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Abstract: The satellite constellation network is a powerful tool to provide ground traffic business
services for continuous global coverage. For the resource-limited satellite network, it is necessary to
predict satellite coverage traffic volume (SCTV) in advance to properly allocate onboard resources
for better task fulfillment. Traditionally, a global SCTV distribution data table is first statistically
constructed on the ground according to historical data and uploaded to the satellite. Then SCTV
is predicted onboard by a data table lookup. However, the cost of the large data transmission and
storage is expensive and prohibitive for satellites. To solve these problems, this paper proposes
to distill the data into a surrogate model to be uploaded to the satellite, which can both save the
valuable communication link resource and improve the SCTV prediction accuracy compared to the
table lookup. An effective surrogate ensemble modeling method is proposed in this paper for better
prediction. First, according to prior geographical knowledge of the SCTV distribution, the global
earth surface domain is split into multiple sub-domains. Second, on each sub-domain, multiple
candidate surrogates are built. To fully exploit these surrogates and combine them into a more accurate
ensemble, a partial weighted aggregation method (PWTA) is developed. For each sub-domain, PWTA
adaptively selects the candidate surrogates with higher accuracy as the contributing models, based
on which the ultimate ensemble is constructed for each sub-domain SCTV prediction. The proposed
method is demonstrated and testified with an air traffic SCTV engineering problem. The results
demonstrate the effectiveness of PWTA regarding good local and global prediction accuracy and
modeling robustness.

Keywords: satellite coverage traffic volume; ensemble modeling; sub-domain division; partial
weighted aggregation method

1. Introduction

In recent decades, satellite constellation networks have been developed to provide multiple ground
traffic services for continuous global coverage, which can effectively supplement the coverage-limited
terrestrial networks, such as air traffic monitoring [1] and ship trajectory identification [2]. Since the
traffic distribution is geographically non-uniform, e.g., aircraft traffic distribution is dense in population
agglomeration while scarce in vast ocean regions, satellite coverage traffic volume (SCTV) changes
drastically during the satellite movement. To better fulfill the ground traffic service task, it is necessary
to predict SCTV in advance so that the resource-limited satellite network could allocate the onboard
resources dynamically, e.g., provide more power for payloads to work with full capacity. With the
auxiliary information of the predicted upcoming ground traffic, He et al. [3] optimize the frequency
reuse and onboard transmit power. Moreover, Yu et al. [4] adaptively adjust the onboard receiver
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configuration to improve the overall signal detection probability. To predict SCTV, traditionally a global
SCTV distribution data table is first statistically constructed on the ground according to historical data
and uploaded to the satellite. Then SCTV is predicted onboard by the data table lookup. To update
the table with dynamically accumulated data, the SCTV data table should be uploaded each time the
satellite passes over the ground station. Moreover, for better SCTV prediction, more data is preferred
to construct a table with fine resolution. Then large data transmission and storage are necessitated,
which is prohibitive for satellite communication and onboard data handling. To solve these problems,
this paper proposes to distill the data into a surrogate model to be uploaded to satellite, which can
both save the valuable communication link resource (as much fewer surrogate model parameters need
be uploaded only) and improve the SCTV prediction accuracy compared to table lookup.

Recently, a surrogate modeling method, namely meta-modeling method, has been widely studied
in data-driven modeling, mainly including Polynomial Response Surface (PRS) [5], Kriging [6,7],
Radial Basis Function (RBF) [8], Support Vector Regression (SVR) [9], etc. In the work of Song et al. [10],
the performance of PRS, RBF, Kriging, and SVR are compared in the design optimization of foam-filled
tapered structures, and the results show that no single model is the best for approximating all objective
functions in the considered problems. Forrester and Keane [11] review different meta-modeling
methods used in surrogate-based optimization, and recommend that the choice of which surrogate
to use should be based on the problem size, the expected complexity and the cost of the analyses.
Similarly, Bhosekar et al. [12] investigate recent advances in the field of surrogate models for problems in
modeling, feasibility analysis, and optimization. They conclude that the correct selection of surrogates
should consider the type of problem at hand. From the previous research, the consensus is that
each surrogate has its own superiorities and drawbacks, and different surrogates are suitable for
approximating different objective functions [13]. For the SCTV prediction problem with geographically
changing distribution features, as shown in the experimental study in Section 4, it is also observed that
the single surrogate can hardly perform universally well in this problem.

To increase the approximation quality of the surrogate model, much research has been conducted
into integrating multiple surrogates into a single ensemble to exploit the advantages of different
surrogates for better approximation accuracy and robustness. One popular ensemble method is using
the weighted sum approach [14]. Goel et al. [15] study the effectiveness of the weighted aggregation
method for the approximation of helicopter vibrations. Wang et al. [16] employ the weighted average
surrogate to solve the problem of computationally expensive function evaluations in optimization.
Gu et al. [17] construct the ensemble of PRS, Kriging, RBF, and SVR for the approximation of an
occupant protection system. For ensemble modeling, on one hand, the prediction accuracy of the
ensemble is greatly influenced by the performance of the contributing surrogates. Viana et al. [18]
find that adding inaccurate surrogates into the ensemble is likely to result in loss of accuracy. On the
other hand, the weight factors also have a significant effect on the prediction accuracy of the ensemble.
To obtain the ensemble with better performance, some research focuses on how to solve the appropriate
weights considering the regional characteristics of the objective function to be approximated or
predicted [19]. Zhang et al. [20] determine the weight of each contributing surrogate based on the local
measure of accuracy in the pertinent trust region. Yin et al. [21] divide the design space into multiple
sub-domains, each of which is assigned a set of optimized weights. These optimized weights are
determined by minimizing the error metric of the training points in the corresponding sub-domains.
Lee et al. [22] propose a pointwise ensemble which calculates the weights based on the v-nearest
points cross-validation error. Although these studies could enhance the positive effects of the accurate
contributing surrogates by increasing their weights in the local area, they do not completely eliminate
the negative influences of the inaccurate contributing surrogates, leading to the relatively low accuracy
of the ensemble model [23]. Moreover, for the SCTV prediction problem, the specific practical problem
features should be considered for effective ensemble modeling.

In this paper, an effective surrogate ensemble modeling method is proposed for the SCTV
prediction. First, the global earth surface domain is split into multiple sub-domains according to



Appl. Sci. 2019, 9, 3689 3 of 18

the prior geographical knowledge of the SCTV distribution, and then multiple different candidate
surrogates are constructed on each sub-domain, respectively. Second, to fully exploit these surrogates
and combine into a more accurate ensemble, a partial weighted aggregation method (PWTA) is
developed. Because each sub-domain has distinct SCTV features, and different surrogates have
different performance, PWTA adaptively selects the candidate surrogates with higher accuracy as the
contributing models (the negative inaccurate surrogates are eliminated) for each sub-domain, based on
which the ultimate ensemble is constructed in each sub-domain. In this way, for the sub-domains, there
are independent positive contributing surrogates and weights so that the ensembles are more suitable
for the corresponding sub-domains. Thus, the proposed surrogate ensemble modeling method could
capture the regional SCTV features better in each sub-domain. The method proposed in this paper
mainly has two contributions: (a) instead of constructing candidate surrogates in the global domain,
multiple independent candidate surrogates are built for each sub-domain. (b) In each sub-domain,
unlike integrating all the candidate surrogates to build an ensemble, the candidate surrogates are
adaptively selected as contributing surrogates to construct a single ensemble.

The rest of the paper is organized as follows. In Section 2, a brief review of PRS, Kriging, RBF, the
weighted aggregation method, and the BestGMSE surrogate are introduced. In Section 3, the satellite
coverage traffic volume model is described, and the partial weighted surrogate ensemble modeling
method is developed in detail. In Section 4, the proposed surrogate ensemble modeling method is
testified in the SCTV prediction problem with engineering data, followed by the conclusions in the
final section.

2. Preliminary

2.1. Polynomial Response Regression (PRS)

Suppose a deterministic function of m design variable has been evaluated at n sample points. The lth

sample point is denoted as x(l) = [x(l)1 , x(l)2 , . . . , x(l)m ]
T

and the associated response is y(l), l = 1, 2, . . . , n.
The polynomial regression approximation to the true response y(x) can be written as

y(x) = ŷ(x) + ε, (1)

where ε is the error associated with the approximation, and ŷ(x) is the approximate function which is
a sum of basis functions with their coefficients

ŷ(x) =
[
p1(x), p2(x), . . . , pNb(x)

]
β, (2)

where Nb is the number of the basis functions. β = [β1, β2, · · ·, βNb ]
T is the regression coefficients

vector, and
[
p1(x), p2(x), . . . , pNb(x)

]
denotes the basis functions vector. In this study, the second-order

polynomials are used for ŷ(x), which is

ŷPRS = β0 +
m∑

i=1

βixi +
m−1∑
i=1

m∑
j=2,i< j

βi jxix j +
m∑

i=1

βiix2
i , (3)

where βS = [β0, β1, · · ·, βm, β11, β12, . . . , βmm]
T is the regression coefficients vector of the second-order

polynomials, and can be solved by the least-squares estimation method
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βS = Φ+y

y = [y(1) y(2) . . . y(n)]
T

Φ =



1 x(1)1 · · · x(1)m (x(1)1 )
2

x(1)1 x(1)2 · · · (x(1)m )
2

1 x(2)1 · · · x(2)m (x(2)1 )
2

x(2)1 x(2)2 · · · (x(2)m )
2

...
... · · ·

...
...

... · · ·
...

1 x(n)1 · · · x(n)m (x(n)1 )
2

x(n)1 x(n)2 · · · (x(n)m )
2


,

(4)

where Φ+ =
(
ΦTΦ

)−1
ΦT is the Moore-Penrose pseudo-inverse of Φ.

2.2. Kriging

The Kriging model assumes that the true deterministic response y(x) is realized with a trend
function and a stochastic process z(x). The formulation can be written as [24]

y(x) = f(x)Tβ+ z(x), (5)

where f(x) and β are the basis functions and regression coefficients of the trend function respectively.
z(x) is assumed to have mean zero and covariance σ2R

(
x(i), x( j)

)
between x(i) and x( j), where σ2 is the

process variance and R
(
x(i), x( j)

)
is the correlation model. Given a set of training points, the Kriging

predictor can be obtained as

ŷKriging = f(x)Tβ̂+ r(x)TR−1
(
y− Fβ̂

)
, (6)

where β̂ can be solved by the generalized least-squares estimation

β̂ =
(
FTR−1FT

)−1
FTR−1y. (7)

The matrix F =
[
f
(
x(1)

)
, f

(
x(2)

)
, . . . , f

(
x(n)

)]T
is constructed by evaluating the basis functions

f(x) =
[

f1(x), f2(x), . . . , fNb(x)
]

at the training points. The correlation matrix R can be constructed as

R =


R
(
x(1), x(1)

)
· · · R

(
x(1), x(n)

)
...

. . .
...

R
(
x(n), x(1)

)
· · · R

(
x(n), x(n)

)
, (8)

and the stationary Gaussian correlation model R
(
x(i), x( j)

)
= exp

[
−

m∑
k=1

θk

(
x(i)k − x( j)

k

)2
]
, 1 ≤ i, j ≤ n is

often used, where θ = [θ1,θ2, . . . ,θm] are the correlation parameters. The vector r
(
xp

)
of correlation

between the training points and an unsampled point xp is defined as

r
(
xp

)
=

[
R
(
x(1), xp

)
, · · · , R

(
x(n), xp

)]T
. (9)

2.3. Radial Basis Function

Given Nt neuron centers c(l) =
[
c(l)1 , c(l)2 , . . . , c(l)m

]
with the associated responses y(l), l = 1, 2, . . . , Nt,

Radial Basis Function (RBF) can be represented as [8]

ŷRBF =

Nt∑
l=1

αlφ
(
x, c(l)

)
, (10)
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where αl, l = 1, 2, . . . , Nt is the output layer weights. x ∈ Rm is the input vector with the jth element
denoted as x j. φ(·) is the basis function with respect to the radial distance r

(
x, c(l)

)
between x and c(l).

In this study, multiquadric basis function is used, which is formulated as

φ
(
x, c(l)

)
=

√(
r
(
x, c(l)

))2
+ d2

r
(
x, c(l)

)
= ‖x− c(l)‖ =

 m∑
j=1

(
x j − c(l)j

)2


1
2

,
(11)

where d is the shape parameter. In the RBF interpolation model, the neuron centers are the same as the
training points, and therefore the RBF output at each center is the same as its known function value as

ŷ
(
c(l)

)
= y(l), l = 1, 2, . . . , Nt (12)

2.4. Weighted Aggregation Method

Among the existing surrogate ensemble modeling methods, the most commonly used approach is
the weighted aggregation method given by [14]

ŷWTA(x) =
nM∑
i=1

wi ŷi(x), (13)

where ŷWTA is the prediction of the ensemble. nM is the number of surrogates. ŷi is the predictor of the
ith surrogate, and wi is the associated weight calculated by

wi =

nM∑
j=1, j,i

E j

(nM − 1)
nM∑
j=1

E j

, (14)

where Ei is the error of each surrogate. In this study, the generalized mean square error (GMSE) based
on leave-one-out cross-validation is chosen as the error measure. For leave-one-out cross-validation,
the data is divided into n disjoint subsets of equal size. Here, n is the number of the training sample
points. The surrogates are constructed n times, each time leaving out one sample point from training,
and using the omitted sample point to compute the error measure of interest. The error Ei of the ith
surrogate is defined as

Ei =
√

GMSEi

GMSEi =
1
n

n∑
l=1

(
y(l) − ŷ(−l)

i

)2
,

(15)

where ŷ(−l)
i represents the prediction at x(l) using the ith surrogate constructed with all sample points

except
(
x(l), y(l)

)
. Notice that for the weighted aggregation method, all the candidate surrogates are

selected into the ultimate ensemble. Although the weights of the accurate contributing surrogates are
larger than those of the inaccurate contributing surrogates, the negative influence of the surrogates
with lower accuracy would still lead to the relatively poor performance of the ensemble model [23].

2.5. BestGMSE Surrogate

To avoid the problem of choosing inaccurate contributing surrogates, the BestGMSE surrogate,
which directly selects a model with the lowest GMSE from the nM surrogates, is employed and
formulated as

ŷBestGMSE = ŷ∗, (16)
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where ŷ∗ is the predictor of the model with the lowest error among Ei, i = 1, 2, . . . , nM. The BestGMSE
surrogate could effectively eliminate the negative effects of the surrogates with lower accuracy, and is
easy to implement. However, because the GMSE criterion is based on the training sample points, there
is a risk that the BestGMSE model has poor generalization on the test set. To improve the prediction
accuracy and robustness of the ensemble model, this paper develops an effective surrogate ensemble
modeling method, which is demonstrated in Section 3.

3. Satellite Coverage Traffic Volume Modeling and Prediction Approximation

In this section, SCTV is described as the objective function to be modeled with respect to the
ground sites as the input based on the historical data. To improve the balance between the SCTV
prediction accuracy and data transmission as well as storage efficiency, an effective surrogate ensemble
modeling method is proposed to approximate the objective function, which mainly includes two
parts. First, the global earth surface domain is divided into multiple sub-domains according to specific
SCTV distribution features. Second, for each sub-domain, multiple different candidate surrogates
are established, and a multi-surrogate management method is developed to adaptively select the
contributing surrogates and combine them into a single ensemble with better performance.

3.1. Satellite Coverage Traffic Volume Modeling

Given any ground site (u, w), where u and w are the geographical longitude and latitude, the
ground traffic density can be statistically obtained according to the historical data, denoted as D(u, w).
For the SCTV calculation, the ground traffic density in the satellite coverage region S around the site
(u, w) should all be considered. First, the area aS of the coverage region can be calculated by

aS = 2πR2
e (1− cosθ)

θ = arcsin
(

h+Re
Re

sinα− α
)
,

(17)

where Re is the radius of the earth, h and α are the altitude and half-beam angle of the satellite with
the corresponding nadir point site (u, w). θ is the geocentric half-cone-angle of the coverage region.
The diagram of the satellite coverage region on the earth’s surface is presented in Figure 1. The SCTV
y(u, w) is defined as

y(u, w) =

s
(x1,x2)∈S D(x1, x2)dx1dx2

aS
, (18)

where (x1, x2) are the ground sites which belong to the satellite coverage region S around the nadir
point site (u, w). Detailed solution process of SCTV can be found in the literature [25]. Notice that
for most ground business, there would be large geographical distribution variances of SCTV. Take air
traffic monitoring as an example, the air traffic SCTV data is downloaded from TianTuo-3 (National
University of Defense Technology, Changsha, China) as shown in Figure 2 (National University of
Defense Technology developed and launched TianTuo-3 micro-satellite in May 2014, which achieves
worldwide collection of the air traffic SCTV data [26]). It can be seen that aircraft traffic distribution is
dense in population agglomeration while scarce in vast ocean regions.
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SCTV data table. When the satellite passes over the ground station, only a few parameters of the 
surrogate are demanded to update. In this way, the valuable communication link resource would be 
saved, and the SCTV prediction accuracy could be improved compared to table lookup. Moreover, 
for satellite missions of collecting the ground traffic business, such as air traffic monitoring and ship 
trajectory identification, the SCTV is only related to the ground traffic. Thus, the proposed method 
and SCTV prediction results can be directly generalized to more complex satellite constellations. 

3.2. Surrogate Ensemble Modeling for SCTV Prediction 

Figure 2. Aircraft traffic density distribution.

To predict SCTV, traditionally a global SCTV distribution data table is first statistically constructed
on the ground according to historical data and uploaded to the satellite. Then SCTV is predicted
onboard by the data table lookup. When the SCTV distribution is scarce, the satellite payload is
preferably kept at low power or shut down to save onboard resources. However, with the dense
SCTV distribution, the payload should be maintained at high power (with full capacity) for better
reception of the real-time signals. To update the date table with dynamically accumulated data, the
SCTV data table should be uploaded each time the satellite passes over the ground station. Moreover,
for better SCTV prediction, more data is preferred to construct a table with fine resolution. Then large
data transmission and storage are necessitated, which is prohibitive for satellite communication and
onboard data handling. To solve these problems, this paper proposed to distill the data into a surrogate
model to be uploaded to satellite. Through sampling, a small amount of training points x = (u, w)

with the corresponding SCTV responses y(x), the surrogate ŷ(x) can be constructed on the ground.
Then the surrogate ŷ(x) is uploaded to the satellite instead of the SCTV data table. When the satellite
passes over the ground station, only a few parameters of the surrogate are demanded to update. In this
way, the valuable communication link resource would be saved, and the SCTV prediction accuracy
could be improved compared to table lookup. Moreover, for satellite missions of collecting the ground
traffic business, such as air traffic monitoring and ship trajectory identification, the SCTV is only
related to the ground traffic. Thus, the proposed method and SCTV prediction results can be directly
generalized to more complex satellite constellations.
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3.2. Surrogate Ensemble Modeling for SCTV Prediction

To further improve the SCTV prediction accuracy, an enhanced surrogate ensemble modeling
method is investigated by dividing the global earth surface domain into multiple sub-domains and
managing multiple surrogates in each sub-domain. The main idea of the proposed surrogate ensemble
modeling method is to allow each sub-domain to have independent contributing surrogates and
weight factors so that the ensembles are more suitable for the corresponding sub-domains. Compared
with direct modeling in the global domain, the proposed method seeks to better capture the local
characteristics of the objective function in each sub-domain with different SCTV features.

The prior knowledge of the SCTV features in the global domain, namely the geographical
knowledge of SCTV distribution, is generally known according to historical experiences, which could
be used to guide the sub-domain division effectively [27]. According to aircraft traffic distribution
which is dense in population agglomeration while scarce in ocean regions, the global earth surface
domain is split into 12 sub-domains: (a) North America; (b) Pacific Ocean; (c) Antarctica; (d) Western
Europe; (e) Caribbean Sea; (f) South America; (g) Atlantic and Western Africa; (h) Russia; (i) Middle
East; (j) Indian Ocean; (k) East Asia; (l) Oceania, as shown in Figure 3 (the global coastline is drawn
in MATLAB (MathWorks, Natick, MA, USA)). Furthermore, (b) the Pacific Ocean, (c) Antarctica, (g)
Atlantic and Western Africa and (j) Indian Ocean have scarce traffic distribution due to the large marine
area. Hence, the satellite payload could be kept at low power or shut down at these sub-domains, and
there is no need to construct the surrogate in these areas. For the other eight regions, the onboard
resources need be allocated dynamically, and in this paper surrogates are built for these eight regions.
Notice that for different satellite missions, the geographical distribution variances of SCTV present
different characteristics. Thus, the division of the global earth surface domain with prior knowledge
should be based on the specific mission background. For example, ship traffic distribution is dense in
vast ocean regions while aircraft traffic distribution is scarce in those areas, and therefore the focus of
the division should be different for these two missions. In this paper, surrogate modeling for air traffic
SCTV prediction is studied for illustration.
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and Western Africa; (h) Russia; (i) Middle East; (j) Indian Ocean; (k) East Asia; (l) Oceania.

Due to the geographical distribution variances of SCTV, there are distinct SCTV features in each
sub-domain. To enhance the surrogate accuracy in each sub-domain, the ensemble modeling method
is an effective way [18]. The commonly used approach is the weighted aggregation method described
in Section 2.4. However, when forming a weighted ensemble by (13) the weighted sum of all the
candidate surrogates, it is possible that the inaccurate surrogate is included which will lead to loss of
accuracy. Based on this consideration, instead of employing all the candidate surrogates, in this paper
it is proposed to only select a part of them as contributing models with high accuracy to constitute the
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ensemble, which is named partial weighted aggregation method (PWTA). The details of PWTA are
as follows.

First, for the kth sub-domain, construct multiple different candidate surrogates, and calculate the
corresponding GMSE based on leave-one-out cross-validation by (15) of each surrogate as the criterion
to measure its accuracy. Then the sequence of the surrogates according to GMSE in the ascending order

can be obtained, and denote the candidate model set with the ranking sequence as
{
Mk

(i)

}
i=1,2,...,nM

with

the corresponding GMSE and predictor sets denoted as
{
GMSEk

(i)

}
i=1,2,...,nM

and
{

ŷk
(i)

}
i=1,2,...,nM

. Here,

nM is the total number of the candidate surrogates. To choose the relatively more accurate surrogates

from the candidate set
{
Mk

(i)

}
i=1,2,...,nM

so as to compose a more accurate ensemble, the first issue is to

define the number of contributing surrogates nk∗
M ≤ nM to be selected. There are two important points

that should be taken into consideration during setting the threshold for the “more accurate” candidate
selection. On one hand, because each domain has distinct SCTV features and different surrogates
have different performance, the threshold is preferred to be decided adaptively in each sub-domain
rather than simply fixed by a specific number or ratio. On the other hand, considering that GMSE
values of the inaccurate surrogates might greatly deviate from those of the accurate surrogates, the
threshold could be determined by borrowing the idea of identifying the outliers [28] so as to rationally
screen out the surrogates with low accuracy (or comparatively large GMSE values). According to these
considerations, the number of contributing surrogates nk∗

M to be selected in the kth sub-domain is set as

GMSEk
(nk∗

M)
≤ tk + δCk

GMSEk
(nk∗

M+1)
> tk + δCk,

(19)

where δ ∈ N+ is a user-defined control parameter. From our numerical experience, it is appropriate
to take 1 to 3 for δ. When the value of δ is small, there may be less candidate surrogates chosen
as positively contributing models. With the enlarged δ value, it is likely to select more candidate
surrogates into the ultimate ensemble. tk and Ck are the mean and standard deviation of the GMSE
set in the kth sub-domain. To eliminate the negative effect of the inaccurate models GMSE so as to
obtain a robust estimation, tk and Ck are solved using the first M = [3nM/4] ([·] denotes the rounding

operation) elements of the set
{
GMSEk

(i)

}
i=1,2,...,nM

[29]

tk = 1
M

M∑
i=1

GMSEk
(i)

Ck =

√
1
M

M∑
i=1

(
GMSEk

(i) − tk
)2

.
(20)

From Equations (19) and (20) it can be observed that for different sub-domains, there may be
different types as well as different numbers of the contributing surrogates. To combine the independent
contributing models into the ultimate ensemble for each sub-domain SCTV prediction, the associated
weights are calculated for the kth sub-domain by

wk
(i) =

nk∗
M∑

j=1, j,i

√
GMSEk

( j)

(
nk∗

M − 1
) nk∗

M∑
j=1

√
GMSEk

( j)

, i = 1, . . . , nk∗
M, (21)

and the prediction value of the ensemble in the kth sub-domain is
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ŷk
PWTA =

nk∗
M∑

i=1

wk
(i) ŷk

(i). (22)

After the surrogate ensemble modeling procedure, eight ensembles are obtained for the eight
sub-domains. Notice that for points at the boundary of the sub-domains which belong to two or more
sub-domains at the same time, their SCTV values are determined by averaging the predictions of the
ensembles from the sub-domains sharing these boundaries.

4. Experimental Results

4.1. Experimental Setting

To testify the proposed PWTA method for the SCTV prediction, it is compared with the following
surrogate models: (1) Polynomial Response Surface (PRS), (2) Ordinary Kriging (OK), (3) Radial
Basis Function (RBF), (4) Weighted aggregation method (WTA) and (5) BestGMSE surrogate, which
are introduced in Section 2. DACE toolbox of MATLAB is used to construct the OK model [30].
The parameter settings are presented in Table 1. The following metrics are used to evaluate the
predictive capabilities of the surrogate models in the sub-domains.

� R square (R2) correlation coefficient
The R2

k correlation coefficient of the model in the kth (k = 1, 2, . . . , 8) sub-domain is represented as

R2
k = 1−

Ntk∑
l=1

(
y(l)k − ŷ

(
x(l)k

))2

Ntk∑
l=1

(
y(l)k − yk

)2
, (23)

where Ntk is the number of test points in the kth sub-domain. y(l)k and ŷ(x(l)k ) denotes the actual
response and the predicted response at the lth test point of the kth sub-domain respectively, and yk is
the actual averaged response of the test set in the kth sub-domain.

� Normalized root mean squared error (NRMSE)
The NRMSEk of the model in the kth sub-domain is given by

NRMSEk =

√√√√√√√√√√√√√√√
Ntk∑
l=1

(
y(l)k − ŷ

(
x(l)k

))2

Ntk∑
l=1

(
y(l)k

)2
, (24)

� Normalized maximum absolute error (NMAE)
The NMAEk of the model in the kth sub-domain is calculated by

NMAEk =

√√√√√√√√√√√√√√max
(∣∣∣∣∣y(1)k − ŷ

(
x(1)k

)∣∣∣∣∣, · · · ,
∣∣∣∣∣y(Ntk)

k − ŷ
(
x(Ntk)

k

)∣∣∣∣∣)2

1
Ntk

Ntk∑
l=1

(
y(l)k

)2
. (25)

In this paper, the air traffic SCTV data downloaded from TianTuo-3 is processed by MATLAB
and used to perform experiments. Test points are sampled every two longitudes as well as every two
latitudes, and the number of the sampled points for each sub-domain is shown in Table 2. In addition
to investigate the SCTV prediction capability in each sub-domain, to further verify the surrogate
robustness in the global domain, in this paper the R2 correlation coefficient, NRMSE, and NMAE of the
model in the global domain, denoted as R2

g, NRMSEg and NMAEg, are also investigated, which are
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R2
g = 1−

8∑
k=1

Ntk∑
l=1

(
y(l)k −ŷ

(
x(l)k

))2

8∑
k=1

Ntk∑
l=1

(
y(l)k −yk

)2

NRMSEg =

√√√√√√√√ 8∑
k=1

Ntk∑
l=1

(
y(l)k −ŷ

(
x(l)k

))2

8∑
k=1

Ntk∑
l=1

(
y(l)k

)2

NMAEg =

√√√√√√√max
(∣∣∣∣∣y(1)1 −ŷ

(
x(1)1

)∣∣∣∣∣,··· ,∣∣∣∣∣y(Nt8)
8 −ŷ

(
x
(Nt8)
8

)∣∣∣∣∣)2

1
8

8∑
k=1

 1
Ntk

Ntk∑
l=1

(
y(l)k

)2
 .

(26)

Table 1. Parameters for different surrogate models.

Surrogate Model Details

PRS The second-order polynomials are used

OK
A constant regression function and a Gaussian correlation model are employed
in the mode. In all cases, θ0 = 1m×1, and 1 ≤ θi ≤ 5, for i = 1, 2, . . . , m where m
is the number of variables and 1m×1 is the vector whose entries are all equal to 1

RBF The form of basis function is the multiquadric function and we set c = 0.9 [20]

PWTA The above three models are used as the candidate surrogates. The control
parameter δ = 3

WTA The same as PWTA
BestGMSE surrogate The same as PWTA

Table 2. Numerical setup for the sub-domains.

Sub-Domains No. of Test Sample Points

North America 1680
Western Europe 1370
Caribbean Sea 695
South America 1045

Russia 1790
Middle East 930

East Asia 1060
Oceania 1025

For the high-quality surrogate model, the R2 correlation coefficient should be close to 1, while
NRMSE and NMAE should be low.

4.2. Effect of Design of Experiment for Training Sample Generation

The training points for surrogate modeling are typically generated by design of experiments (DOE).
A commonly used DOE method is Latin hypercube sampling (LHS) which has proved conducive
to improving the quality of approximation for its uniform sampling performance and scalability for
high-dimensional problems [31]. However, a major disadvantage of LHS is randomness in sampling,
which has great effect on sample quality. In this SCTV prediction problem with only two-dimensional
geographical input, full-factorial design (FFD) [31] can be applied to ensure the uniform design of
experiment. To demonstrate the effect of DOE on the proposed PWTA method and the candidate
surrogates, 60 training points are sampled in each sub-domain using LHS and FFD respectively, and
PRS, OK, RBF as well as PWTA are used to construct the surrogates for each sub-domain based on
those training sets. Due to the randomness of LHS, the mean R2 values obtained by 100 independent
runs are used for comparison. The results are presented in Table 3. The best value in each column is
shown in bold for ease of comparison. It can be observed that OK, RBF, and PWTA using FFD generally



Appl. Sci. 2019, 9, 3689 12 of 18

perform better than those using LHS. It suggests that FFD can improve the prediction accuracy of the
models in this two-dimensional SCTV prediction problem. Furthermore, for these two different DOE
methods, PWTA performs well both in sub-domains and globally. The accuracy issue will be further
discussed in Section 4.5.

Table 3. Comparisons of R2 for different surrogates using LHS and FFD, respectively.

Performance
Metric

Surrogate
Model

North
America

Western
Europe

Caribbean
Sea

South
America Russia Middle

East
East
Asia Oce-ania Global

Domain

R2 of the
models using
FFD

PRS 0.6425 0.7029 0.5712 0.6067 0.7023 0.4787 0.7968 0.6469 0.6760
OK 0.9622 0.9918 0.9877 0.9873 0.9918 0.9507 0.9869 0.9816 0.9837
RBF 0.9671 0.9931 0.9884 0.9836 0.9872 0.9532 0.9890 0.9795 0.9830

PWTA 0.9667 0.9937 0.9892 0.9866 0.9920 0.9541 0.9885 0.9814 0.9846

Mean R2 of
the models
using LHS

PRS 0.6266 0.7394 0.5591 0.6426 0.7307 0.4534 0.8254 0.7141 0.7021
OK 0.9111 0.9635 0.9170 0.9342 0.9439 0.8522 0.9500 0.9259 0.9332
RBF 0.9225 0.9582 0.9376 0.9521 0.9507 0.9214 0.9825 0.9594 0.9564

PWTA 0.9324 0.9735 0.9389 0.9545 0.9675 0.9107 0.9798 0.9579 0.9593

4.3. Effect of the Training Sample Size

To investigate the effect of the training sample size on the proposed PWTA method and the
candidate surrogates, 30, 40, 50, 60, 70, and 80 training points are sampled in each sub-domain
respectively using full-factorial design. PRS, OK, RBF, and PWTA are constructed for each sub-domain
with those training sets, respectively. From the experiments we observed that when training points
are less than 30, PWTA is less accurate for most sub-domains. With more than 80 training points, the
accuracy of PWTA becomes stable and cannot be improved obviously. Thus, the range between 30 to
80 training points is selected to better show the growth trends of model accuracy. Figure 4 presents R2

of different surrogates vary with the training sample size in the eight sub-domains. The R2 values
of the different models in the global domain are shown in Table 4. The best value in each column is
shown in bold for ease of comparison. From Figure 4, it can be easily seen that PRS performs poorly
for the eight sub-domains. When the training sample size is small, R2 of RBF are greatly lower than
those of OK. With the enlarged training sample size, OK performs poorer than RBF for North America,
Western Europe, East Asia, and Caribbean Sea regions, while for Russia and South America regions,
the accuracy of OK are better. It suggests that the performances of different surrogates vary greatly in
different sub-domains with different training sample sizes. However, for PWTA, it can be observed
that for all the sub-domains and for all the different training sample number conditions, PWTA can
perform robustly with top one or two accuracy level. In Table 4, the results show that with small
training sample sizes, PWTA performs secondary but comparably well to OK (with less than 0.177%
relative difference) which has the highest accuracy in terms of R2 in global domain. When the number
of training points is greater than 40, PWTA universally outperforms the other surrogates. This indicates
that for different sub-domains as well as different training sample sizes, PWTA is a more robust choice.
Furthermore, it also can be observed that the overall performance of all the surrogates become better
and better as the training sample size increases. However, after 60 training points the trends of growth
become smaller. Thus, the numbers of the training sample points are set to 60 in the eight sub-domains
for the subsequent experiments.
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Figure 4. R2 varying with training sample size of different surrogates in (a) North America, (b) Western
Europe, (c) Caribbean Sea, (d) South America, (e) Russia, (f) Middle East, (g) East Asia and (h) Oceania.
For clarity, R2 of the PRS surrogate are indicated by the dashed purple line with the purple y-axis on
the right, and the others are presented by the solid line with the black y-axis on the left.
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Table 4. Comparisons of R2 for different surrogates in the global domain under different training
sample sizes.

Surrogate
Model

30 Training
Points in Each
Sub-Domain

40 Training
Points in Each
Sub-Domain

50 Training
Points in Each
Sub-Domain

60 Training
Points in Each
Sub-Domain

70 Training
Points in Each
Sub-Domain

80 Training
Points in Each
Sub-Domain

PRS 0.6333 0.6557 0.6658 0.6760 0.6855 0.6901
OK 0.9613 0.9703 0.9694 0.9831 0.9862 0.9880
RBF 0.9428 0.9645 0.9713 0.9830 0.9858 0.9880

PWTA 0.9596 0.9697 0.9722 0.9845 0.9872 0.9891

4.4. Effect of the Sub-Domain Division

To demonstrate the effect of the sub-domain division step for SCTV surrogate modeling, the
proposed PWTA method is used to build the surrogates for each sub-domain after domain division
based on the knowledge of geographical SCTV distribution (denoted as PWTASD) and also used to
directly build a surrogate for the global domain (denoted as PWTAGD). For PWTASD, 60 training
points are sampled in each sub-domain using full-factorial design. For PWTAGD, all the samples
obtained in PWTASD are used for the global surrogate modeling. Table 5 presents the R2 correlation
coefficients, NRMSE and NMAE metrics of PWTASD and PWTAGD in each sub-domain, as well as the
summary values in the global domain. The best value in each column is shown in bold for ease of
comparison. From Table 5, it can be seen that PWTASD performs better than PWTAGD in the eight
sub-domains and across the entire domain. It clearly validates the effect of the sub-domain division of
the proposed method which can better capture the regional SCTV features by building the independent
ensemble for each sub-domain, leading to better approximation quality.

Table 5. Comparisons of R2, NRMSE, and NMAE for PWTASD and PWTAGD.

Performance
Metric

Surrogate
Model

North
America

Western
Europe

Caribbean
Sea

South
America Russia Middle

East
East
Asia Oce-ania Global

Domain

R2 PWTASD 0.967 0.994 0.989 0.987 0.992 0.954 0.989 0.981 0.985
PWTAGD 0.960 0.992 0.986 0.978 0.985 0.946 0.987 0.970 0.980

NRMSE
PWTASD 0.082 0.037 0.050 0.081 0.053 0.077 0.059 0.082 0.069
PWTAGD 0.090 0.043 0.057 0.104 0.072 0.084 0.063 0.104 0.079

NMAE
PWTASD 0.425 0.155 0.166 0.372 0.229 0.282 0.284 0.418 0.447
PWTAGD 0.426 0.168 0.213 0.377 0.306 0.284 0.286 0.513 0.549

4.5. Accuracy and Robustness

The accuracy and robustness of different surrogates (obtained with 60 training points) are evaluated
by R2 and NRMSE in each sub-domain as well as globally, as shown in Table 6. The best value in each
column is shown in bold for ease of comparison. The results show that in the global domain the overall
accuracy of PWTA is better than that of the other surrogates. Moreover, PWTA also outperforms the
other surrogates for most sub-domains, except North America, South America, East Asia, and Oceania
areas. Although PWTA is not the best for those sub-domains, it performs comparably well (rank second
in terms of accuracy) to the best model in these sub-domains (with less than 0.06% relative difference).
It suggests that PWTA performs robustly well in this SCTV prediction problem. For the BestGMSE
surrogate, it can be seen that its overall performance is poorer than that of PWTA. Especially in South
America and Russia areas, the accuracy of the BestGMSE surrogate is the same as that of RBF, i.e.,
RBF is chosen as the “optimal model” based on the criterion of GMSE which only considers training
points. However, OK that has better performance on the test set is neglected. This indicates that for
the BestGMSE surrogate there is indeed a risk of selecting the suboptimal model which lacks good
generalization capability. However, for PWTA, this risk could be effectively avoided by the ensemble
modeling. Moreover, it can be also observed that WTA has poorer performance compared to PWTA,
which confirms that adding the inaccurate surrogates into the ultimate ensemble would result in loss
of accuracy.
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Table 6. Comparisons of R2 and NRMSE for different surrogates.

Performance
Metric

Surrogate
Model

North
America

Western
Europe

Caribbean
Sea

South
America Russia Middle East East Asia Oceania Global

Domain

R2

PRS 0.6425 0.7029 0.5712 0.6067 0.7023 0.4787 0.7968 0.6469 0.6760
OK 0.9622 0.9918 0.9877 0.9873 0.9918 0.9507 0.9869 0.9816 0.9837
RBF 0.9671 0.9931 0.9884 0.9836 0.9872 0.9532 0.9890 0.9795 0.9830

PWTA 0.9667 0.9937 0.9892 0.9866 0.9920 0.9541 0.9885 0.9814 0.9846
WTA 0.9470 0.9688 0.9612 0.9584 0.9729 0.9184 0.9771 0.9556 0.9626

BestGMSE 0.9671 0.9931 0.9884 0.9836 0.9872 0.9532 0.9890 0.9816 0.9833

NRMSE

PRS 0.2700 0.2548 0.3131 0.4378 0.3245 0.2602 0.2515 0.3593 0.3169
OK 0.0878 0.0423 0.0530 0.0786 0.0539 0.0800 0.0639 0.0819 0.0711
RBF 0.0819 0.0388 0.0515 0.0895 0.0673 0.0779 0.0585 0.0867 0.0727

PWTA 0.0824 0.0372 0.0496 0.0808 0.0532 0.0772 0.0598 0.0824 0.0691
WTA 0.1039 0.0825 0.0942 0.1424 0.0978 0.1029 0.0844 0.1274 0.1076

BestGMSE 0.0819 0.0388 0.0515 0.0895 0.0673 0.0779 0.0585 0.0819 0.0719



Appl. Sci. 2019, 9, 3689 16 of 18

In summary, compared with surrogate ensemble modeling globally, the proposed sub-domain
modeling method has better accuracy and robustness. Moreover, the overall performance of PWTA
which adaptively selects contributing surrogates for different sub-domains is better than not only
the candidate surrogates but also the other two surrogate ensemble modeling methods (WTA and
BestGMSE). These suggest that the method proposed in this paper can better capture the local
characteristics of the objective function in each sub-domain with different SCTV features.

5. Conclusions

In this paper, an enhanced surrogate ensemble modeling method is proposed for the SCTV
prediction. Unlike traditional onboard SCTV prediction by the data table lookup, this paper proposes
to distill the data into a surrogate model to be uploaded to a satellite, which can both save the valuable
communication link resource and improve the SCTV prediction accuracy compared to table lookup.
The proposed surrogate ensemble modeling method first divides the global earth surface space into
multiple sub-domains according to the prior geographical knowledge of the SCTV distribution, and
then constructs multiple candidate surrogates in each sub-domain. To fully exploit the candidate
surrogates and combine them into a more accurate ensemble, a partial weighted aggregation method
(PWTA) is developed. For each sub-domain, PWTA adaptively selects the candidate surrogates with
higher accuracy as the contributing models, based on which the ultimate ensemble is constructed
for each sub-domain SCTV prediction. The proposed surrogate ensemble modeling method could
obtain the independent contributing surrogates and weights for each sub-domain so that the ensembles
are more suitable for the corresponding sub-domains. Thus, the prediction accuracy and robustness
of the ensembles can be improved in the corresponding sub-domains and across the entire domain,
which is verified in the test section. For future works, we would like to further study the proposed
surrogate ensemble modeling method on a more diverse set of test problems, and more kinds of
candidate surrogates will be considered. Moreover, the surrogate update method with the dynamically
accumulated SCTV data will be researched to further improve the surrogate prediction accuracy and
modeling efficiency.
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