
applied
sciences

Article

Identify High-Impact Bug Reports by Combining the
Data Reduction and Imbalanced Learning Strategies

Shikai Guo 1,2,3,4 , Miaomiao Wei 2, Siwen Wang 2, Rong Chen 2 , Chen Guo 1,* and Hui Li 2,3

and Tingting Li 4

1 The College of Marine Electrical Engineering, Dalian Maritime University, Dalian 116026, China
2 The College of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
3 Collaborative Innovation Center for Transport Studies of Dalian Maritime University, Dalian 116026, China
4 Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education,

Jilin University, Changchun 130012, China
* Correspondence: dmuguoc@126.com

Received: 20 August 2019; Accepted: 1 September 2019; Published: 4 September 2019
����������
�������

Abstract: As software systems become increasingly large, the logic becomes more complex,
resulting in a large number of bug reports being submitted to the bug repository daily. Due to
tight schedules and limited human resources, developers may not have enough time to inspect all
the bugs. Thus, they often concentrate on the bugs that have large impacts. However, there are two
main challenges limiting the automation technology that would help developers to become aware
of high-impact bug reports early, namely, low quality and class distribution imbalance. To address
these two challenges, we propose an approach to identify high-impact bug reports that combines
the data reduction and imbalanced learning strategies. In the data reduction phase, we combine
feature selection with the instance selection method to build a small-scale and high-quality set of
bug reports by removing the bug reports and words that are redundant or noninformative; in the
imbalanced learning strategies phase, we handle the imbalanced distributions of bug reports through
four imbalanced learning strategies. We experimentally verified that the method of combining the
data reduction and imbalanced learning strategies could effectively identify high-impact bug reports.

Keywords: high-impact bug reports; class imbalance; feature selection; instance selection

1. Introduction

Bug tracking systems, such as Bugzilla [1] and JIRA [2], can help developers to manage the
bug reports collected from various sources, including development teams, testing teams, and end
users [3]. Due to the increased scale and complexity of software projects, a large number of bug
reports are received daily by bug tracking systems. For example, the Mozilla bug repository receives
an average of 135 new bug reports each day [4]. Due to the large number of bugs submitted to the
bug repository every day, in order to correctly verify the severity of the bug report and solve the
problems of manual bug classification, such as high time consumption and low accuracy, it is becoming
increasingly important to automatically identify high-impact bug reports. However, we face the
following two challenges: low quality data and data distribution imbalances. Since bug reports are
submitted by people from all over the world and each person’s description in their natural language
and understanding of bugs are different, there is excessive noise in the data [5]. Noisy data may
mislead the data analysis techniques, and large-scale data may increase the cost of data processing [6].
The low quality bugs accumulate in bug repositories and grow in scale. Furthermore, most of the
bug reports are not high impact bug reports; in other words, the training set often has an imbalanced
distribution. This is a disadvantage for most of the existing classification approaches, which have

Appl. Sci. 2019, 9, 3663; doi:10.3390/app9183663 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-8554-6365
https://orcid.org/0000-0001-5848-6398
https://orcid.org/0000-0003-1923-0669
http://dx.doi.org/10.3390/app9183663
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/9/18/3663?type=check_update&version=2

Appl. Sci. 2019, 9, 3663 2 of 28

largely been developed under the assumption that the underlying training set is evenly distributed.
These two challenges, the large amount and low quality of the data, will affect the performance of
the bug classification. To solve the problems of software projects quickly, developers often need
to prioritize and concentrate on the high-impact bug reports. Therefore, an automated technique
to tell developers whether or not a bug report is a high-impact bug report, would be preferable to
augment productivity.

However, although a large number of bug reports are submitted daily by people from all over
the world, only a small percentage of the bug reports are high-impact bug reports, and each person’s
description in their natural language and understanding of bugs are different, thus resulting in
excessive noise [5]. Noisy data may mislead the data analysis techniques, while large-scale data may
increase the cost of data processing [6–8]. The low quality bugs accumulate in the bug repositories and
grow in scale. The time cost of manual bug classification is costly and has low accuracy. In manual
bug classification in Eclipse, 44% of the bugs were misallocated, and the time cost between opening
a bug and its first classification averaged 19.3 days [9]. To avoid the expensive cost of manual
bug classification, Anvik et al. [10] proposed an automatic bug classification method, which uses
text classification technologies to predict the developers of bug reports. In this method, a bug
report is mapped to a document, and the relevant developer maps to the label of the document.
Then, a text classifier is used to automatically resolve the bug reports, such as Naive Bayes [11].
Based on the results of the text categorization, manual categorizers assign new bugs by combining
their professional abilities. However, the low-quality and class imbalance distribution of the bug
reports in bug repositories will have an adverse effect on automatic bug classification techniques.
Since the software bug reports are free-form text datasets (generated by the developer), it is necessary
to process the bug datasets into high-quality bugs to facilitate the application [6]. Xuan et al. proposed
a method that combines the feature selection with instance selection to reduce bug datasets to obtain
high-quality bug data and to determine the performance of the bug classification by changing the
order of reduction. Due to the huge size and noise of the bug repository, it is still difficult to reduce
the bug data set to a completely high-quality data set. Yang [12] investigated four widely used
imbalanced learning strategies (i.e., random under-sampling (RUS), random over-sampling (ROS),
synthetic minority over-sampling technique (SMOTE) and cost-matrix adjuster (CMA)) to solve the
class imbalance distribution of bug reports from four different open source projects. However, the bug
reports are written in natural language, which includes much noise. Therefore, the internal methods
(CMA) are unsuitable to balance the distribution of bug reports [13]. In addition, RUS could cause
under-fitting, whereas ROS could cause over-fitting [14–17]. Additionally, the SMOTE is based on
low-dimensional random sampling, which has a poor generalization ability [18,19]. Furthermore,
random sampling (RUS, ROS, SMOTE) could bring a certain degree of uncertainty, and some sampling
results are not in accord with the real distribution of the dataset.

In this paper, we propose an approach for identifying high-impact bug reports by combining
data reduction, named Data Reduction based on Genetic algorithm (DRG), with imbalanced learning
strategies. In data reduction phase, we use four feature selection algorithms (FS) (i.e., one rule (OneR),
information gain (IG), chi-square (CHI), and filtered selection (Relief) (Described in Appendix A.2))
to extract 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90% of the attributes from bug reports with
reduced bug data dimensions and word dimensions to solve the low-quality bug reports challenge
and obtain 36 feature selection schemes, i.e., feature reduction (GA(FS)), and use instance selection (IS)
algorithms (i.e., condensed nearest neighbor (CNN), edited nearest neighbor (ENN), minimal consistent
set (MCS), and iterative case filter (ICF)) to randomly generate 36 instance selection schemes, i.e.,
instance reduction (GA(IS)). Simultaneous feature and instance reduction (i.e., GA (FS+IS)) is a
combined extraction scheme of 36 features and instance strings; imbalanced learning strategies
are applied to the dataset after the reduction operation. In the imbalanced learning strategies
phase, we investigate four widely used imbalanced learning strategies, i.e., RUS, ROS, SMOTE and
CMA, and four popular classfication algorithms, i.e., naive Bayes (NB), naive Bayes multinomial

Appl. Sci. 2019, 9, 3663 3 of 28

(NBM), support vector machine (SVM) and K-nearest neighbors (KNN) (Described in Appendix A.1),
and combine them to make a total of 16 different combinations (i.e., variants) to identify high-impact
bug reports for reduced datasets. Comprehensive experiments have been conducted on public datasets
obtained from real-world bug repositories (Mozilla [20], GCC [21] and Eclipse [22]). In addition, we
also verify the performance of our method in the case of different combinations of FS and IS, data
reduction and imbalanced learning strategies.

The main contributions of this paper are as follows:

• We present a data reduction method based on the genetic algorithm to reduce the data for
identifying high-impact bug reports. This problem aims to augment the data set by identifying
two aspects of the high-impact bug reports, namely, (a) to simultaneously reduce the scales of
the bug report dimension and the word dimension and (b) to improve the ability to identifying
high-impact bug reports.

• We verify the ability of our method to identify the high-impact bug reports in the case of different
combinations of FS and IS, data reduction and imbalanced learning strategies.

• Five evaluation criteria are used in experimental part to evaluate the proposed method. The results
from three public bug repository datasets (Mozilla, GCC and Eclipse) show that our method could
effectively identify the high-impact bug reports.

The remainder of this paper is organized as follows: the related studies and the motivation
of our approach are discussed in Section 2, the design of our approach is discussed in Section 3,
the experimental design and results are presented in Sections 4 and 5, and the conclusions are discussed
in Section 6.

2. Background Knowledge and Motivation

In our work, we propose a high-impact bug report identification approach that combines data
reduction, i.e., Data Reduction based on the Genetic algorithm (DRG), and imbalanced learning
strategies. Thus, in this section, we introduce some background knowledge concerning bug report
management. Moreover, we present the motivation of our study.

Bug reports are valuable to software maintenance activities [23–26]. Automatic support for bug
report classification can facilitate understanding, resource allocation, and planning.

Antoniol et al. applied text mining techniques to the description of bug reports to determine
whether a bug report is a real bug or a feature request [27]. They use techniques such as decision trees
and logistic regression as well as the Naive Bayes classifier to achieve this purpose. Menzies et al. use
rule learning techniques to predict the severity of bug reports [28]. Their approach was applied to five
projects supplied by NASA’s Independent Verification and Validation Facility. Tian et al. [29] use the
overall framework of machine learning to predict the bug report priority by considering factors such as
time, text, author, related reports, severity, and product. Hooimeijer et al. [30] established a predictive
model to identify high-quality bug reports. The method effectively distinguishes between high-quality
bug reports and low-quality bug reports based on extracting relevant descriptive information about
the bug reports, products, operating systems, and bug report submitters. Runeson et al. [31] proposed
a detection method for redundant bug reports based on information retrieval technology. This method
treats each bug report as a document and obtains bug reports similar to the current bug report by
calculating the similarity between the current bug report and the existing bug report. Sun et al. [32]
proposed a feature-based partitioning model that identified the similarities between bug reports.
Subsequently, Sun et al. [33] proposed a retrieval model based on multifeature information, which can
continue to match the most similar features in bug reports.

Xia et al. [34] found that for approximately 80% of bug reports, the values of one or more of their
fields (including the severity and fixer fields) are reassigned. They also show that redistributing field
values for bug reports with existing field values consumes more time and cost than bug reports for no
field reassignment. To resolve this problem, it is necessary to develop automatic approaches to perform

Appl. Sci. 2019, 9, 3663 4 of 28

severity predictions and semiautomatic fixer recommendations. Zhang [35] proposed a new approach
for severity predictions and semiautomatic fixer recommendations to take the place of manual work
by developers. In this approach, the top k nearest neighbors of a new bug report are extracted
by computing a similarity measure called REP topic, which is an enhanced version of REP. Next,
the severity prediction and semiautomatic fixer recommendation approaches are implemented based
on the characteristics of these k neighbors, such as participating developers and textual similarities
with the given bug report.

Feng et al. [36] applied test report prioritization methods to crowdsourced testing. They designed
dynamic strategies to select the most dangerous and diverse test reports for inspection in each iteration.
In their subsequent article, Feng et al. [37] proposed a new technology to prioritize test reports for
inspection by software developers. This approach combined image-understanding techniques with
traditional text-based techniques, especially for the crowdsourced testing of mobile applications.
They proposed prioritization approaches that are based on text descriptions, screenshot images,
and a combination of both sources of information. Under the premise of obtaining rich training data,
Wang et al. [38] proposed a cluster-based classification approach for crowdsourcing report classification.
However, sufficient training data are often not available. Subsequently, Wang et al. [39] proposed an
approach called local-based active classification (LOAF) to address the local bias problem and the lack
of labeled historical data that exist in the automated crowdsourced testing report classification.

3. Methodology

In this section, we will describe in detail the methods for identifying bug reports with an
imbalanced distribution.

3.1. Overview

In this part, we propose a high-impact bug report identification approach by combining data
reduction, i.e., Data Reduction based on Genetic algorithm (DRG), and imbalanced learning strategies.
The model consists of the following three parts: (1) Data preprocessing: We use a text categorization
technique to convert each bug report into a word vector based on the vector space model that is
mentioned in [11,40]. (2) Data reduction phase: Low quality bug reports may cause the classification
approach to assign bug reports to the wrong category [41–44]. To obtain high-quality bug reports,
we use our proposed DRG approach to obtain a reduced dataset. There are three types of reduction
methods, as follows: feature reduction (GA(FS)), instance reduction (GA(IS)) and the reduction of
features and instances simultaneously (GA(FS+IS)). (3) Imbalance learning strategies: To eliminate
the imbalance of datasets, we use four imbalanced processing strategies, i.e., RUS, ROS, SMOTE and
CMA, to balance the processing of datasets and solve the class imbalance problem [19,45–47]. Figure 1
shows the overall framework of our proposed method.

Bug report

Bug report

Bug report

Bug report

preprocessing

Bug report

tracking

system

...

Model training phase

Model test phase

New bug report

submit
Recognition result

Bug report

imbalance

processing

High-impact bug

report bug report

GA(FS)/

GA(IS)/

GA(FS+IS)

Combine feature

selection and

instance selection

Figure 1. The framework of our model.

Appl. Sci. 2019, 9, 3663 5 of 28

3.2. DRG Algorithm

The DRG algorithm mainly includes the following six steps: gene coding, population initialization,
selection, crossover, mutation and termination criteria judgment. Its execution process is shown in
Figure 2:

Code
Calculate the

fitness value
select cross

The training set

output corresponding

to the extraction

scheme with the

largest fitness value

variation

No

begin end

Yes

iterations

>50

Figure 2. DRG algorithm execution process.

Gene coding: The feature sequence in the dataset is represented as a vector FD of size 1×N,
where N is the total number of features. We define NP as the number of populations, it is different
in GA(FS), GA(IS) and GA(FS+IS). A combination of selected features is represented as a binary
string, Fnp = {f1, f2, . . . , fi, . . . , fN}, i ∈ [1, N], np ∈ [1, NP] . Fnp represents a feature selection
scheme. Each feature Fi is a 0− 1 variable with two values: when fi = 0, it means that the
feature in FD corresponding to Fi is not selected, and fi = 1 indicates that the feature in FD
corresponding to Fi is selected. Similarly, the instance sequence in the dataset is represented as
a vector SD of size 1×M, where M is the total number of instances (that is the number of bug reports).
Each combination of selected instances is a instance selection scheme, it is represented as a binary
string, Snp = {s1, s2, . . . , sj, . . . , sM}, j ∈ [1, M], np ∈ [1, NP] . Each instance sj is a 0− 1 variable.
If the instance in SD corresponding to sj is not selected, sj = 0 . And sj = 1 means that the instance
in SD corresponding to sj is selected.

Population initialization. The population initialization in GA(FS) is the generation of initial
feature selection scheme. The method is to use four basic feature selection algorithms (IG, CHI, OneR,
Relief) to sort the dataset according to the importance of the features from high to low, and then
take 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90% of the sorted dataset respectively, and thus
36 feature selection schemes are obtained. The population initialization in GA(IS) is the generation
of the initial instance selection scheme. The method is to randomly generate a random number
between [0, 1] at each sj in each snp . If the random number is greater than or equal to 0.5, sj = 1,
otherwise sj = 0, thus obtaining 36 instance selection schemes. The method of generating the initial
population of GA(FS+IS) has two steps: Firstly, 36 extraction schemes are generated according to the
initial population generation methods in GA(FS) and GA(IS); Then, the generated Fnp and Snp were
separately combined to obtain 36 extraction schemes in the initial population.

Selection: The fitness value of each extraction scheme is calculated according to the fitness
function. The extraction scheme with the largest fitness value is copied aNP times, and they will be
used as aNP schemes in the next generation population (it guarantees that the extraction scheme with
high fitness can be retained). Then, using the roulette selection method, the remaining (1− a)NP
extraction schemes in the next generation population is generated.

Crossover: Divide all extraction schemes in the population into two groups: [1, mid] and
[mid + 1, NP], and mid is equal to NP/2. The extraction schemes in the population are combined in
order, and then a single point crossover is performed. We define a crossover probability Cross_Ratio,
it is randomly generated value. If Cross_Ratio is greater than or equal to the crossover probability lower
bound Cross_L and less than or equal to the crossover probability upper bound Cross_H, the crossover
of these two extraction schemes will be carried out, otherwise they will not crossover. If crossover is
performed, a crossover point is randomly generated, then all the gene positions after this point in both
two extraction schemes will be exchanged.

Mutation. We define a mutation rate Variation_Ratio. For each extraction scheme in population,
a mutation possibility is randomly generated, if the mutation possibility is less than the Variation_Ratio,
the mutation operation is performed. If mutation, Variation_Num mutation gene positions are

Appl. Sci. 2019, 9, 3663 6 of 28

randomly selected in the extraction scheme, if the value of a gene position is 0, it is changed to
1, and if it is 1, it is changed to 0.

Termination criteria judgment. The iteration is terminated when the defined number of iterations
T is reached.

3.3. Reduction Algorithm (GA)

In Sections 3.3 and 3.4, the input parameters and the meaning of each parameter in the algorithm
are as follows: Train : The training set. NP : Population size. T : The number of iterations.
N: The number of features. M : The number of bug reports. Cross_L: The lower bound of the
crossover probability. Cross_H: The upper bound of the crossover probability. Variation_Ratio :
Mutation rate. Variation_Num : The number of mutated genes.

Algorithm 1 indicates that only the feature selection (GA(FS)) or only instance selection (GA(IS))
is performed on the dataset by the genetic algorithm. In the first line of the algorithm, both the
population and the best extraction scheme (best_individual) are initialized to null. In lines 2–5, if the
algorithm performs feature selection, Algorithm 2 is called to initialize the population; if the algorithm
performs instance selection, Algorithm 3 is called to initialize the population. In lines 7–8, the fitness
value of each extraction scheme in the population is calculated by the fitness function defined in
Section 3.5, and the extraction scheme with the largest fitness value is recorded. Lines 9–11 represent
Selection operation, the extraction scheme with the largest fitness function value is copied, and it
is passed to the next generation as aNP of the population. Then, the roulette selection method is
used to generate the remaining (1− a)NP extraction schemes in the population. Lines 12–23 describe
the Crossover operation, lines 24–30 describe the mutation operation, and the specific methods of
the crossover and mutation are detailed in Section 3.1. The mutation loci represent the number of
mutant genes. In lines 30–31, all extraction schemes update the population after performing the genetic
operation. In line 32, after performing T iterations, the obtained optimal extraction scheme is decoded
into a corresponding dataset Reduced_Train. In line 33, return the reduced dataset Reduced_Train.

Algorithm 2 represents the population initialization for feature selection using genetic algorithms.
In line 1, initial the population to null. In line 2,metric is used to represent the four feature selection
methods (IG, CHI, OneR, and Relief). In lines 3–9, the training set is sorted by the four feature selection
algorithms according to importance of all features from high to low. The first 10%, 20%, 30%, 40%, 50%,
60%, 70%, 80%, and 90% of the sorted feature set are added to the feature selection scheme respectively
added to the feature selection scheme (Initialize_Population_FS). In line 10, the corresponding column
of the available feature is set to 1, and the other to 0, return Initialize_Population_FS.

Algorithm 3 represents the population initialization for the instance selection using genetic
algorithms. In line 1, the initial population is set to null. In lines 2–13, first, each instance selection
scheme is organized into a binary string of size 1 ∗M.Then, a number between 0 and 1 is randomly
generated for each gene position in each extraction scheme; if this number is greater than or equal
to 0.5, its corresponding gene position is set to 1, otherwise, it is set to 0, and each instance selection
generated will be added into Initialize_Population_IS. In line 14, all the extraction schemes produced
will be returned.

3.4. GA(FS+IS) Algorithm

GA(FS+IS) indicates that the feature and instance selection are simultaneously performed
on the dataset by using the genetic algorithm. Algorithm 4 details the method of simultaneous
feature selection and instance selection. In line 1, the population and the best extraction scheme
(best_individual are initialized to null. In line 2 to 5, the initialized feature selection scheme and the
instance selection scheme are combined. Lines 7–8 indicate that in each iteration, the fitness value of
each extraction scheme in the population is calculated by the fitness function described in Section 3.5,
and the extraction scheme with the largest fitness value will be recorded in (best_individual Lines 9–11
are the Selection operation; the extraction scheme with the largest fitness value will be copied for

Appl. Sci. 2019, 9, 3663 7 of 28

inheritance to the next generation, and the number of this scheme accounts for a of the population.
The other 1− a of the population will be generated by the roulette selection method. Lines 12–22 are
the crossover operation; the crossover is performed on feature selection scheme and instance selection.
In lines 23–35, the mutation is performed separately on the feature selection scheme and instance
selection. Line 46 indicates that the population needs to be updated after each iteration. Line 38
indicates that after completing T iterations, the best extraction scheme is retained by (best_individual
and it is decoded into the corresponding dataset Reduced_Train (FS + IS). The algorithm finally
returns the reduced dataset.

Algorithm 1 Reduction algorithm(GA)

Input:

Train, NP, T, N, M, Cross_L, Cross_H, Variation_Ratio, Variation_Num
Output:

Reduced_Train

1: Initialize: Population← ∅, best_individual ← ∅, t = 0//t represents the current iteration
2: IF feature select then
3: Population = Initialize_FS(Train, NP, N)
4: ELSE IF instance select then
5: Population = Initialize_IS(Train, NP, M)
6: While t < T do:
7: Calculate the fitness value of each individual by Fitness function
8: best_individual ← (The individual with the largest f itness value)
9: //Selection

10: Copy aNP individuals with the highest fitness value to the next generation.
11: Use the roulette method produces the remaining (1− a)NP individuals.
12: //Crossover
13: Divide the population into two groups, [1, NP/2] and [NP/2, NP]
14: For all i from 1 to NP/2 do:
15: Rate=Random(0,1)
16: IF (Cross_L< = Rate< = Cross_H) then
17: IF feature select then
18: cross_point = Random(0, N).
19: ELSE IF instance select then
20: cross_point = Random(0, M).
21: Individuals i and (NP/2 + i) are crossed (the gene exchange after

crossing points).
22: ELSE IF feature select then
23: ELSE IF instance select then
24: //Mutation
25: For all i from 1 to aNP do:
26: rate =Random(0,1).
27: IF (rate< = Variation_Ratio) then
28: Randomly generate Variation_Num mutation loci.
29: For all j from 1 to Variation_Num do:
30: If the locus is 0, set it to 1, and if it is 1 then set it to 0.
31: Updating Population.
32: The binary string corresponding to best_individual is decoded as Reduced_Train.
33: return Reduced_Train.

3.5. Fitness Function

Individuals need to be selected according to the fitness function value when the data set is reduced
by the genetic algorithm. This function is used to measure the ability of the individual classification.

Appl. Sci. 2019, 9, 3663 8 of 28

The higher the fitness function value is, the better the individual is. The fitness function is defined as
follows [48]:

J (x) = Sb − Sw (1)

where Sb represents the fuzzy distance between different categories, and Sw represents the fuzzy
distance within the same category. The samples can be separated because they are located in different
regions of the feature space. The larger the Sb and the smaller Sw, the better the classification effect is.
The specific calculation method is described as follows:

Algorithm 2 Initialize_FS

Input:

Train, NP, N
Output:

Initialize_Population_FS

1: Initialize_Population_FS← ∅.
2: metrics← [IG, CHI, OneR, Relie f]
3: For each metric in metric do:
4: Order features by metric
5: For all i from 1 to 9 do:
6: Take the first i ∗ 10 of N as fs
7: Initialize_Population_FS.add(fs)
8: End for
9: End for

10: return Initialize_Population_FS.

Algorithm 3 Initialize_IS

Input:

Train, NP, M
Output:

Initialize_Population_IS

1: Initialize_Population_IS← ∅.
2: For all i from 1 to NP do:
3: Treat individual i as ins.
4: For ins gene location j from 1 to M do:
5: rate=Random(0,1)
6: If (rate> = 0.5) then
7: Change the j locus of the ith individual to 1.
8: else
9: Change the j locus of the ith individual to 0.

10: End if.
11: End for.
12: Initialize_Population_IS.add(ins)
13: End for.
14: return Initialize_Population_IS.

We adopt the following Euclidean distance [24]:

N(A, B) =

√√√√ n

∑
i = 1

(uA (xi)− uB (xi))
2

(2)

Appl. Sci. 2019, 9, 3663 9 of 28

When calculating the distance Sb between different categories, uA (xi) and uB (xi) represent the
mean vectors of severity and non_severity, respectively. The mean vector can be obtained by the
following formula:

ci =
1
ni

∑
x∈wi

x, (i = 1, 2) (3)

where wi represents the two categories of severity and non_severity, ci is the category center feature
vector of the category i, and there are ni bug reporters in wi category.

Algorithm 4 GA(FS+IS)

Input:

Train, NP, T, N, M, Cross_L, Cross_H, Variation_Ratio, Variation_Num
Output:

Reduced_Train(FS + IS)

1: Initialize: Population← ∅,best_individual ← ∅, t = 0//t represents the current iteration.
2: For all i from 1 to NP do:
3: Initialize_Population_FS = Initialize_FS (Train, NP, N)
4: Initialize_Population_IS = Initialize_IS (Train, NP, M)
5: Population← Combine(Initialize_Population_FS, Initialize_Population_IS).
6: While t < T do:
7: Calculate the fitness value of each individual by the fitness function.
8: best_individual ← The individual with the largest fitness value.
9: //Selection

10: Copy individuals with the highest fitness value for aNP times to the next generation.
11: Use the roulette method produces the remaining (1− a)NP individuals.
12: //Crossover
13: Divide the population into two groups, [1, NP/2] and [NP/2, NP]
14: For all i from 1 to NP/2 do:
15: Rate FS=Random(0,1).
16: If (Cross L< = Rate FS< = Cross H) then
17: corss point=Random (0, N).
18: Individuals i and (NP/2 + i) are crossed (the gene exchange after

crossing points).
19: Rate IS=Random(0,1).
20: If (Cross L< = Rate IS< = Cross H) then
21: corss point=Random (0, M).
22: Individuals i and (NP/2 + i) are crossed (the gene exchange after

crossing points).
23: // Mutation
24: For all i from 1 to NP do:
25: Rate FS=Random(0,1).
26: If (Rate FS< = Variation_Ratio) then
27: Randomly generate N/100 mutation loci.
28: For all j from 1 to N/100 do:
29: If the locus is 0, set it to 1, and if it is 1 then set it to 0.
30: For all i from 1 to NP do:
31: Rate IS=Random(0,1).
32: If (Rate IS< = Variation_Ratio) then
33: Randomly generate M/100 mutation loci.
34: For all j from 1 to M/100 do:
35: If the locus is 0, set it to 1, and if it is 1 then set it to 0.
36: Updating Population.
37: End while.
38: The binary string corresponding to best_individual is decoded as Reduced_Train(FS + IS).
39: return Reduced_Train(FS + IS).

Appl. Sci. 2019, 9, 3663 10 of 28

When calculating the distance Sw between the same category, uA (xi) and uB (xi) represent two
different bug reports in the same category. For two different bug reports A and B in the same category,
the inner class distance should be calculated, then, the inner class distance of the two category is added
to obtain Sw . The definition is as follows:

N(A, B) =
1

P + Q

√√√√ n

∑
i = 1

(uA (xi)− uB (xi))
2

(4)

where P =
m1−1

∑
i = 1

i, m1 represents the number of severity bug reports; P =
m2−1

∑
i = 1

i, m2 represents the

number of nonseverity bug reports;

3.6. Feature Selection Approach

Since many feature selection algorithms have been investigated for text categorization, we select
four typical algorithms (OneR, IG, CHI, Relief) in our work [49].

4. Experimental Design

The experimental design used to validate the performance of our approach is described in
this section.

4.1. Experimental Datasets

To demonstrate the effectiveness of the proposed approach, we carry out a series of experiments on
the bug repositories of three large open source projects, namely, Mozilla, GCC, and Eclipse. Portions of
the bug reports (that is, the repaired state is fixed) are selected as the experimental data. There are
seven types of labels corresponding to the severity of the datasets, as follows: normal, enhancement,
major, critical, blocker, trivial, and minor. The major, critical, and blocker tags are severe bug reports.
The trivial and minor tags are nonseverity bug reports. Statistics information on the three datasets is
shown in Table 1, which contains the total number of bug reports, the number of severe bug reports,
the number of nonseverity bug reports, and imbalance ratio. We can see that all the datasets are
imbalanced. In Mozilla, the proportion of severe bug reports is 1.3015. In Eclipse, the proportion of
severe bug reports is 2.311197, and in GCC, the proportion of severe bug reports is 3.6735. In Table 1,
the second column represents the size of the data set. The third and fourth columns indicate that
the severity labels are major, critical, blocker, respectively. The nonseverity tags are trivial and minor.
The fifth and sixth columns represent the number of severe bug reports and the number of nonseverity
bug reports, respectively. The last column indicates the imbalance ratio of the bug report.

Table 1. The original datasets for Mozilla, GCC, and Eclipse.

Project
Number of Total Severity Nonseverity Number of Number of Imbalance

Bug Reports Tag Tag Severity Nonseverity Ratio
(Row × Column) Bug Reports Bug Reports

Mozilla 18793 × 11682 major trivial 1528 1174 1.3015

GCC 13964 × 16768 critical minor 2149 585 3.6735

Eclipse 41799 × 27141 blocker 5073 2232 2.31197

We analyze and process the Mozilla, GCC and Eclipse datasets and remove the bug reports
labeled normal and environment from each dataset, leaving only the bug reports labeled major, critical,
blocker, trivial, and minor; then, text preprocessing is performed. The description information of each

Appl. Sci. 2019, 9, 3663 11 of 28

bug report in the datasets is segmented, the stop words are removed, and the word stem is processed
into a text matrix. Each row in the matrix represents a bug report, and each column represents a word.
We delete words whose word frequency is less than 5. The datasets after word frequency reduction are
divided into parts in chronological order; the first parts are used as training sets, and the last parts
are used as test sets. We obtained the final standard experimental data sets, and the results are shown
in Table 2. In Table 2, the second column represents the size of the data set with a word frequency
less than 5, the third column represents the proportion of the deleted bug report, and the last two
columns represent the number of bug reports with severe and nonsevere tags in the training and test
sets, respectively.

Table 2. The preprocessed datasets for Mozilla, GCC, and Eclipse.

Project
CiPin5

The Proportion of Bugs Deleted
Training Sets (8 Copies) Test Sets (2 Copies)

(Row*Column) Severity Nonseverity Severity Nonseverity

Mozilla 2702 × 2285 85.62% 1222 938 306 236
GCC 2734 × 3292 80.42% 1720 464 429 121
Eclipse 7305 × 4697 82.20% 4090 1750 983 482

4.2. Experimental Parameter Setting

The genetic algorithm is used to reduce the attributes and instances. The specific parameters of
GA(FS), GA(IS) and GA(FS+IS) are shown in Table 3. The parameters in Table 3 are the parameter
settings in the DRG algorithm.

Table 3. The parameters of the GA(FS), GA(IS), GA(FS+IS).

Algorithm NP T a Cross_L Cross_H Variation_Ratio Variation_Num

GA(FS) 36 50 one-sixth 0.5 1 0.5 The total number of
features /100

GA(IS) 30 50 one-sixth 0.5 1 0.5 The total number of
instances /100

GA(FS+IS) 36 50 one-sixth 0.5 1 0.5 __

4.3. Evaluation Metrics

We use precision, recall, the F-measure and Area Under the Curve (AUC) as our evaluation
metrics. These metrics are commonly used measures for evaluating classification performance [24,50].
They can be derived from the confusion matrix, which captures all four possible classification results,
as presented in Table 4. The number of true positives (TP) is the number of low impact bug reports that
are correctly divided into low impact bug reports. The number of false positives (FP) is the number
of high impact bug reports that are incorrectly divided into low impact bug reports. The number of
false negatives (FN) is the number of low impact bug reports that are incorrectly divided into high
impact bug reports. The number of true negatives (TN) is the number of high impact bug reports that
are correctly divided into high impact bug reports. Where, the sum of TP and TN is the number of
correctly classified bug reports and the sum of FP and FN is the number of correctly classified bug
reports. Based on the values of TP, FP, FN, and TN, the precision, recall, F-measure and AUC are
calculated as follows.

Table 4. Confusion matrix, which can be used to calculate many evaluation metrics.

Confusion Matrix
Actual

Low Impact High Impact

Predicted
low impact TP:true positives FP:false positives
high impact FN:false negatives TN:true negatives

Appl. Sci. 2019, 9, 3663 12 of 28

Accuracy: The accuracy of the model is the number of correct classifications divided by the total
number of classifications. The accuracy is defined as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
× 100% (5)

Precision: The percentage of bug reports that are predicted to be either nonhighimpact or
highimpact and are correctly predicted. We thus consider a separate precision for each severity. For a
bug report severity of either nonhighimpact or highimpact, we define the precision more formally
as follows:

Precisionlow =
TP

TP + FP
× 100% (6)

Precisionhigh =
TN

TN + FN
× 100% (7)

Recall: The percentage of all bug reports that are actually nonhighimpact or highimpact and are
correctly predicted to be nonhighimpact or highimpact, respectively. As for the precision, we also
consider a separate recall for each severity. For a bug report severity of either nonhighimpact or
highimpact, we define the recall more formally as follows:

Recalllow =
TP

TP + FN
× 100% (8)

Recallhigh =
TN

TN + FP
× 100% (9)

F-measure: Usually, the precision and recall are not discussed in isolation. Instead, either the
values of one measure are compared for a fixed value of the other measure or both are combined
into a single measure, such as the F-measure, which is the weighted harmonic mean of the recall and
precision. The F-measure has the property that if either the recall or precision is low, the F-measure also
decreases. Therefore, the F-measure can be used as an effective evaluation criterion for the classification
of imbalanced datasets.γ represents the weighting parameters; if γ is greater than 1, the (precision) is
more important than recall, whereas if it is less than 1, the recall is a more important one. In this case
study, we set γ equal to 1 to define the F-measure such that the recall and (precision) are equally weighted.

F−measurelow =

(
1 + γ2)× Precisionlow × Recalllow

γ2 × Recalllow + Precisionlow
× 100% (10)

F−measurehigh =

(
1 + γ2)× Precisionhigh × Recallhigh

γ2 × Recallhigh + Precisionhigh
× 100% (11)

To comprehensively consider the total F-measure for a bug repository dataset, we combine
F−measurelow and F −measureehigh into a single measure F-measure, which is defined as follows,
where α and β represent weighting parameters such that α = TP+FN

TP+FP+TN+FN and β = TN+FP
TP+FP+TN+FN :

Precision = α× Precisionlow + β× Precisionhigh (12)

Recall = α× Recalllow + β× Recallhigh (13)

Appl. Sci. 2019, 9, 3663 13 of 28

F−measure = α× F−measurelow + β× F−measurehigh (14)

AUC(Area Under Curve): The ROC curve is commonly used for classifier evaluation. However,
comparing curves visually can be cumbersome, especially when the curves are close together. Therefore,
the AUC is calculated to serve as a single number expressing the accuracy. The AUC is the area of a
two-dimensional graph in which Recalllow or Recallhigh is plotted on the Y axis and FPRlow or FPRhigh
is plotted on the X axis over a distinct threshold T of possibility values. If the AUC is close to 0.5,
then the classifier is practically random, whereas a value close to 1.0 means that the classifier makes
practically perfect predictions. This value enables more rational discussions when comparing the
accuracies of different classifiers [51]:

AUClow =
∫ −∞

∞
Recalllow (T) FPR′ low (T) dT (15)

AUChigh =
∫ −∞

∞
Recallhigh (T) FPR′high (T) dT (16)

where

FPR′ low =
FP

FP + TN
× 100% (17)

FPR′high =
FN

FN + TP
× 100% (18)

To comprehensively consider the total AUC for a bug repository dataset, we combine AUClow and
AUChigh into a single measure AUC, which is defined as follows, where α and β represent weighting
parameters such that α = TP+FN

TP+FP+TN+FN and β = TN+FP
TP+FP+TN+FN :

AUC = α× AUClow + β× AUChigh (19)

5. Experimental Results

In this section, the experimental results are discussed in relation to the specific research questions.

5.1. RQ1:What Are the Better Classification Results for the Reduced Datasets and the Unreduced Datasets?

In the first research question, we want to investigate which of the reduced datasets and the
unreduced datasets have better classification performance for Mozilla, GCC and Eclipse projects.

To answer this question, first, we use NB, NBM, KNN, and SVM to classify the original datasets
and record the experimental results. Then, we use the genetic algorithm for the feature selection for the
original datasets and set the iteration to 50 times. After finding the optimal individual GA(FS), we use
the basic filter feature selection method, i.e., IG, CHI, OneR, or Relief, to reduce the datasets to the same
scale as the genetic algorithm and the statistical results. Finally, we use the genetic algorithm for the
instance selection for the original datasets and set the iteration to 50 times. After finding the optimal
individual GA(IS), we use the basic instance selection method, i.e., CNN, ENN, MCS, or ICF, to reduce
the datasets to the same scale as the genetic algorithm and the statistical experiment result. We use
four evaluation metrics mentioned above (accuracy, precision, recall, F-measure and AUC) to analyze
the experimental results. Tables 5–7 present the performance of the feature selection approaches and
instance selection approaches with four classifiers on Mozilla, GCC, and Eclipse, respectively.

Appl. Sci. 2019, 9, 3663 14 of 28

Table 5. The results of feature selection and instance selection in the Mozilla dataset compared to the results of the raw Mozilla data.

Datasets Classifiers
Evalution

Origin
Feature Reduction Instance Reduction

Metrics GA(FS) IG CHI OneR Relief GA(IS) CNN ENN MCS ICF

Mozilla

NB

Accuracy 0.6882 0.6694 0.6957 0.6883 0.6469 0.6531 0.7085 0.6568 0.6863 0.7048 0.6863
Fmeasure 0.6883 0.6684 0.6915 0.6836 0.6422 0.6398 0.7097 0.6568 0.6873 0.7056 0.6871
Precision 0.711 0.669 0.7491 0.7426 0.6497 0.7412 0.7165 0.6791 0.701 0.7215 0.7037
Recall 0.6882 0.6694 0.6957 0.6883 0.6469 0.6531 0.7085 0.6568 0.6863 0.7048 0.6863
AUC 0.755 0.7082 0.8279 0.8298 0.656 0.7933 0.7754 0.7414 0.7489 0.7897 0.7514

NBM

Accuracy 0.7565 0.7444 0.7607 0.7681 0.649 0.7087 0.8026 0.7454 0.7306 0.7583 0.7712
Fmeasure 0.755 0.7439 0.7615 0.7689 0.6476 0.7069 0.803 0.7436 0.7276 0.7571 0.7703
Precision 0.7969 0.7523 0.7772 0.7847 0.6559 0.749 0.8238 0.7867 0.7794 0.7963 0.8076
Recall 0.7565 0.7444 0.7607 0.7681 0.649 0.7087 0.8026 0.7454 0.7306 0.7583 0.7712
AUC 0.8249 0.8082 0.8447 0.851 0.732 0.7985 0.8545 0.8006 0.8067 0.8409 0.8271

KNN

Accuracy 0.6476 0.6471 0.7032 0.7013 0.649 0.6735 0.6494 0.6107 0.6162 0.6199 0.631
Fmeasure 0.6473 0.6472 0.7041 0.7026 0.6483 0.6746 0.6509 0.596 0.6178 0.6041 0.6321
Precision 0.671 0.6476 0.7204 0.7129 0.6486 0.6894 0.6587 0.6809 0.6243 0.6979 0.6343
Recall 0.6476 0.6471 0.7032 0.7013 0.649 0.6735 0.6494 0.6107 0.6162 0.6199 0.631
AUC 0.6828 0.6487 0.7177 0.7264 0.6594 0.7021 0.6861 0.6656 0.5918 0.6181 0.6203

SVM

Accuracy 0.7804 0.714 0.8145 0.8219 0.7041 0.7718 0.7583 0.7472 0.7565 0.7694 0.786
Fmeasure 0.7814 0.7093 0.8153 0.8227 0.6998 0.7724 0.7592 0.7483 0.757 0.7697 0.7868
Precision 0.7881 0.7206 0.827 0.8326 0.7102 0.7917 0.7634 0.7536 0.7584 0.7911 0.7919
Recall 0.7804 0.714 0.8145 0.8219 0.7041 0.7718 0.7583 0.7472 0.7565 0.7694 0.786
AUC 0.7847 0.708 0.8223 0.8288 0.6995 0.7826 0.7603 0.75 0.7552 0.7807 0.7891

Appl. Sci. 2019, 9, 3663 15 of 28

Table 6. The results of feature selection and instance selection in the GCC dataset compared to the results of the raw GCC data.

Datasets Classifiers
Evalution

Origin
Feature Reduction Instance Reduction

Metrics GA(FS) IG CHI OneR Relief GA(IS) CNN ENN MCS ICF

GCC

NB

Accuracy 0.6273 0.5883 0.5748 0.5748 0.5066 0.5527 0.6509 0.6436 0.6255 0.6273 0.6545
Fmeasure 0.6592 0.6227 0.6096 0.6096 0.5402 0.5853 0.6798 0.6739 0.6569 0.6591 0.6818
Precision 0.7705 0.7689 0.7709 0.7709 0.7703 0.7749 0.7559 0.7643 0.7348 0.7778 0.7449
Recall 0.6273 0.5883 0.5748 0.5748 0.5066 0.5527 0.6509 0.6436 0.6255 0.6273 0.6545
AUC 0.7337 0.7482 0.7562 0.7561 0.7214 0.7431 0.6977 0.7321 0.6692 0.7393 0.6818

NBM

Accuracy 0.7582 0.7814 0.7755 0.7755 0.7865 0.7291 0.76 0.7673 0.7782 0.7255 0.7636
Fmeasure 0.7719 0.7867 0.7796 0.7796 0.7746 0.7419 0.7751 0.7803 0.79 0.7465 0.7766
Precision 0.7994 0.7937 0.7846 0.7846 0.7874 0.7624 0.809 0.8069 0.8136 0.8032 0.8019
Recall 0.7582 0.7814 0.7755 0.7755 0.7685 0.7291 0.76 0.7673 0.7782 0.7255 0.7376
AUC 0.7769 0.8 0.7928 0.7928 0.7703 0.7374 0.7872 0.7811 0.7834 0.7532 0.7702

KNN

Accuracy 0.7109 0.7577 0.7536 0.7536 0.7647 0.8018 0.7218 0.7091 0.7545 0.6291 0.7382
Fmeasure 0.7059 0.7581 0.7533 0.7533 0.7516 0.7977 0.7097 0.697 0.7213 0.6604 0.7294
Precision 0.7013 0.7585 0.7529 0.7529 0.7431 0.7946 0.7004 0.6874 0.7083 0.7937 0.7225
Recall 0.7109 0.7577 0.7536 0.7536 0.7647 0.8018 0.7218 0.7091 0.7545 0.6291 0.7382
AUC 0.5625 0.6511 0.6417 0.6417 0.5947 0.6955 0.5576 0.5406 0.5519 0.6972 0.5905

SVM

Accuracy 0.8091 0.8033 0.8047 0.8029 0.797 0.8036 0.7818 0.7745 0.7982 0.7364 0.8087
Fmeasure 0.803 0.7591 0.7611 0.7597 0.7477 0.749 0.7753 0.7833 0.7918 0.7544 0.8008
Precision 0.7993 0.7809 0.7824 0.7782 0.7594 0.7957 0.7707 0.7975 0.7876 0.7956 0.7969
Recall 0.8091 0.8033 0.8047 0.8029 0.797 0.8036 0.7818 0.7745 0.7982 0.7364 0.8073
AUC 0.6937 0.586 0.5869 0.5857 0.561 0.5715 0.6554 0.719 0.6778 0.7212 0.6896

Appl. Sci. 2019, 9, 3663 16 of 28

Table 7. The results of feature selection and instance selection in the Eclipse dataset compared to the results of the raw Eclipse data.

Datasets Classifiers
Evalution

Origin
Feature Reduction Instance Reduction

Metrics GA(FS) IG CHI OneR Relief GA(IS) CNN ENN MCS ICF

Eclipse

NB

Accuracy 0.5911 0.5503 0.5679 0.5685 0.4684 0.4905 0.6055 0.587 0.5952 0.6089 0.5891
Fmeasure 0.6006 0.5486 0.5689 0.5689 0.4257 0.4714 0.6156 0.5954 0.6051 0.619 0.5989
Precision 0.6865 0.7102 0.714 0.7161 0.7037 0.695 0.6928 0.691 0.6865 0.6954 0.6817
Recall 0.5911 0.5503 0.5679 0.5685 0.4684 0.4905 0.6055 0.587 0.5952 0.6089 0.5891
AUC 0.6931 0.7129 0.7173 0.7177 0.7251 0.6829 0.6972 0.6857 0.6908 0.7006 0.6772

NBM

Accuracy 0.5549 0.5745 0.5768 0.5788 0.6399 0.5693 0.5823 0.5597 0.5481 0.5427 0.5611
Fmeasure 0.5486 0.5776 0.5783 0.5804 0.6467 0.5718 0.5822 0.5528 0.5387 0.5323 0.5571
Precision 0.7331 0.7184 0.7225 0.7221 0.7348 0.7157 0.737 0.743 0.738 0.7342 0.7298
Recall 0.5549 0.5745 0.5768 0.5788 0.6399 0.5693 0.5823 0.5597 0.5481 0.5427 0.5611
AUC 0.723 0.7295 0.7307 0.7331 0.7707 0.705 0.7351 0.7218 0.5125 0.7202 0.7109

KNN

Accuracy 0.6355 0.6848 0.7318 0.7212 0.7903 0.6847 0.6608 0.5782 0.6205 0.6198 0.5857
Fmeasure 0.6437 0.6895 0.732 0.7215 0.7009 0.6851 0.6614 0.59 0.6315 0.6312 0.5981
Precision 0.6599 0.6969 0.7323 0.7217 0.6986 0.6854 0.662 0.6177 0.6636 0.6711 0.6384
Recall 0.6355 0.6848 0.7318 0.7212 0.7093 0.6847 0.6608 0.5782 0.6205 0.6198 0.5857
AUC 0.6183 0.6617 0.7077 0.6906 0.6628 0.6531 0.6274 0.5688 0.6199 0.6293 0.5923

SVM

Accuracy 0.759 0.7545 0.7558 0.7568 0.721 0.7164 0.7352 0.729 0.7502 0.714 0.7447
Fmeasure 0.7498 0.7199 0.7211 0.727 0.6859 0.6546 0.7275 0.7327 0.74 0.7226 0.7372
Precision 0.7504 0.7624 0.7669 0.7614 0.7146 0.723 0.7256 0.739 0.7405 0.7637 0.7357
Recall 0.759 0.7545 0.7558 0.7568 0.721 0.7164 0.7352 0.729 0.7502 0.714 0.7447
AUC 0.6978 0.6466 0.6492 0.6574 0.6219 0.5804 0.6768 0.7092 0.6864 0.7351 0.6871

Appl. Sci. 2019, 9, 3663 17 of 28

From Tables 5–7, it can be found that the ability to identifying high-impact bug reports by using
feature selection and instance selection to select datasets after reduction works much better than the
original experimental datasets. For example, from Table 5, it can be found that for the Mozilla dataset,
the NBM classifier-based instance reduction method GA(IS) works best for identifying high-impact
bug reports. It achieves the largest AUC value, which is 0.8545, and the accuracy, F-measure, precision,
and recall values are 0.8026, 0.803, 0.8238, and 0.8026, respectively. Compared with the original data
classification without data reduction, the F-measure value results have the greatest improvement.
For the Mozilla dataset after attribute reduction with CHI, the SVM classifier has the best classification
performance for identifying high-impact bug reports, and the accuracy, F-measure, precision, recall,
and AUC values are 0.8219, 0.8227, 0.8326, 0.8219, 0.8288, respectively, and achieve the maximum
accuracy, F-measure, precision and recall values.

From Table 6, it can be found that for the GCC dataset, the GA(FS) method based on the
NBM classifier has the greatest improvement in the accuracy rate, recall rate and the AUC value.
Among them, the accuracy of the GA(FS) method based on the NBM classifier for identifying
high-impact bug reports is 0.7814, the recall rate is 0.7814, and the AUC value is 0.8. From Table 7, for the
Eclipse dataset, using the OneR reduction method based on the NBR classifier to identify high-impact
bug reports has the greatest improvement, especially for the accuracy, F-measure, recall and AUC
values; the classification results are 0.6399, 0.6467, 0.6399, 0.7707, respective.

Therefore, according to the experimental results, the reduced dataset has better classification
performance than the unreduced dataset.

5.2. RQ2: How Does the Order of the Feature Selection and Instance Selection on the Datasets Impact the
Experimental Performance?

In this research question, we want to investigate whether the order of the feature selection and
instance selection on the Mozilla, GCC and Eclipse datasets has an impact on the experimental results.
We consider four feature selection methods, i.e., IG, CHI, OneR, and Relief, and four instance selection
methods, i.e., CNN, ENN, MCS, and ICF. We use the five evaluation metrics mentioned above (accuracy,
precision, recall, F-measure and AUC) to analyze the experimental results.

To answer this question, first, we use the genetic algorithm to simultaneously perform the
approximate reduction of features and instances on the original dataset, i.e., GA(FS+IS), and record the
experimental results. Thus, we use genetic algorithms to apply the feature selection for the datasets.
Based on the obtained optimal individuals, we use the genetic algorithm to apply the instance selection,
i.e., GA(FS_IS), and the experimental results are recorded. Next, we use genetic algorithms to apply
the instance selection for the datasets. Based on the obtained optimal individuals, we use the genetic
algorithm to apply the feature selection, i.e., GA(IS_FS), and record the experimental results. Finally,
according to the first experiment, among the NB, NBM, KNN, and SVM classifiers, NBM has the best
classification effect, so we only retain the experimental results of using NBM as a classifier in Table 8.

Table 8 shows that the best classification performance is obtained after instance reduction using
NBM as a classifier to identify high-impact bug reports for Mozilla dataset. The accuracy, F-measure,
and recall values show the most obvious improvements, with values of 0.8026, 0.803, and 0.8026,
respectively. For the GCC dataset, the GA(FS_IS) method (this is, feature selection is first performed on
the dataset, and then the instance selection of the dataset is performed) achieves the best classification
performance in identifying high-impact bug reports. In the accuracy value and the recall value, there is
the most obvious improvement: the accuracy and the recall values are 0.796 and 0.796, respectively.
For the Eclipse dataset, the GA(IS + FS) method (that is, feature selection and instance selection are
performed simultaneously) performs better to identify high-impact bug reports. The most obvious
improvement is obtained for the accuracy, F-measure and recall values, which are 0.6907, 0.6983 and
0.6907, respectively.

Therefore, we found that the order of the feature selection and instance selection has an impact on
identifying high-impact bug reports through the experiments on the Mozilla, GCC and Eclipse datasets.

Appl. Sci. 2019, 9, 3663 18 of 28

Table 8. The effect of the feature selection and instance selection order on the experimental results for
the Mozilla and GCC datasets when using NBM as a classifier.

Datasets Evaluation Metrics Origin GA(FS+IS) GA(FS_IS) GA(IS_FS) FS IS

Mozilla

Accuracy 0.7565 0.7107 0.7505 0.7357 0.7681 0.8026
Fmeasure 0.755 0.7106 0.7506 0.7355 0.7689 0.803
Precision 0.7969 0.7135 0.7526 0.7627 0.7847 0.8238

Recall 0.7565 0.7107 0.7505 0.7357 0.7681 0.8026
AUC 0.8249 0.7659 0.8095 0.8125 0.851 0.8545

GCC

Accuracy 0.7582 0.785 0.796 0.7887 0.7755 0.7782
Fmeasure 0.7719 0.7885 0.796 0.7905 0.7796 0.79
Precision 0.7994 0.7926 0.796 0.7926 0.7846 0.8136

Recall 0.7582 0.785 0.796 0.7887 0.7755 0.7782
AUC 0.7769 0.7848 0.8149 0.8019 0.7928 0.7834

Eclipse

Accuracy 0.5549 0.6907 0.5876 0.5942 0.6399 0.5427
Fmeasure 0.5486 0.6983 0.5911 0.6011 0.6467 0.5323
Precision 0.7331 0.738 0.7282 0.7088 0.7348 0.7342

Recall 0.5549 0.6907 0.5876 0.5942 0.6399 0.5427
AUC 0.723 0.7778 0.7357 0.7242 0.7707 0.7202

5.3. RQ3: What Is the Effect of the Balance Processing and Reduction Denoising Order on the
Experimental Results?

In this research question, we want to investigate the effect of the balance processing and reduction
denoising order on the experimental results for the Mozilla, GCC and Eclipse datasets.

To answer this question, we first use several different imbalanced processing strategies, i.e., RUS,
ROS, SMOTE and CMA, to balance the preprocessed datasets after performing feature selection and
instance selection and record the experimental results as the GA(FS+IS)_imbalance. After we balance
the original dataset, we simultaneously perform feature selection and instance selection and record
the results as imbalance_GA(FS + IS). Second, we perform feature selection on the original datasets
and then use the different imbalanced processing strategies, RUS, ROS, SMOTE and CMA, to balance
the datasets. The experimental results are recorded as the GA(FS)_imbalance. We perform the
feature selection after the raw datasets are balanced by the different imbalanced processing strategies,
RUS, ROS, SMOTE and CMA, and the experimental results are recorded as imbalance _GA(FS). Third,
we perform instance selection on the original datasets and then use the different imbalanced processing
strategies, RUS, ROS, SMOTE and CMA, to balance the datasets. The experimental results are recorded
as the GA(IS)_imbalance. We perform the feature selection after the raw datasets are balanced by
the different imbalanced processing strategies, RUS, ROS, SMOTE and CMA, and the experimental
results are recorded as imbalance_GA(IS). Fourth, we perform feature selection on the original datasets
first, then perform instance selection, and then use the different imbalanced processing strategies,
RUS, ROS, SMOTE and CMA, for balance processing; the experimental results are recorded as the
GA(FS_IS)_imbalance. We first balance the original dataset with the RUS, ROS, SMOTE and CMA
method, then perform feature selection and instance selection; we record the experimental results
as imbalance_GA(FS_IS). Finally, we perform instance selection on the original datasets first and
then perform feature selection; subsequently, we use the different imbalanced processing strategies,
RUS, ROS, SMOTE and CMA, for balance processing, and the experimental results are recorded as
the GA(IS_FS)_imbalance. We first balance the original dataset with the RUS, ROS, SMOTE and
CMA methods then perform instance selection and feature selection; the experimental results are
subsequently recorded as imbalance_GA(IS_FS). We use the five evaluation metrics mentioned above
(accuracy, precision, recall, F-measure and AUC) to make comparisons and only retain the experimental
results of NBM as a classifier. Tables 9–13 shows the performance of the processing sequence for balance
processing and reduction denoising to identify high-impact bug reports for Mozilla, GCC and Eclipse.

Appl. Sci. 2019, 9, 3663 19 of 28

From Table 9, we find that the imbalance_GA(FS + IS) method (that is, first using the SMOTE
method for unbalanced data sets and then using feature selection and instance selection at the same
time) can achieve the maximum performance improvement for identifying high-impact bug reports
for the Mozilla dataset. The accuracy, F-measure, precision, recall and AUC values are 0.7435, 0.7444,
0.7615, 0.7435, and 0.8322, respectively. For the GCC and Eclipse datasets, it can be found that
the GA(FS+IS_imbalance method (that is, first using the feature selection and instance selection for
the dataset, then using the ROS method for imbalance processing) performs better in identifying
high-impact bug reports. For the GCC dataset, the accuracy, the F-measure, the precision, the recall,
and AUC values are 0.7562, 0.7725 0.805, 0.7562, and 0.7853, respectively. For the Eclipse dataset,
the accuracy, F-measure, and recall values are 0.6251, 0.6303, 0.7207, 0.6251, and 0.7761, respectively.

From Table 10, we can observe that the imbalance_GA(FS) method (that is, using the SMOTE
method to imbalance the dataset first, and then only using feature selection) has the greatest
improvement for identifying high-impact bug reports for the Mozilla dataset. The accuracy, F-measure,
precision, recall and AUC values are 0.762, 0.7616, 0.7926, 0.762, and 0846, respectively. For the
GCC dataset, the GA(FS)_imbalance method (that is, the dataset is processed by feature selection
first, and then the dataset is processed using the CMA method) performs better in identifying
high-impact bug reports. The accuracy, F-measure, precision, recall and AUC values are 0.7778,
0.7878, 0.8054, 0.7778, and 0.799, respectively. For the Eclipse dataset, the GA(FS)_imbalance method
(that is, feature selection is used first, and then the ROS method is used to imbalance the dataset)
performs better in identifying high-impact bug reports. The accuracy, F-measure, precision, recall and
AUC values are 0.5697, 0.5686, 0.7319, 0.5697, and 0.734, respectively.

From Table 11, For the Mozilla and GCC datasets, the GA(IS)_imbalance method (that is,
dataset is processed by feature selection first and then the CMA method is used to imbalance the data
set) performs better in identifying high-impact bug reports. For the Mozilla dataset, the accuracy,
the F-measure, the precision, the recall, and AUC values are 0.8044, 0.8048, 0.8251, 0.8044, and 0.8547,
respectively. For the GCC dataset, the accuracy, F-measure, the precision, recall and AUC values are
0.7855, 0.7981, 0.827, 0.7855, and 0.8052, respectively. For the Eclipse dataset, the GA(IS)_imbalance
method (that is, the instance selection of the dataset is first performed, and then the SMOTE method is
used to imbalance the dataset) performs better for identifying high-impact bug reports. The accuracy,
F-measure, precision, recall and AUC values are 0.6061, 0.6092, 0.7465, 0.6061 and 0.7475, respectively.

From Table 12, we can find that the imbalance_GA(FS_IS) method (that is, first the SMOTE method
is used to imbalance the dataset, then feature selection is used to reduce it, and then the instance
selection is also used to reduce it) achieves the maximum performance improvement for identifying
high-impact bug reports for the Mozilla dataset. The accuracy, F-measure, precision, recall and
AUC values are 0.7952, 0.796, 0.8078, 0.7952, and 0.8633, respectively. For the GCC dataset, we find
that the imbalance_GA(FS_IS) method (that is, first the CMA method is used for the imbalanced
dataset, then feature selection is used for reduction, and then use instance selection is used for
reduction) can achieve the maximum performance improvement for identifying high-impact bug
reports and the accuracy, F-measure, precision, recall, and AUC values are 0.7887, 0.797, 0.8109, 0.7887,
and 0.8108, respectively. For the Eclipse dataset, we find that the imbalance_GA(FS_IS) method (that is,
first imbalance the dataset using the ROS method, then use the feature selection to reduce, and then use
the instance selection to reduce) could achieve the maximum performance improvement for identifying
high-impact bug reports, and the accuracy, F-measure, precision, recall, and AUC values are 0.5779,
0.5779, 0.7368, 0.5779, and 0.7417, respectively.

From Table 13, we find that the GA(IS_FS)_imbalance method (that is, first instance selection
is used, then feature selection is performed, and then the imbalanced learning strategy is used to
imbalance the dataset) can achieve the best classification effect. For the Mozilla and Eclipse datasets,
the accuracy, F-measure, precision, recall, and AUC values after the imbalance processing using
the ROS method are 0.7724, 0.7734, 0.7889, 0.7724, and 0.8303 and 0.5928, 0.5961, 0.7307, 0.5928,
and 0.7342, respectively. For the GCC datasets, the accuracy, F-measure, precision, recall and AUC

Appl. Sci. 2019, 9, 3663 20 of 28

values after the imbalanced processing using the SMOTE method are 0.7978, 0.8048, 0.8158, 0.7978,
and 0.7973, respectively.

Therefore, we found that the imbalance_GA(FS_IS) method (that is, first use the ROS method to
imbalance the dataset, then use the feature selection to reduce, and then use the instance selection to
reduce) achieved the highest AUC value of 0.86333 for identifying high-impact bug reports for the
Mozilla dataset, and using the CMA method for processing datasets after instance reduction achieved
the highest precision value of 0.827 for identifying high-impact bug reports for the GCC dataset. For the
Eclipse dataset, using the ROS method for processing datasets after FS and IS reduction simultaneously
achieved the highest AUC value of 0.7761 to identify high-impact bug reports.

Table 9. The results of GA(FS+IS)_imbalance and imbalance_GA(FS+IS) on the Mozilla, GCC and Eclipse datasets.

Datasets Evaluation Metrics
GA(FS+IS)_Imbalance Imbalance_GA(FS+IS)

RUS ROS CMA SMOTE RUS ROS SMOTE

Mozilla

Accuracy 0.6983 0.6963 0.7025 0.6921 0.7223 0.7327 0.7435
Fmeasure 0.6965 0.6952 0.7017 0.6909 0.723 0.7326 0.7444
Precision 0.7086 0.7033 0.7087 0.6997 0.7462 0.7618 0.7615

Recall 0.6983 0.6963 0.7025 0.6921 0.7223 0.7327 0.7435
AUC 0.7701 0.771 0.7665 0.7679 0.8056 0.8164 0.8322

GCC

Accuracy 0.7102 0.7562 0.7543 0.7466 0.7286 0.7091 0.7164
Fmeasure 0.7348 0.7725 0.7705 0.7648 0.7476 0.7313 0.739
Precision 0.7941 0.805 0.8022 0.8031 0.7909 0.7871 0.8041

Recall 0.7102 0.7562 0.7543 0.7466 0.7286 0.7091 0.7164
AUC 0.7734 0.7853 0.786 0.7855 0.7805 0.7651 0.7691

Eclipse

Accuracy 0.6136 0.6251 0.6218 0.621 0.5114 0.4859 0.4894
Fmeasure 0.6162 0.6303 0.6263 0.6259 0.4884 0.4541 0.4602
Precision 0.7272 0.7207 0.7229 0.7186 0.7375 0.7237 0.7204

Recall 0.6136 0.6251 0.6218 0.621 0.5114 0.4859 0.4894
AUC 0.771 0.7761 0.7764 0.7746 0.6762 0.6842 0.6728

Table 10. The results of GA(FS)_imbalance and imbalance_GA(FS) on the Mozilla, GCC and Eclipse datasets.

Datasets Evaluation Metrics
GA(FS)_Imbalance Imbalance_GA(FS)

RUS ROS CMA SMOTE RUS ROS SMOTE

Mozilla

Accuracy 0.7444 0.7444 0.7404 0.7404 0.7505 0.7597 0.762
Fmeasure 0.7428 0.7438 0.7392 0.7397 0.7503 0.7593 0.7616
Precision 0.7594 0.7531 0.7523 0.7489 0.7781 0.7912 0.7926

Recall 0.7444 0.7444 0.7404 0.7404 0.7505 0.7597 0.762
AUC 0.8139 0.8113 0.809 0.8098 0.834 0.831 0.846

GCC

Accuracy 0.7541 0.7741 0.7778 0.776 0.74 0.7455 0.7273
Fmeasure 0.7686 0.7843 0.7878 0.7878 0.7583 0.7608 0.7466
Precision 0.7978 0.802 0.8054 0.811 0.8027 0.7921 0.7921

Recall 0.7541 0.7741 0.7778 0.776 0.74 0.7455 0.7273
AUC 0.7929 0.798 0.799 0.7959 0.7651 0.7843 0.7645

Eclipse

Accuracy 0.5462 0.5697 0.5628 0.5503 0.5503 0.5684 0.5512
Fmeasure 0.5394 0.5686 0.5601 0.5459 0.5423 0.5625 0.542
Precision 0.7285 0.7319 0.7311 0.7229 0.7407 0.7485 0.7399

Recall 0.5462 0.5697 0.5628 0.5503 0.5503 0.5684 0.5512
AUC 0.7359 0.734 0.733 0.7239 0.7111 0.7365 0.7191

Appl. Sci. 2019, 9, 3663 21 of 28

Table 11. The results of GA(IS)_imbalance and imbalance_GA(IS) on the Mozilla, GCC and Eclipse datasets.

Datasets Evaluation Metrics
GA(IS)_Imbalance Imbalance_GA(IS)

RUS ROS CMA SMOTE RUS ROS SMOTE

Mozilla

Accuracy 0.797 0.797 0.8044 0.8044 0.7841 0.7915 0.7952
Fmeasure 0.7973 0.7974 0.8048 0.8049 0.7845 0.7917 0.7955
Precision 0.8201 0.8188 0.8251 0.8239 0.8062 0.815 0.8175

Recall 0.797 0.797 0.8044 0.8044 0.7841 0.7915 0.7952
AUC 0.8556 0.8543 0.8547 0.8538 0.8524 0.8527 0.8533

GCC

Accuracy 0.7164 0.7818 0.7855 0.78 0.7309 0.7564 0.7436
Fmeasure 0.7394 0.7944 0.7981 0.7919 0.752 0.7743 0.7629
Precision 0.8105 0.822 0.827 0.8161 0.8133 0.8245 0.8158

Recall 0.7164 0.7818 0.7855 0.78 0.7309 0.7564 0.7436
AUC 0.7541 0.8064 0.8052 0.808 0.7904 0.8032 0.8069

Eclipse

Accuracy 0.5474 0.5966 0.5891 0.6061 0.5201 0.5468 0.5276
Fmeasure 0.537 0.598 0.5896 0.6092 0.502 0.5348 0.5113
Precision 0.7418 0.7455 0.7423 0.7465 0.7326 0.7488 0.7376

Recall 0.5474 0.5966 0.5891 0.6061 0.5201 0.5468 0.5276
AUC 0.7244 0.7457 0.742 0.7475 0.6931 0.7238 0.7085

Table 12. The results of GA(FS_IS)_imbalance and imbalance_GA(FS_IS) on the the Mozilla, GCC and
Eclipse datasets.

Datasets Evaluation Metrics
GA(FS_IS)_Imbalance Imbalance_GA(FS_IS)

RUS ROS CMA SMOTE RUS ROS SMOTE

Mozilla

Accuracy 0.7383 0.7404 0.7505 0.7363 0.756 0.7579 0.7952
Fmeasure 0.738 0.7401 0.7501 0.736 0.7559 0.7583 0.796
Precision 0.7451 0.7462 0.7574 0.7427 0.7832 0.7795 0.8078

Recall 0.7383 0.7404 0.7505 0.7363 0.756 0.7579 0.7952
AUC 0.8042 0.811 0.8094 0.8107 0.8377 0.8402 0.8633

GCC

Accuracy 0.7668 0.7887 0.7887 0.7832 0.6927 0.7382 0.7218
Fmeasure 0.7808 0.7948 0.797 0.7907 0.7185 0.7565 0.7433
Precision 0.8103 0.8036 0.8109 0.802 0.8028 0.8001 0.8019

Recall 0.7668 0.7887 0.7887 0.7832 0.6927 0.7382 0.7218
AUC 0.8019 0.81 0.8108 0.8071 0.7621 0.7774 0.7861

Eclipse

Accuracy 0.5483 0.5779 0.5766 0.5717 0.5055 0.526 0.5196
Fmeasure 0.5414 0.5779 0.5766 0.5708 0.4836 0.5104 0.4959
Precision 0.7321 0.7368 0.735 0.734 0.7237 0.7304 0.7553

Recall 0.5483 0.5779 0.5766 0.5717 0.5055 0.526 0.5196
AUC 0.7256 0.7417 0.7404 0.7327 0.6645 0.7063 0.717

Table 13. The results of GA(IS_FS)_imbalance and imbalance_GA(IS_FS) on the Mozilla, GCC and
Eclipse datasets.

Datasets Evaluation Metrics
GA(IS_FS)_imbalance imbalance_GA(IS_FS)

RUS ROS CMA SMOTE RUS ROS SMOTE

Mozilla

Accuracy 0.7431 0.7357 0.732 0.7264 0.7188 0.7724 0.7532
Fmeasure 0.7431 0.7354 0.7317 0.7258 0.7201 0.7734 0.7544
Precision 0.7691 0.764 0.7602 0.7577 0.725 0.7889 0.7642

Recall 0.7431 0.7357 0.732 0.7264 0.7188 0.7724 0.7532
AUC 0.8128 0.8108 0.8123 0.8106 0.7765 0.8303 0.8403

GCC

Accuracy 0.7723 0.7923 0.7942 0.7978 0.725 0.7327 0.6945
Fmeasure 0.7867 0.8001 0.8021 0.8048 0.7476 0.7541 0.7199
Precision 0.8197 0.8128 0.8153 0.8158 0.8202 0.8203 0.7989

Recall 0.7723 0.7923 0.7942 0.7978 0.725 0.7327 0.6945
AUC 0.785 0.7964 0.7969 0.7973 0.7805 0.7932 0.7722

Eclipse

Accuracy 0.5514 0.5928 0.5887 0.5845 0.4966 0.5075 0.4863
Fmeasure 0.5482 0.5961 0.5915 0.5877 0.4757 0.4853 0.46
Precision 0.7141 0.7307 0.7287 0.7217 0.7076 0.7282 0.7038

Recall 0.5514 0.5928 0.5887 0.5845 0.4966 0.5075 0.4863
AUC 0.7097 0.7342 0.7308 0.7287 0.6097 0.6477 0.6112

Appl. Sci. 2019, 9, 3663 22 of 28

6. Conclusions

In this paper, we propose a high-impact bug report identification approach generated by
combining the data reduction, e.g., the Data Reduction based on Genetic algorithm (DRG),
and imbalanced learning strategies. We use four feature selection algorithms (i.e., One Rule
(OneR), information gain (IG), chi squared (CHI), and filtered selection (Relief)) to extract
the important attributes, which aims to reduce the data from the original bug reports by
removing noisy or noninformative words. Then, we use imbalanced processing technologies
(i.e., random under-sampling (RUS), random over-sampling (ROS), synthetic minority over-sampling
technique (SMOTE), and cost-matrix adjuster (CMA)) to reduce the imbalance of small-scale and
high-quality training sets obtained after feature selection and instance selection. In our work, we not
only reduced the word dimension of the original training set that improved the quality of training
set, but we also improved the classification ability for identifying the high-impact bug reports with
an imbalanced distribution. Comprehensive experiments have been conducted on public datasets
obtained from real-world bug repositories, and the experimental results indicate that our approach
can efficiently improve the ability to identify high-impact bug reports.

Author Contributions: Data curation, M.W., S.W. and T.L.; Formal analysis, H.L.; Methodology, S.G. and C.G.;
Writing—review and editing, R.C.

Funding: This research was supported by the National Natural Science Foundation of China (grant number.
61902050, 61672122,61602077,61771087,51879027,51579024, and 71831002), Program for Innovative Research Team
in University of Ministry of Education of China (No. IRT 17R13), the Fundamental Research Funds for the
Central Universities (Nos. 3132019501 and 3132019502,JLU), and CERNET Innovation Project (Nos. NGII20181203
and NGII20181205).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1. Classifiers

Many classifiers are used in text categorization. In this section, we mainly introduce the four
classifiers used in our manuscript, which are as follows: naive Bayes(NB), naive Bayes multinomial
(NBM), support vector machine (SVM) and K-nearest neighbors (KNN).

Appendix A.1.1. Naive Bayes

The theory of the naive Bayes classifier: For the given unclassified items, calculate the probability
of each category occurring under the condition of the item occurring and which probability value is
the largest; then, determine which category the classification item belongs to.

Suppose x = {a1, a2, . . . , am} is an unclassified item, and each a is a feature attribute of x;
the category set is C = {y1, y2, . . . , yn}, and the probability that x belongs to each category is
P(y1|x), P(y2|x), . . . , P(yn|x).

If P(yk|x) = max{P(y1|x), P(y2|x), . . . , P(yn|x)}, then x ∈ yk.

Appendix A.1.2. Naive Bayes Multinomial

The polynomial naive Bayes implements the Bayesian algorithm when the discrete features
obey the polynomial distribution. The polynomial distribution is parameterized into a vector
θy = {θy1, yy2, . . . , yyn} . For each class y, the parameter n represents the number of features,
that is, the size of the word vector. θyi indicates that the probability of having P(xi|y) appear for
a feature i in a sample classified as y . The parameter θy is calculated by the smoothed maximum

likelihood estimation method, and the calculation formula is as follows:
∧

θyi =
Nyi+α

Ny+αn , where Nyi is
the number of occurrences of the feature i in the sample belonging to the y class on the training set T ,

Appl. Sci. 2019, 9, 3663 23 of 28

and Ny is the sum of all the features in class y . The smoothing coefficient α ≥ 0 represents a feature
that has not appeared in the training set. If α = 1, it is called Laplace smoothing.

Appendix A.1.3. K-Nearest Neighbors

The K-nearest neighbor algorithm is used to input test data in the case where the data and tags in
the training set are known to compare the features of the test data with the features corresponding
to the training set and to find the top K data whose training set is most similar to the test data. Then,
the category corresponding to the test data is the one with the most occurrences among the K data,
and the description of the algorithm is as follows:

• Calculate the distance between the test data and each training data;
• Sort according to the increasing relationship of distances;
• Select K data points with the smallest distance;
• Determine the frequency of occurrence of the category of the top K data points;
• Return the category with the highest frequency among the top K data points as the prediction

classification of the test data.

Appendix A.1.4. Support Vector Machine

SVM is a supervised learning method. It searches for a classification hyperplane in
high-dimensional space and separates the sample points of different categories to maximize the
interval between different types of points. The classification hyperplane is the classifier corresponding
to the maximum interval hyperplane, called maximum interval classifiers; it can minimize empirical
errors and maximize geometric edges.

Appendix A.2. Feature Selection Algorithm

In this section, we mainly introduce the four feature selection algorithms used in our manuscript,
which are as follows: One Rule(OneR), Information Gain (IG), Chi-square (CHI) and Filtered
Selection (Relief).

Appendix A.2.1. OneR

The basic idea of the OneR algorithm is to select a single attribute for a particular class to maximize
the accuracy of that class. First, assign each value of each attribute to the class with the most occurrences
of that value. Then, calculate the accuracy of the attribute value corresponding to the other classes
Add all the accuracy values to obtain the total accuracy. The OneR algorithm selects those attributes
that have the highest accuracy, as shown in Algorithm A1. C represents the category of the original
training set, A represents all the attributes of the original training set (a is one of the attributes of A),
and s represents the feature extraction range.

Appendix A.2.2. IG

The IG algorithm is often used to assess the quality of features in machine learning. It calculates
the accuracy of the classification algorithm including an attribute and not including an attribute.
The IG assigns a weight to the attribute based on the difference between the two values. In the IG
algorithm, the measure of word importance is mainly to consider how much information the word can
provide for the classification algorithm. The more information it provides, the more important the
word is, as shown in Algorithm A2.

Appl. Sci. 2019, 9, 3663 24 of 28

Algorithm A1 OneR

Input:

C, A, a, s
Output:

P, the new f eatureselectionset

1: P← ∅.
2: For each a in A
3: For each v in a
4: For each c in C
5: X ← numbers(a, v, e)//calculates the number of v that appear in c.
6: end for
7: C(a)← f indmax(X)//find the most frequent category for v.
8: end for
9: end for

10: P← Sort(C(a), s).//sort C(a) and obtain the attribute of the former percent s.
11: Return P

Algorithm A2 IG

Input:

C, A, a, s
Output:

P, the new f eatureselectionset

1: P← ∅.
2: m← categories(C)// categories(C) calculates the category number of C.
3: For each a in A
4: p(a)← appear(C, a)// appear(C, a) means the probability of a appearing in C.
5: p(−a)← noappear(C, a)//noappear(C, a) means the probability that a does not appear in C.
6: For each c in C
7: p(ca)← categories(C, ca)// ca means the categories of C that contain a.
8: P(ca|a) ← probability(ca, a) // probability(ca, a) means the probability that when a

appears, ca appears.
9: P(ca|high − dimensional) ← probability(ca,−a) // probability(ca,-a) means the

probability that when a does not appear, ca appears.
10: end for
11: G(a) = − ∑

a
P (ca) ∗ log P (ca) + P(a) × ∑

a
P(ct |a) log P(ct |a) + P(| − a) ×

∑
a

P(ct| − a) log P(ct ||−a) //calculate the information gain of each a.

12: end for
13: P← Sort(G(a), s) Sort(G(a), s) means to sort G(a) and obtain the attribute of the former percent s.
14: Return P

Appendix A.2.3. CHI

The purpose of the CHI algorithm is to assess the degree of independence between words and
categories. It is actually a common method to test the independence of two words in mathematical
statistics. The basic idea is to verify that the theory is correct by calculating the deviation between the
observed and theoretical values. The larger the calculated CHI value is, the more relevant the attribute
and category, as shown in Algorithm A3. M represents the number of times the words a and c occur
simultaneously; N represents the number of times a appears and c does not occur; J represents the
number of times c appears and a does not appear; and Q represents the number of times a and c are
not present.

Appl. Sci. 2019, 9, 3663 25 of 28

Algorithm A3 CHI

Input:

C, A, a, s
Output:

P, the new f eatureselectionset

1: P← ∅.
2: R← ∅ // R is the chi-squared value set of A.
3: D ← numbers(C)// numbers(C) means the number of C.
4: M, N, J, Q← ∅
5: For each a in A
6: For each c in C
7: M, N, J, Q← values(A, C) //values(A, C) calculates the values of M, N, J, Q, respectively.
8: χ2 (a, c) = D×(M×Q−J×N)

(N+Q)×(M+N)×(J+Q)×(M+J) // calculates the χ2 of a for c.
9: end for

10: R← f indmax(χ2(a, c)) //find the maximum chi-square value of a.
11: end for
12: P← Sort(R, s) //sort R and obtain the attribute of the former percent s.
13: Return P

Appendix A.2.4. Relief

The Relief algorithm is a feature weighting algorithm that assigns different weights according to
the correlation of each feature and category. The features with weights less than a certain threshold
will be removed. The correlation of features and categories in the Relief algorithm is based on the
ability of the features to distinguish between close-range samples. The algorithm randomly selects
a sample R from the training set D and then searches for the nearest neighbor sample H from the
samples of the same type R, called Near Hit. Then, the algorithm finds the nearest neighbor sample
M from the samples of different R types, called near miss, and updates the weight of each feature
according to the following rules. If the distance between R, near hit and a feature is less than the
distance between R and near miss, it indicates that the feature is beneficial for distinguishing the
nearest neighbors of the same type and different classes, and the weight of the feature is increased.
Conversely, if the distance between R, near hit and a feature is greater than the distance between R
and near miss, indicating that the feature has a negative effect on distinguishing the nearest neighbors
of the same class and different class, the weight of the feature is decreased. The above process is
repeated m times, and finally, the average weight of each feature is obtained. The greater the weight
of the feature is, the stronger the classification ability of the feature and the weaker the ability to
classify the feature. The running time of the Relief algorithm increases linearly with the sampling
number of samples m and the number of original features N, so the operating efficiency is very high.
Algorithm A4 introduces the specific steps.

Appl. Sci. 2019, 9, 3663 26 of 28

Algorithm A4 Relief

Input:

training data set D, samples sampling number m, threshold S o f f eature weight
Output:

Weight T o f each f eature

1: Reset all f eature weights to 0, T is an empty set..
2: f or i = 1 to m do
3: Randomly select a sample R;
4: Find the nearest neighbor sample H o f R f rom the same sample set,

and f ind the nearest neighbor sample M f rom di f f erent sample sets;
5: f or A = 1 to N do
6: W(A) = W(A)− di f f (A, R, H)/m + di f f (A, R, M)/m
7: f or A = 1 to N do
8: i f W(A) ≥ S
9: Add the A− th f eature to T

10: end

References

1. Kumaresh, S.; Baskaran, R. Mining software repositories for defect categorization. J. Commun. Softw. Syst.
2015, 11, 31–36. [CrossRef]

2. Bertram, D.; Voida, A.; Greenberg, S.; Walker, R. Communication, collaboration, and bugs: The social nature
of issue tracking in small, collocated teams. In Proceedings of the 2010 ACM Conference on Computer
Supported Cooperative Work, Savannah, GA, USA, 6–10 February 2010; pp. 291–300.

3. Xia, X.; Lo D.; Wang, X.; Zhou, B. Accurate developer recommendation for bug resolution. In Proceedings of
the 2013 20th Working Conference on Reverse Engineering (WCRE), Koblenz, Germany, 14–17 October 2013;
pp. 72–81.

4. Liu, C.; Yang, J.; Tan, L.; Hafiz, M. R2Fix: Automatically generating bug fixes from bug reports. In Proceedings
of the 2013 IEEE Sixth International Conference on Software Testing, Verification and Validation, Luxembourg,
18–22 March 2013; pp. 282–291.

5. Lang, G.; Li, Q.; Guo, L. Discernibility matrix simplification with new attribute dependency functions for
incomplete information systems. Knowl. Inf. Syst. 2013, 37, 611–638. [CrossRef]

6. Guo, S.; Chen, R.; Wei, M.; Li, H.; Liu, Y. Ensemble Data Reduction Techniques and Multi-RSMOTE via
Fuzzy Integral for Bug Report Classification. IEEE Access 2018, 6, 45934–45950. [CrossRef]

7. Zhu, X.; Wu, X. Cost-constrained data acquisition for intelligent data preparation. IEEE Trans. Knowl. Data
Eng. 2005, 17, 1542–1556. [CrossRef]

8. Zhao, H.; Yao, R.; Xu, L.; Yuan, Y.; Li, G.; Deng, W. Study on a novel fault damage degree identification
method using high-order differential mathematical morphology gradient spectrum entropy. Entropy 2018,
20, 682. [CrossRef]

9. Jeong, G.; Kim, S.; Zimmermann, T. Improving bug triage with bug tossing graphs. In Proceedings of the 7th
Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, Amsterdam, The Netherlands, 24–28 August 2009; pp. 111–120.

10. AAnvik, J.; Hiew, L.; Murphy, G.C. Who should fix this bug? In Proceedings of the 28th International
Conference on Software Engineering, Shanghai, China, 20–28 May 2006; ACM: New York, NY, USA, 2006;
pp. 361–370.

11. Deng, W.; Zhao, H.; Zou, L.; Li, G.; Yang, X.; Wu, D. A novel collaborative optimization algorithm in solving
complex optimization problems. Soft Comput. 2017, 21, 4387–4398. [CrossRef]

12. Yang, X.L.; Lo D.; Xia, X.; Huang, Q.; Sun, J.L. High-Impact Bug Report Identification with Imbalanced
Learning Strategies. J. Comput. Sci. Technol. 2017, 32, 181–198. [CrossRef]

13. Naganjaneyulu, S.; Kuppa, M.R.; Mirza, A. An efficient wrapper approach for class imbalance learning using
intelligent under-sampling. Int. J. Artif. Intell. Appl. Smart Dev. 2014, 2, 23–40.

http://dx.doi.org/10.24138/jcomss.v11i1.115
http://dx.doi.org/10.1007/s10115-012-0589-3
http://dx.doi.org/10.1109/ACCESS.2018.2865780
http://dx.doi.org/10.1109/TKDE.2005.176
http://dx.doi.org/10.3390/e20090682
http://dx.doi.org/10.1007/s00500-016-2071-8
http://dx.doi.org/10.1007/s11390-017-1713-3

Appl. Sci. 2019, 9, 3663 27 of 28

14. Cieslak, D.A.; Chawla, N.V. Learning decision trees for unbalanced data. In Proceedings of the Joint
European Conference on Machine Learning and Knowledge Discovery in Databases, Antwerp, Belgium,
14–18 September 2008; pp. 241–256.

15. Chen, R.; Guo, S.; Wang, X.; Zhang, T. Fusion of Multi-RSMOTE with Fuzzy Integral to Classify Bug Reports
with an Imbalanced Severity Distribution. IEEE Trans. Fuzzy Syst. 2019. [CrossRef]

16. He, H.; Garcia, E.A. Learning from Imbalanced Data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284.
17. Mani, I.; Zhang, I. kNN approach to unbalanced data distributions: a case study involving information

extraction. In Proceedings of the Workshop on Learning From Imbalanced Datasets, Washington DC, USA,
21 August 2003; p. 126.

18. Li, H.; Gao, G.; Chen, R.; Ge, X.; Guo, S.; Hao, L. The Influence Ranking for Testers in Bug Tracking Systems.
Int. J. Softw. Eng. Knowl. Eng. 2019, 29, 93–113. [CrossRef]

19. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling
technique. J. Artif. Intell. Res. 2002, 16, 321–357. [CrossRef]

20. Mozilla. Available online: http://Mozilla.apache.org/ (accessed on 3 September 2019).
21. GCC. Available online: http://GCC.apache.org/ (accessed on 3 September 2019).
22. Eclipse. Available online: http://Eclipse.apache.org/ (accessed on 3 September 2019).
23. Jiang, H.; Li, X.; Ren, Z.; Xuan, J.; Jin, Z. Toward Better Summarizing Bug Reports with Crowdsourcing

Elicited Attributes. IEEE Trans. Reliab. 2019, 68, 2–22. [CrossRef]
24. Anvik, J. Evaluating an assistant for creating bug report assignment recommenders. Workshop Eng. Comput.

Hum. Interact. Recomm. Syst. 2016, 1705, 26–39.
25. Ai, J.; Su, Z.; Li, Y.; Wu, C. Link prediction based on a spatial distribution model with fuzzy link importance.

Phys. A Stat. Mech. Appl. 2019, 527, 121155. [CrossRef]
26. Deng, W.; Xu, J.; Zhao, H. An improved ant colony optimization algorithm based on hybrid strategies for

scheduling problem. IEEE Access 2019, 7, 20281–20292. [CrossRef]
27. Antoniol, G.; Ayari, K.; Di Penta, M.; Khomh, F.; Guéhéneuc, Y.G. Is it a bug or an enhancement?: A text-based

approach to classify change requests. In Proceedings of the CASCON 2008, 18th Annual International
Conference on Computer Science and Software Engineering, Conference of the Centre for Advanced Studies
on Collaborative Research, Richmond Hill, ON, Canada, 27–30 October 2008.

28. MMenzies, T.; Marcus, A. Automated severity assessment of software defect reports. In Proceedings of the
2008 IEEE International Conference on Software Maintenance, Beijing, China, 28 September–4 October 2008;
pp. 346–355.

29. Tian, Y.; Lo D.; Sun, C. DRONE: Predicting Priority of Reported Bugs by Multi-factor Analysis. In Proceedings
of the 2013 IEEE International Conference on Software Maintenance, Eindhoven, The Netherlands,
22–28 September 2013; pp. 200–209.

30. Hooimeijer, P.; Weimer, W. Modeling bug report quality. In Proceedings of the Twenty-Second IEEE/ACM
International Conference on Automated Software Engineering, Atlanta, GA, USA, 5–9 November 2007;
pp. 34–43.

31. Runeson, P.; Alexandersson, M.; Nyholm, O. Detection of Duplicate Defect Reports Using Natural Language
Processing. In Proceedings of the 29th International Conference on Software Engineering, Washington, DC,
USA, 20–26 May 2007; pp. 499–510.

32. Sun, C.; Lo D.; Wang, X.; Jiang, J.; Khoo, S.C. A discriminative model approach for accurate duplicate bug
report retrieval. In Proceedings of the 32nd ACM/IEEE International Conference on Software, Cape Town,
South Africa, 1–8 May 2010; pp. 45–54.

33. Sun, C.; Lo D.; Khoo, S.C.; Jiang, J. Towards more accurate retrieval of duplicate bug reports. In Proceedings
of the 2011 26th IEEE/ACM International Conference on Automated Software Engineering, Washington,
DC, USA, 6–10 November 2011; pp. 253–262.

34. Xia, X.; Lo D.; Wen, M.; Shihab, E.; Zhou, B. An empirical study of bug report field reassignment.
In Proceedings of the 2014 Software Evolution Week—IEEE Conference on Software Maintenance,
Reengineering, and Reverse Engineering (CSMR-WCRE), Antwerp, Belgium, 3–6 February 2014; pp. 174–183.

35. Zhang, T.; Chen, J.; Yang, G.; Lee, B.; Luo, X. Towards more accurate severity prediction and fixer
recommendation of software bugs. J. Syst. Softw. 2016, 117, 166–184. [CrossRef]

36. Feng, Y.; Chen, Z.; Jones, J.A.; Fang, C.; Xu, B. Test report prioritization to assist crowdsourced
testing. In Proceedings of the 10th Joint Meeting of the European Software Engineering Conference

http://dx.doi.org/10.1109/TFUZZ.2019.2899809
http://dx.doi.org/10.1142/S0218194019500050
http://dx.doi.org/10.1613/jair.953
http://Mozilla.apache.org/
http://GCC.apache.org/
http://Eclipse.apache.org/
http://dx.doi.org/10.1109/TR.2018.2873427
http://dx.doi.org/10.1016/j.physa.2019.121155
http://dx.doi.org/10.1109/ACCESS.2019.2897580
http://dx.doi.org/10.1016/j.jss.2016.02.034

Appl. Sci. 2019, 9, 3663 28 of 28

and the ACM SIGSOFT Symposium on the Foundations of Software Engineering, Bergamo,
Italy, 30 August–4 September 2015; pp. 225–236.

37. Feng, Y.; Jones, J.A.; Chen, Z.; Fang, C. Multi-objective test report prioritization using image understanding.
In Proceedings of the 2016 31st IEEE/ACM International Conference on Automated Software Engineering
(ASE), Singapore, 3–7 September 2016; pp. 202–213.

38. Wang, J.; Cui, Q.; Wang, Q.; Wang, S. Towards Effectively Test Report Classification to Assist Crowdsourced
Testing. In Proceedings of the 10th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, Ciudad Real, Spain, 8–9 September 2016.

39. Wang, J.; Wang, S.; Cui, Q.; Wang, Q. Local-based active classification of test report to assist crowdsourced
testing. In Proceedings of the 2016 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE), Singapore, 3–7 September 2016; pp. 190–201.

40. Cubranic, D.; Murphy, G.C. Automatic bug triage using text categorization. In Proceedings of the SEKE
2004: Sixteenth International Conference on Software Engineering & Knowledge Engineering 2004, Banff,
AB, Canada, 20–24 June 2004; pp. 92–97.

41. Xuan, J.; Jiang, H.; Ren, Z.; Yan, J.; Luo, Z. Automatic bug triage using semi-supervised text classification.
In Proceedings of 22nd International Conference on Software Engineering and Knowledge Engineering
(SEKE 2010), Redwood City, San Francisco Bay, CA, USA, 1–3 July 2010; pp. 209–214.

42. Zhao, H.; Zheng, J.; Xu, J.; Deng, W. Fault diagnosis method based on principal component analysis and
broad learning system. IEEE Access 2019. [CrossRef]

43. Bettenburg, N.; Just, S.; Schröter, A.; Weiss, C.; Premraj, R.; Zimmermann, T. What makes a good bug report.
In Proceedings of the SIGSOFT 2008/FSE-16, 16th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, Atlanta, GA, USA, 9–15 November 2008; pp. 308–318.

44. Gao, K.; Khoshgoftaar, T.M.; Seliya, N. Predicting high-risk program modules by selecting the right software
measurements. Softw. Qual. J. 2012, 20, 3–42. [CrossRef]

45. Deng, W.; Zhao, H.; Yang, X.; Xiong, J.; Sun, M.; Li, B. Study on an improved adaptive PSO algorithm for
solving multi-objective gate assignment. Appl. Soft Comput. 2017, 59, 288–302. [CrossRef]

46. Xuan, J.; Jiang, H.; Hu, Y.; Ren, Z.; Zou, W.; Luo, Z.; Wu, X. Towards Effective Bug Triage with Software Data
Reduction Techniques. IEEE Trans. Knowl. Data Eng. 2015, 27, 264–280. [CrossRef]

47. Xuan, J.; Jiang, H.; Zhang, H.; Ren, Z. Developer recommendation on bug commenting: a ranking approach
for the developer crowd. Sci. China Ser. Inf. Sci. 2017, 60, 072105. [CrossRef]

48. Liu, S.; Hou, H.; Li, X. Feature Selection Method Based on Genetic and Simulated Annealing Algorithm.
Comput. Eng. 2005, 31, 157–159.

49. Jiang, H.; Nie, L.; Sun, Z.; Ren, Z.; Kong, W.; Zhang, T.; Luo, X. Rosf: Leveraging information retrieval and
supervised learning for recommending code snippets. IEEE Trans. Serv. Comput. 2016, 12, 34–46. [CrossRef]

50. Huang, G. An Insight into Extreme Learning Machines: Random Neurons, Random Features and Kernels.
Cogn. Comput. 2014, 6, 376–390. [CrossRef]

51. Guo, S.; Chen, R.; Li, H.; Zhang, T.; Liu, Y. Identify Severity Bug Report with Distribution Imbalance by
CR-SMOTE and ELM. Int. J. Softw. Eng. Knowl. Eng. 2019, 29, 139–175. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ACCESS.2019.2929094
http://dx.doi.org/10.1007/s11219-011-9132-0
http://dx.doi.org/10.1016/j.asoc.2017.06.004
http://dx.doi.org/10.1109/TKDE.2014.2324590
http://dx.doi.org/10.1007/s11432-015-0582-8
http://dx.doi.org/10.1109/TSC.2016.2592909
http://dx.doi.org/10.1007/s12559-014-9255-2
http://dx.doi.org/10.1142/S0218194019500074
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background Knowledge and Motivation
	Methodology
	Overview
	DRG Algorithm
	Reduction Algorithm (GA)
	GA(FS+IS) Algorithm
	Fitness Function
	Feature Selection Approach

	Experimental Design
	Experimental Datasets
	Experimental Parameter Setting
	Evaluation Metrics

	Experimental Results
	RQ1:What Are the Better Classification Results for the Reduced Datasets and the Unreduced Datasets?
	RQ2: How Does the Order of the Feature Selection and Instance Selection on the Datasets Impact the Experimental Performance?
	RQ3: What Is the Effect of the Balance Processing and Reduction Denoising Order on the Experimental Results?

	Conclusions
	
	Classifiers
	Naive Bayes
	Naive Bayes Multinomial
	K-Nearest Neighbors
	Support Vector Machine

	Feature Selection Algorithm
	OneR
	IG
	CHI
	Relief

	References

