresis
model; magnetization

1. Introduction

In the field of intelligent manufacturing, micro-displacement and microactuation technology
with an actuation stroke of less than 1mm and a resolution of less than 1µm has a wide range of
applications [1,2]. At present, there are some functional materials used in the field of microactuation
technology such as piezoelectric materials, shape memory alloys, and giant magnetostrictive
material [3–7]. As a new type of functional material, giant magnetostrictive material have some
advantages of a strong magnetostrictive effect, a high electromechanical coupling coefficient, high
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response speed, noncontact drive, and so on, and they are widely used in aerospace, precision control,
and intelligent manufacturing fields.

Giant magnetostrictive material (GMM) is ferromagnetic material that were developed by Clark
and Belson et al. In 1971[8]. Currently, the type of GMM used most commonly is TBXDy1−xFey, when
x = 0.23∼0.5 and y = 1.9∼2.0. The trade name of GMM is Terfenol-D [8,9].

The giant magnetostrictive actuator (GMA) developed by the giant magnetostrictive material
(GMM) has the characteristics of a large magnetostriction coefficient, large output power, fast response
speed, and high magnetic(electric)–mechanical conversion efficiency, and it is widely used in the fields
of ultraprecision machining, micromotors, vibration control, fluid machinery, sonar, and so on. It is
one of the hotspots in the field of microactuation [10].

Kobayashi, who worked for Toshiba, had developed a new type of tool microfeeding device
with a positioning accuracy on the nanometer scale. Tsinghua university [11] designed a linear
peristaltic mechanism used the giant magnetostrictive material with a displacement accuracy of
±15 nm. Successful development of this actuator has promoted the development of research fields
such as Micro Electro Mechanical System (MEMS).

Under the action of the external driving magnetic field, the giant magnetostrictive material
rod will output displacement and force, and the input electrical signal and output displacement
signal of the actuator have corresponding eigen relations. Due to the nonlinear strong coupling
properties between the machine electromagnetic heat of the material, it is very difficult to construct a
magnetic–mechanical coupling model. Clark [12] proposed a piezomagnetic constitutive equation
of a giant magnetostrictive actuator based on a large volume of research, which became the basic
equation for the study of magnetic–mechanical coupling characteristics of the giant magnetostrictive
actuator. Benbouzid [13] used finite element simulations to calculate nonlinear dynamic characteristics
of the giant magnetostrictive rod, which can guide the design and optimization of the magnetic
circuit of the giant magnetostrictive actuator. However, the model is a two-dimensional planar model,
and its dynamic characteristics are obtained from static characteristics of the giant magnetostrictive
material, in addition, there are too many parameters, due to static modeling, which lead to complicated
calculations and susceptibility to other field-related parameters, therefore, application of the model has
certain limitations.

In the research of multiphysics dynamic magnetic–mechanical coupling models, Azoum [14]
established a three-dimensional generalized finite element model based on the magnetic machine
coupled constitutive equation, and simulations of the solenoid coil driving the GMM rod were
made. At the same time, Benatar [15] used the multiphysics coupling software FEMLAB (Fimite
Element Modeling Laboratory) (version: 3.1.0.157, COMSOL Inc., Stockholm, Sweden,1986) to establish
a three-dimensional electromagnetic–machine coupling model of GMM transducers, which is a
miscellaneous shareware software developed by COMSOL Inc.. Zhao of Zhejiang University [16]
also used the weak solution of COMSOL software (version 5.3, COMSOL Inc., Stockholm, Sweden,
1986) to simulate the electromagnetic–mechanical coupling model of intelligent mast components
designed with GMM. However, the coefficient matrix substituted by it is a constant coefficient matrix,
and the simulation results have a certain error compared to the actual experimental results. None of
the methods construct the model from the characteristics of the giant magnetostrictive material itself.
A reasonable research method is to consider the intrinsic nonlinearity and hysteresis characteristics of
giant magnetostrictive material when the output and input eigen relations of actuators is studied.

2. Magnetostrictive Mechanism of the Giant Magnetostrictive Material and Its Modeling Method

2.1. Ferromagnetic Properties of Material and Their Magnetostrictive Mechanisms

(1) Ferromagnetic principle of material
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In an atom of matter, electrons orbit around a nucleus to produce orbital magnetic moments, at
the same time, electrons also produce a spin magnetic moment by rotating around their own fixed
axis [17], which produces ferromagnetic properties of the material.

Generally, the electrons of the ferromagnetic material atoms are not arranged in an ideal order.
There are unfilled electron layers inside the atoms, the spin magnetic moment of the electrons is
not neutralized, the atoms have a “permanent magnetic moment”, and the spin magnetic moment
in the ferromagnetic material can be fixed in a small local area, this process is called spontaneous
magnetization. The spontaneous magnetization zone is called a magnetic domain, and the boundary
layer of adjacent magnetic domains is called a magnetic domain wall. If an external magnetic field is
applied to the ferromagnetic material, the arrangement of some of the magnetic domains changes along
the direction of the external magnetic field, which shows magnetic properties. In addition, the degree of
magnetization of ferromagnetic materials is also related to temperature: when the temperature exceeds
a certain critical value (Curie point), the ferromagnetism of the ferromagnetic material disappears,
and the ferromagnetic material is changed to paramagnetic.

(2) Magnetostrictive mechanism
Specifically, there are three reasons to change the magnetization state of the ferromagnetic

material by changing the shape and volume of ferromagnetic materials [18,19]. The main effect of
magnetostrictive strain on giant magnetostrictive material is field-induced deformation [20].

1O Spontaneous deformation caused by spontaneous magnetization
Spontaneous magnetization is caused by an exchange force independent of the external magnetic

field. It is imaginary that there is a single domain crystal in the giant magnetostrictive material, which
is spherical above the Curie temperature (380 ◦C). When it is cooled from the Curie temperature,
the exchange force causes the crystal to spontaneously magnetize, and the shape of the crystal changes
(shown in Figure 1). However, since the directions of spontaneous deformation of the magnetic
domains inside the giant magnetostrictive material are random, there is no obvious elongation or
shortening in the macroscopic direction.

Figure 1. Spontaneous deformation diagram.

2O Field-induced deformation caused by technical magnetization
When the strength of the external magnetic field gradually increases from zero, the magnetization

of the giant magnetostrictive material gradually rises to a saturated state, then a magnetostriction
phenomenon occurs, this process is called field-induced deformation. The field-induced deformation
process can be divided into four stages: the reversible magnetostriction stage, the irreversible
magnetostriction stage, the stage where the rotation of the magnetic moment of the magnetic domain
plays a major role, and the magnetization asymptotic saturation phase.

After saturation of magnetostriction is reached, and the magnetic field strength H of the external
magnetic field is lowered, even if the applied magnetic field strength H is reduced to zero, the magnetic
domain cannot be completely restored to the initial state, and the magnetostriction rate λ cannot be
completely zeroed, this results in a certain residual magnetization inside the giant magnetostrictive
material, which is called hysteresis.
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2.2. Factors Affecting Magnetic Coupling Characteristics of Giant Magnetostrictive Material

The giant magnetostrictive material is magnetic anisotropy, and its saturation magnetostriction
coefficient is changed along with the changing of the direction of the magnetic field. The magnetic
domain distribution in the process of technical magnetization has dual effects of wall shift and
domain rotation [21,22], which makes it extremely difficult to study the intrinsic properties of giant
magnetostrictive material. According to references [23,24], a relationship between the magnetic field
and magnetostriction coefficient of different crystal orientations for Tb0.3Dy0.7Fe1.95 has been obtained
at 20 ◦C and 11 Mp.

When magnetostriction is saturated, there is a certain hysteresis between the magnetostriction
and the magnetic field strength, and its relationship is nonlinear. Because of the magnetostrictive effect
and magnetostrictive inverse effect inside the giant magnetostrictive material, the two subsystems
independent of each other between the magnetic system and the mechanical system are coupled [25,26].
At this time, if the giant magnetostrictive material is operated at a constant temperature, and only the
strain in the longitudinal direction is considered, the magnetic field variables (magnetic field strength
H, magnetic induction B) and mechanical field variables (stress σ, strain ε) are correlated with each
other. Assuming that the magnetic field strength H and stress σ are independent variables, the coupling
relationship between the magnetic field and the mechanical field is expressed as a linear piezomagnetic
equation [12]. {

ε = EHσ+ d33H
B = d33σ+ µH

(1)

where ε is the total strain in the length direction of the GMM material. EH is Young’s modulus when the
magnetic field strength H is a constant. d33 is pressure magnetic coefficient. σ indicates the magnitude
of stress. µ indicates the magnetic permeability when the stress is a constant.

According to Equation (1), the magnetostrictive effect is to make the magnetic system of the giant
magnetostrictive material transfer energy to the elastic system. and the magnetostrictive inverse effect
is to make the elastic system of the giant magnetostrictive material transfer energy to the magnetic
system., simultaneously, energy exchange is achieved between the magnetic system and the elastic
system of the material [27,28].

In the actual alternating magnetic field, the magnetic induction intensity B of the giant
magnetostrictive material is closer to one phase than the applied alternating magnetic field H due to
factors such as domain wall resonance, the hysteresis effect, and natural resonance. Thus, as the giant
magnetostrictive material is continuously magnetized in the alternating magnetic field, the applied
energy is continuously consumed, which causes hysteresis loss.

In addition, the giant magnetostrictive material also has ohmic loss, compressive stress
characteristics [29], temperature characteristics [30], ∆E effects [31], electromechanical equivalent
characteristics [32], and so on, these characteristics affect the hysteresis characteristics of giant
magnetostrictive material and construction of the microactuator magnetic coupling model.

2.3. Comparative Study of Hysteresis Models of Giant Magnetostrictive Actuators

At present, there are two types of models mainly used to study the hysteresis phenomenon of giant
magnetostrictive actuators [33]: hysteresis models based on mathematical methods (Preisach model) and
hysteresis models based on physical methods (Jiles–Atherton model, free-energy hysteresis model).

(1) Preisach model
The Preisach hysteresis model [33] is a model for calculating magnetostrictive deformation by

studying the hysteresis model of iron material proposed by Restorff and Clark. Subsequently, Tan
proposed a Preisach hysteresis model describing frequency hysteresis behavior at 200 Hz working
range, which shows the dynamic characteristics of hysteresis behavior with increasing operating
frequency [34]. At present, the research on the Preisach model has become comprehensive [35–37].
Because the model can only reflect the relationship between input and output, it cannot explain
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the magnetostrictive mechanism inside the giant magnetostrictive material, and it cannot reflect the
relationship between magnetostriction and the external thermal and machinery fields, moreover, a large
number of complex equations and nonphysical parameters need to be identified and processed in the
model, which leads to low flexibility and a long processing cycle for the Preisach model in the actual
application process.

(2) Jiles–Atherton model
The Jiles–Atherton hysteresis model [38] is founded based on the domain wall theory of

ferromagnetic materials, this model is applied to build the dynamic hysteresis model of Terfenol-D by
Dapino [39]. The Jiles–Atherton model is quite limited for the capture of hysteresis, and many physical
causes of hysteresis have not been explored. It can only be applied to research a small number of
ferromagnetic functional materials such as giant magnetostrictive material and shape memory alloys.

(3) Free energy hysteresis model
In 2003, Smith and M.J Dapino [40] proposed a free energy hysteresis model based on the

Jiles–Atherton model, the model is combined Helmholtz–Gibbs free energy and statistical distribution
theory to simulate the hysteresis model at medium or high driving strengths, and its main input and
output parameters are included with magnetic field strength, magnetization, and mechanical strain.
The Boltzmann statistical theory is adopted in the model, and the related energy relation function of
the external thermal field and the mechanical field is substituted into the telescopic deformation of the
material, furthermore, an intrinsic nonlinearity three-field model coupled by magnetic field, machanical
field and thermal field is established, and it can be built a model accurately for the functional materials
such as Terfenol-D and piezoelectric ceramics [41–43].

Since the free energy hysteresis model is a new hysteresis model proposed in recent years, it has
the advantages of being a simple model, easily modifiable external influence factors (such as eddy
current, temperature, etc.), and less parameters, and it is the main theoretical basis for studying the
magnetic coupling model of giant magnetostrictive microactuators.

3. Construction of a Hysteresis Model of a Giant Magnetostrictive Microactuator Based on
Free Energy

3.1. Research Process Based on the Free Energy Hysteresis Model

The conditions for the free energy hysteresis model are established when the temperature
is constant and the influence of eddy current loss is ignored, it works in a low frequency range,
the pre-pressure applied to the giant magnetostrictive microactuator is assumed to be large enough to
ignore the magnetic anisotropy, and so on. To establish the free energy hysteresis model of the giant
magnetostrictive actuator include three steps, the first, the Helmholtz–Gibbs free energy relationship
for homogeneous materials with a constant internal field is established, then, the heterogeneity of the
actual material and the non-constantness of the internal effective field are considered, and a random
distribution function is substituted to derive the hysteresis relationship model between the applied
magnetic field strength H and the magnetization M. It is also important to study its magnetic machine
coupling characteristics and construct the nonlinear relationship between the applied magnetic field
strength H and strain ε. The research process is shown in Figure 2.
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Figure 2. Free energy hysteresis model construction process.

3.2. Theoretical Basis for the Establishment of the Free Energy Hysteresis Model

(1) Magnetization process of the giant magnetostrictive material
In order to establish the energy model of the material, it is necessary to analyze the lattice structure

of the material by means of vector representation. In the paper, the symbol ‘()’ represents a plane,
the symbol ‘[]’ represents a vector, and the symbol ‘〈 〉’ represents the general name of the series
represented by the mark. Therefore, the various planes of the cube are represented as: (100), (010),
(001),

(
100

)
,
(
010

)
, and

(
001

)
, and the direction vector is expressed as: [100], [010], [001], [100], [010],

and [001], among them,1 indicates a negative direction.
In the current processing conditions, the lattice of Terfenol-D in the [112] direction grows in the

form of a tree (as shown in Figure 3). In room temperature, the easy magnetization axis of Terfenol-D
is generally in the 〈111〉 direction series, and the maximum strain occurs when the magnetization M is
rotated from direction [111] to [111] or from direction [111] to [111].

Figure 3. Lattice direction representation of Terfenol-D.

To take a sample that is not magnetized (as shown in Figure 4). Figure 4a shows that all regions in
the specimen been not magnetized have nonzero spontaneous magnetization M0. Figure 4b shows
that the change in magnetization is mainly caused by the reversible domain wall motion when
the input field is low. Figure 4c shows that two irreversible mechanisms are appearanced when
the input field gradually increases, which a magnetic domain is increased caused by domain wall
movement (consistent with the direction of the magnetic field), and the magnetic moment is rotated
to the direction of easy magnetization [111]. In this phase, inputting a small change in the driving
magnetic field produces a large change in magnetization and output mechanical strain. Figure 4d
shows that the magnetization saturation state of the material is reached. At this time, the sample can
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be approximated as a single magnetic domain, and the magnetic moment is completely rotated from
the easy magnetization direction to be consistent with the magnetic field direction.

Figure 4. The magnetization process of plane
(
110

)
of the Terfenol-D single crystal under the magnetic

field in the [112] direction. (a) Non-zero spontaneous magnetization state; (b) Magnetization caused
by the reversible domain wall motion when the input field is low; (c) Two irreversible magnetization
mechanisms appearanced when the input field increases gradually; (d) The magnetization saturation
state of the material.

In this study, it is assumed that the pre-stress of the material perpendicular to the direction of the
magnetic moment is large enough to dominate the anisotropy of the lattice, then, the magnetization
direction of the magnetic domain is easily changed from the original direction 〈111〉 to the [111] and
[111] directions perpendicular to the axis [112]. This can be considered that the output strain is mainly
caused by the rotation of the magnetic moment:

λ =
3
2
λs(

M
Ms

)
2
, (2)

whereλs is the saturation magnetostriction rate. Ms is the saturation magnetization. M is magnetization.
λ is the magnetostriction rate.

In order to simulate the hysteresis behavior of a giant magnetostrictive actuator, the nonlinear
relationship between the input magnetic field H and the magnetization M needs to be described
quantitatively. Then, Equation (2) is introduced to derive the relationship between the input magnetic
field H and the output strain ε.

(2) Description function of Helmholtz and Gibbs energy
To describe the relationship between magnetostatic and magnetoelastic properties of a giant

magnetostrictive actuator, it is assumed that free energy is a function of temperature T and other ordered
parameters, where e represents magnetization M in magnetostatics and strain ε in magnetoelasticity.
The external field is represented by φ̃ and is conjugated with e in thermodynamics. When M is
represented by the ordered parameter e, the external field is represented as a magnetic field H. When
ε is represented by the ordered parameter e, the external field is represented as stress σ. ψ (e, T) is
used to express the general relationship of Helmholtz’s free energy. When no external field is added,
the condition of thermodynamic equilibrium is that e is at a minimum, which is:

φ(e, T) =
∂ψ(e, T)
∂e

= 0. (3)

The energy response of the system can be expressed as φ. When the system is acted on by the
external field φ̃, total free energy can be expressed as Equation (4):

ψ
φ̃
(e, T) = ψ(e, T) − φ̃e. (4)

The equilibrium conditions applied by an external field are expressed by Equation (5):

φ(e, T) = φ̃. (5)
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In the case where the pre-pressure is sufficiently large, two magnetization directions in [111] and
[111] in the giant magnetostrictive material will be easily produced. It is necessary to consider both the
internal energy and the magnetic moment energy of the material in these two magnetization directions.
It is assumed that the interaction between magnetic moments is adiabatic, and the temperature is stable
below the Curie temperature, the Helmholtz potential energy ψ can be expressed by Equation (6).

ψ(M, T) =
HhMs

2
[1− (M/Ms)

2] +
HhT
2Tc

[M ln(
M + MR

Ms −M
) + Ms ln(1− (M/Ms)

2)], (6)

where Hh is the biasing magnetic field, Ms is saturation magnetization, and Tc is the Curie temperature.
According to statistical mechanics, Helmholtz free energy can be represented by piecewise

quadratic relations under isothermal conditions.

ψ(M) =


1
2η(M + MR)

2, M ≤ −MI
1
2η(M−MR)

2, M ≥MI
1
2η(MI −MR)

2(M2

MI
−MR), |M| < MI

, (7)

where MI is the magnetization generated at the inflection point, MR is residual magnetization, η is the
converted slope, and η = dH

dM .
By Equation (6), Gibbs energy can be written by Equation (8):

G(H, M, T) = ψ(M, T) −HM. (8)

(3) Hysteresis model of homogeneous material
For homogeneous materials, the effective field He is equal to the application field H, and the

average magnetization can be written by Equation (9).

M = x+〈M+〉 + x−〈M−〉, (9)

where x+ / x
−

is the probability of positive or negative magnetic moment, and M+/ M− is the expected
value of magnetization. 〈M+〉 and 〈M−〉 can be obtained by Equation (10):

〈M+〉 =
∫
∞

MI
Mµ(G)dM

〈M−〉 =
∫
−MI
−∞

Mµ(G)dM
(10)

where:
µ(G) = Ce−GV/kT. (11)

The probability of Gibbs energy obtained is expressed quantitatively in the above equation,
where k is the Boltzmann constant, C is a constant, and this constant can be selected according to
the magnetization integral value 1, V is lattice volume. Considering the Boltzmann energy balance,
the approximate relaxation process characteristics of the material can be obtained in the lattice volume
V, and then the constant C can be estimated to obtain the average magnetization value.

〈M+〉 =

∫
∞

MI
Me−G(H,M)V/kTdM∫
∞

MI
e−G(H,M)V/kTdM

〈M−〉 =

∫
−MI
−∞

Me−G(H,M)V/kTdM∫
−MI
−∞

e−G(H,M)V/kTdM

(12)

According to the normalized equation x+ + x− = 1, the matrix component can be quantitatively
described by the differential Equation (13).

.
x+ = −p+−x+ + p−+(1− x+). (13)
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The likelihood that the magnetic moment changes from the positive direction to the negative
direction is expressed by Equation (14).

p+− = 1
Γ(T)

∫ MI
MI−∈

e−G(H,M)V/kTdM∫
∞

MI−∈
e−G(H,M)V/kTdM

p−+ = 1
Γ(T)

∫
−MI+∈
−MI

e−G(H,M)V/kTdM∫
−MI+∈
−∞

e−G(H,M)V/kTdM

(14)

where ∈ is constant, Γ is the relaxation time of the material, and ω = 1
Γ , which indicates the frequency

of magnetic moment conversion.
In order to qualitatively analyze the model and quantitatively analyze the thermal motion region,

it is necessary to simplify the complex behavior of the average magnetization M in the region where
the thermal motion is negligible, according to the equilibrium conditions by Equation (15).

∂G
∂M

= 0. (15)

Combined with (8), Equation (16) is obtained.

∂H
∂M

=
∂2ψ

∂M2 . (16)

It can be seen from the above equation that the slope of the hysteresis kernel in this linear domain
is 1/η, and the inflection point MI is the key point. At this time, the resilience is the largest, and the
original estimated parameter value of the free magnetic hysteresis model of the giant magnetostrictive
actuator can be obtained according to the above equilibrium conditions.

In the case where magnetization occurs for a short time and the thermal motion is negligible,
the jump will be completed in an instant, so the magnetization can be simplified by an asymptotic
relationship (as shown in Figure 5). Mmin can be obtained by solving Equation (15), and M = Mmin,
then, M is calculated.

Figure 5. Relationship between magnetization M and magnetic field strength H.

Combining with the Helmholtz free energy expression (7), the magnetization can be obtained.

[M(H; Hc, ξ)](t) =


[M(H; Hc, ξ)](0), τ(t) = φ
H
η −MR, τ(t) , φ and H[maxτ(t)] = −Hc
H
η + MR, τ(t) , φ and H[maxτ(t)] = Hc

, (17)
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When the transition occurs, the set of times τ(t) can be expressed by Equation (18).

τ(t) =
{
t ∈ (0, T f ]

∣∣∣H(t) = −Hc or H(t) = Hc
}
. (18)

The initial value of the magnetic moment [M(H; Hc, ξ)](0) can be expressed by Equation (19).

[M(H; Hc, ξ)](0) =


H
η −MR, H(0) ≤ −Hc

ξ,−Hc < H(0) < Hc
H
η + MR, H(0) ≥ Hc

. (19)

Coercivity Hc can be expressed by Equation (20).

Hc = η(MR −MI). (20)

(4) Hysteresis model of heterogeneous materials
The magnetization model (Equation (17)) is established on the premise that the internal lattice

and magnetic domain structure of the material are completely uniform. In fact, the non-uniformity of
the lattice structure of the material is led by the defects of the material itself and the non-uniform free
energy profile of its different regions, according to the hypothesis that the effective field He is equal to
the application field H in the homogeneous material, the magnetic interaction and Weiss mean field
effect are ignored. To assume that the parameter Hc = η(MR −MI) is a normal distribution, with
respect to the average coercivity Hc, the total magnetization can be written by Equation (21).

M(H) =

∫
∞

0
M(H; Hc, ξ) f (Hc)dHc, (21)

where Hc is the density distribution function and can be expressed by Equation (22).

f (Hc) = C1e−(Hc−Hc)
2
/b, (22)

where C1 and b are coefficients, and M can be obtained from Equation (10) or (17). In Equation (21),
its lower limit of integration is 0, which indicates that the hysteresis core width must be non-negative.
In addition, it is defined as a logarithmic function to be also used to reflect the non-negative nature of
the hysteresis kernel width.

In the Jiles–Atherton model, the Weiss field effect caused by the coupling between domains can be
represented by Equation (23).

He = H + αM, (23)

where α is a constant mean field parameter.
Weiss fields quantitatively describe the interaction between atoms in giant magnetostrictive

material. The effective field He exhibits changes caused by uneven magnetic moment distribution, and it
is assumed that the effective field He is a normal distribution of the applied field. The magnetization
can be expressed by Equation (24).

M(H) =

∫
∞

−∞

C2M(; Hc, ξ)e−(H−)
2/bd. (24)

Thus, under the effective field of the low-frequency range without considering the eddy current loss,
the complete magnetization model of the heterogeneous polycrystalline material can be expressed as:

[M(H)](t) = C
∫
∞

0

∫
∞

−∞

[M(+H; Hc, ξ)](t)e−
2/be−(Hc−Hc)

2
/bddHc. (25)

(5) Construction of a magnetic–mechanical coupling eigen model of giant magnetostrictive material
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The Gibbs energy expression of Equation (8) combines the internal energy and magnetic moment
energy of the isotropic material on the magnitude of the magnetic domain, but the magnetic coupling
effect is ignored, and the magnetostrictive ability of the material cannot be exhibited. When anisotropy
is exhibited for the lattice dominated by the actuator’s pre-stress, the Helmholtz free energy relation
embodying magnetoelasticity can be expressed by Equation (26).

ψe(M, ε) = ψ(M) +
1
2

YMε2
−YMγεM2. (26)

The corresponding Gibbs energy is expressed by Equation (27).

G(H, M, ε) = ψ(M) +
1
2

YMε2
−YMγεM2

−HM− σε, (27)

where ψ can be obtained from Equation (7). YM is the Young’s modulus at a certain magnetization. γ
is the magnetic coupling coefficient.

In the case of intense thermal motion, the magnetization M can be obtained by Equation (9),
and the Gibbs energy can be obtained by Equation (27). Magnetization is expressed by Equation (28)
when the thermal motion is ignored.

[M(H, ε; Hc, ξ)](t) =


[M(H, ε; Hc, ξ)](0), τ(t) = φ

H
η−2YMγε

−
MRη

η−2YMγε
, τ(t) , φ and H[maxτ(t)] = −Hc

H
η−2YMγε

+
MRη

η−2YMγε
, τ(t) , φ and H[maxτ(t)] = Hc

, (28)

where Hc = η(MR −MI), τ(t) can be obtained by Equation (18), and Equation (29) is obtained.

[M(H, ε; Hc, ξ)](0) =


H

η−2YMγε
−

MRη
η−2YMγε

, H(0) ≤ −Hc

ξ,−Hc < H(0) < Hc
H

η−2YMγε
+

MRη
η−2YMγε

, H(0) ≥ Hc

. (29)

The equilibrium condition of the elastic constitutive relation is expressed by Equation (30).

∂G
∂ε

= 0. (30)

Then:

σ =
∂ψe

∂ε

∣∣∣∣∣
M

. (31)

For undamped magnetostrictive material, the magnetic–mechanical coupling constitutive relation
can be expressed by Equations (32) and (33).

σ = YMε−YMγM2, (32)

M(H, ε) = C
∫
∞

0

∫
∞

−∞

M(+H, ε; Hc, ξ)e−
2/be−(Hc−Hc)

2
/bddHc. (33)

When the thermal motion is neglected, M can be obtained from Equation (28). When the strong
thermal motion or relaxation mechanism is considered, M can be derived from Equation (9) and can be
obtained by Equation (27).
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4. Numerical Implementation of a Magnetization Model Based on the Free Energy
Hysteresis Model

According to reference [43], the model is constructed with the piecewise linear kernel function.
In order to achieve the highest calculation accuracy and the fastest efficiency, during the numerical
solution of the free energy hysteresis model, the Gauss–Legendre algorithm is used to discretize the
integral, and the kernel function is realized by using the matrix representation.

4.1. Discretization of Integrals

Divide the integral limit of Equation (25) into a limited number of cells Ω2, and the Gauss–Legendre
method is applied to discrete each integration interval. The general form of the Gauss–Legendre
algorithm is: ∫ 1

−1
f (x)dx =

∑
Ak f (xk). (34)

Then, the numerical equation of the free energy magnetization model can be written by Equation (35).

[M(H)](t) =

Ni∑
i = 1

N j∑
j = 1

υ1(Hci)υ2( j)[M( j+H; Hci, ξi)]viw j, (35)

where υ1(Hci) = c1e−(Hci−Hc)
2
/b, υ2( j) = c2e− j

2/b, Hci and j are Gaussian integration points, and vi
and w j are weight functions.

The original discretized equation can be transformed into Equation (36).

[M(H)](t) = C
Ni∑

i = 1

N j∑
j = 1

e−(Hci−Hc)
2
/be− j

2/b[M( j+H; Hci, ξi)]viw j. (36)

4.2. Kernel Function Implementation

According to Equation (17), the piecewise linear equation of the local magnetization can be
described by Equation (37) in the case of where thermal motion is ignored.

M =
H
η
+ MR∆, (37)

where, when ∆ = 1, magnetization is located on the upper branch of the kernel function here,
and when ∆ = −1, magnetization is located on the lower branch of the kernel function here (as shown
in Figure 6).

Figure 6. Simulation curve of magnetization and magnetic field strength.
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In order to accurately represent the judgment conditions of the Equation (37), and the calculation
speed is improved effectively, a matrix algorithm is used, as defined by Equation (38).

∆int =


−1 · · · −1
...

...
−1 · · · −1

1 · · · 1
...

...
1 · · · 1


Ni×N j

Hc =


Hc1 · · · Hc1
...

...
HcNi · · · HcNi


Ni×N j

hk =


Hk + 1 · · · Hk + N j
...

...
Hk + 1 · · · Hk + N j


Ni×N j

(38)

The weight function vector is defined by Equation (39).

VT =
[

v1υ1(Hc1) · · · vNiυ1(HcNi)
]
1×Ni

WT =
[

w1υ2(1) · · · wN jυ1(N j)
]
1×N j

(39)

According to the magnetic field strength value Hk, magnetization Mk = M(Hk), and it can be
calculated by the following algorithm:

dH = Hk −Hk−1
hk = hk + dH
∆ = sign(hk + Hc· ∗ ∆)
M =

hk
η + MR∆

Mk = VTMW

, (40)

where Hk is the value of the magnetic field strength corresponding to the k element after discretization,
hk is the effective field, the i j element in the ∆ constructed matrix indicates whether the j effective field
just crosses the i critical magnetic field strength, and Hc is the critical magnetic field strength.

4.3. Verification Based on the Free Energy Hysteresis Model

To verify the correctness of the numerical implementation method based on the free energy
hysteresis model, the parameters of [41] are used to analyze: MR = 3.7 × 104A/m, η = 14,
Hc = 300A/m, b = 1 × 108A2/m2, b = 8 × 108A2/m2, C = 2.52 × 10−8,
and γ = 4.5 × 10−15m2/A2 (the specific parameters of different giant magnetostrictive actuators
can be estimated by the least-squares method). Assuming the pre-pressure is constant, the magnetic
anisotropy considered in Equation (36) can be ignored. Then, ε = 0 in Equation (28), and the measured
strain can be solved.

In the period of the input field, it is proposed to take 200 breakpoints for calculation, the relationship
between the output magnetization M, the output displacement σ, and the input magnetic field strength
H is shown in Figures 6 and 7, respectively. The calculation results of the magnetic machine coupling
model in the original reference [41] are shown in Figures 8 and 9. When the two figures are compared,
it can be seen that the calculation results are consistent with the simulation results in reference [41].
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Figure 7. Simulation curve of output displacement and magnetic field strength.

Figure 8. Simulation and experimental comparison curves of magnetization and magnetic field strength.

Figure 9. Simulation and experimental comparison curves of output displacement and magnetic
field strength.

5. Conclusions

The dynamic magneto-mechanical coupling model of a giant magnetostrictive actuator based
on its intrinsic nonlinearity and hysteresis effect is an important theoretical basis for designing
GMAs, predicting the displacement output of GMAs, and to provide a reliable basis for GMA system
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design. The hysteresis characteristics and nonlinearity of giant magnetostrictive actuators have been
researched intensively based on the theoretical study of the free energy hysteresis model in this
paper. The magnetization model of homogeneous material is derived according to the expression of
Helmholtz and Gibbs energy, and two extensions are carried out to obtain the magnetization model
of the heterogeneous material. Finally, the magnetic–mechanical coupling constitutive relation of
the magnetic field strength H and strain ε is obtained, which is driven from magneto-mechanical
coupling effects. Then, the Gauss–Legendre method is used to discretize the integral, the kernel
function is realized by using the matrix representation, and the numerical realization of the free
energy magnetization model is derived. Reliable experimental data were selected as parameters to
verify the free energy magnetization model, and the simulation results are consistent with the existing
experimental results. The results show that they are correct for the magnetization model based on the
hysteresis characteristics of free energy and its numerical implementation, and the research results
provide a theoretical basis for the engineering application of giant magnetostrictive material and the
optimization of micro-actuator structures of giant magnetostrictive material.
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