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Featured Application: This work is applicable in computer science, software engineering and
computational linguistic specifically in natural language processing.

Abstract: Deep learning has extensively been used in natural language processing with sub-word
representation vectors playing a critical role. However, this cannot be said of Swahili, which is a
low resource and widely spoken language in East and Central Africa. This study proposed novel
word embeddings from syllable embeddings (WEFSE) for Swahili to address the concern of word
representation for agglutinative and syllabic-based languages. Inspired by the learning methodology
of Swahili in beginner classes, we encoded respective syllables instead of characters, character n-grams
or morphemes of words and generated quality word embeddings using a convolutional neural
network. The quality of WEFSE was demonstrated by the state-of-art results in the syllable-aware
language model on both the small dataset (31.229 perplexity value) and the medium dataset (45.859
perplexity value), outperforming character-aware language models. We further evaluated the word
embeddings using word analogy task. To the best of our knowledge, syllabic alphabets have not been
used to compose the word representation vectors. Therefore, the main contributions of the study are
a syllabic alphabet, WEFSE, a syllabic-aware language model and a word analogy dataset for Swahili.

Keywords: syllabic alphabet; word representation vectors; deep learning; syllable-aware language
model; perplexity; word analogy

1. Introduction

Natural language processing (NLP) relies on word embeddings as input for machine learning or
deep learning algorithms. For decades, NLP solutions were restricted to machine learning approaches
that trained on handcrafted, high dimensional and sparse features [1]. Nowadays, the trend is neural
networks [2], which use dense vector representations. Hence, the superior results on NLP tasks is
attributed to word embeddings [3,4] and deep learning methods [5]. Therefore, as observed by the
authors of [6–9], improved performance of downstream NLP tasks is achieved by learning vector
representation of words in language models. Quality word vectors are expected to capture syntactic
and semantic similarities among words by addressing the similarities in surface form of words and
the context [8]. This has motivated the transition from the conventional one-hot word representation
to word representation [10] based on words and sub-word information (characters and morphemes).
Despite Mikolov et al.’s [4] contribution of distributed word representation, the urge for even better
word representation has led to composition of word embeddings from sub-word information such as
characters [8,11,12], character n-gram [13] and morphemes [7,14,15].
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However, with all these developments, deep learning is yet to be utilized in processing low
resource languages [16,17], particularly the syllabic based languages, such as Swahili, Xhosa, Luhya,
Shona, Kikuyu and Mijikenda. In fact, the East Africa integration initiative by the respective countries
has encountered language barrier as a challenge in the quest for a common language [18], a problem
that could be overcome by automated language systems. A probable solution is automating Swahili
using deep learning models that can learn its syllabic alphabet to effectively represent the Swahili
words, which are highly agglutinative [19]. To the best of our knowledge, no study has considered
learning word representation from constituent syllables of words in syllabic-based languages. We are
inspired by the Swahili language teaching methodology, which first introduces syllables, then
two-syllable words, and lastly complex words and sentences [20]. For this reason, we propose
syllabic based word embeddings (WEFSE) to match Swahili’s complex word morphology, as opposed
to using characters or morphemes. This study generated word embeddings from syllable embeddings
(WEFSE) but differently from Assylbekov et al. [21], who used an external hyphenator to segment
the words into syllables. We hypothesize that learning word representations from syllabic alphabets
captures both semantic meaning of words and handles new words. We attribute this to the fact that the
syllables in Swahili are the smallest meaningful semantic unit and are a subset of the morphemes [22].
Consider the following Swahili verbs:

1. anapojitakia (when he/she wants it for himself/herself);
2. aliandika (he wrote); and
3. atakikamata (he will catch it).

From these examples we note that Swahili is highly agglutinative, as it starts with a root word
and creates a new word by adding syllables such as “a”, “na”, “po”, “ji”, “ki”, “li", “ndi”, “ka”, “ta”
and “ma”. This indicates that the ultimate meaning of the verb anapojitakia is a culmination of the
subject prefix (“a”), tense prefix (“na”), relative prefix (“po”), object prefix (“ji”), root (“taka”) and
extension (“ia”). The position of each syllable in the word also bears syntactic and semantic meaning.
For example, the second syllable “na”, “li” and “ta” in Examples 1, 2 and 3 connote present, past
and future tenses, respectively. Intuitively, words with the same syllables have a similar context.
The study’s objective was to effectively represent Swahili words by capturing the compositional and
contextual aspects.

There is a trend in NLP of optimizing performance of downstream tasks through high quality
vectors for word representation [6,23]. Classical language models [23] use contextual word information
from a large corpus to generate word embeddings, however these models were deficient in representing
rare words and new words [24]. This led to compositional models, in particular, character-aware
models [6,8,11–13,25,26] aimed at mitigating the data sparsity problem. Although these models
address the rare word problem, characters carry no inherent semantic meaning. Alternatively, the
compositional models based on morphemes [7,14,15,27–29] address the semantic meaning deficiency
in character models. However, external fragmentation of words into morphemes propagate errors
into the models, affecting the quality of the word embeddings [29]. Our work is similar to those of
Assylbekov et al., Yu et al. and Mikolov et al. [9,21,30] on the basis of learning syllable and word
representation. However, we utilized a defined syllabic alphabet instead of an external hyphenation
algorithm to divide the words into syllables, which we hypothesize that may introduce errors.

The architecture of our model resembles that of Assylbekov et al. [21]. Both models apply a
convolutional neural network [31] to extract features and compose the word embeddings, a highway
network [32] to model interactions among the syllables and finally a recurrent neural network language
model [3]. Our model is different in terms of how the words are encoded to syllables. It takes syllables
as input and then extracts feature maps using a convolutional neural network to form the word
embeddings. Then, the language model, which is made of a long short term memory [33], predicts
the target words given the contextual words. The model has the potential to generalize unseen
words and apply existing knowledge on new words because it is learning from a standard finite
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syllabic alphabet, which is the basis of all Swahili words. We chose Swahili as the main language
for the experiments because of its syllabic structure, agglutinative and polysemous features, and its
popularity in East and Central Africa [17,19]. For comparison purposes, we performed experiments
on Xhosa and Shona, which are syllabic but with limited scope. The quality of the generated word
embeddings (WEFSE) is demonstrated by the perplexity values of the syllable-aware language model
on both small and medium datasets developed by Gelas et al. [34]. The perplexity values are very
competitive with the existing state-of-the-art models and outperform the character-aware counterparts.
We further evaluated our word embeddings using the word analogy task to verify the quality of the
word embeddings.

The main contributions of our study are as follows:

1. syllable alphabet;
2. word embeddings from syllable embeddings (WEFSE) (to the best of our knowledge, the first

attempt to use syllabic alphabet);
3. syllable-aware language model; and
4. Swahili word analogy dataset.

The remaining sections of the paper are organized as follows. Section 2 discusses the Swahili
language structure and introduces the syllabic alphabet. Section 3 reviews the previous works and
Section 4 provides the details of the proposed model. We outline the experiments in Section 5 and
discuss results and word analogy task in Section 6. We conclude in Section 7 and provide more details
of the experiments in the Appendix A.

2. Swahili Language Structure

Swahili is one of the Bantu languages widely spoken in East and Central Africa, with two main
dialects being Unguja (which is spoken in Zanzibar) and Mvita (which spoken in Mombasa) [35].
It is influenced by languages such as Arabic, Persian, German, Portuguese, English and French [35].
This explains the presence of a couple of loan words such as shukrani (thanks) and polisi (police).
Swahili is also very contextual with high agglutinative and polysemous features [19,36]. The following
two sentences demonstrate the polysemy feature of the word panda:

1. Walimuua ndege kwa panda (they killed a bird using a catapult); and
2. Walipanda mti (they climbed a tree or they planted a tree).

The Swahili morphology depends on prefixes and suffixes, which are syllables. It has a large noun
class system with distinctive singular and plural forms [37], which is achieved by using syllable pairs,
for example, mtu (person) and watu (people), or kitabu (book) and vitabu (books). In fact, Ng’ang’a [38]
observed that synthetic and functional information can be derived from these connotation bearing
affixes attached to nouns. However, verbs, pronouns, adjectives and demonstrations must match
with the noun class to guarantee effective Swahili communication. In addition, Swahili verbs are very
agglutinative, and may consist of subject, tense, relative and object prefixes in addition to roots and
extensions. The following list provides a few examples of the verbal agglutinative components:

• subject prefix: a, m, ni, wa, tu, si, hatu;
• tense prefix: na, ta, li, me, ngeli, ja, singali;
• relative: po, ko, o, cho, mo, yo, vyo, lo;
• object prefix: wa, ni, ji, ku, i, ya, vi, zi;
• root: sema, kuja, ahidi, acha, aga, ajiri; and
• extension: ia, iwa, lia, shwa, ana, isha, kia.

Swahili Syllabic Alphabet

This section briefly introduces the finite Swahili syllabic alphabet, which forms the basis of all
Swahili words. Swahili uses the English alphabet letters with the exception of x and q. The vowels a, e,
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i, o, and u count as syllables and constitute the smallest syllabic unit [35]. Swahili syllables are derived
from vowels and consonants of the alphabet, with a syllable normally consisting of a vowel preceded
by one to three consonants. In special cases, the syllable is a single vowel or consonant. For example, in
the words mtu (person) and anakula (he is eating), the starting letters “m” and “a” are special syllables.
It is imperative that the position of the syllable in a word be preserved to maintain the syntactic and
functional information. The following are the rules for Swahili syllabification [35,39]:

1. a consonant or a vowel preceded by a vowel is the start of a syllable;
2. a consonant (other than a semi-vowel) preceded by a consonant is the start of a syllable (for n, m

and loan words);
3. all syllables end at the beginning of the next syllable or at the end of the word;
4. where a pre-consonantal nasal functions as a syllabic peak, a syllable is formed by a combination

of two sounds;
5. a cluster of a consonant and a semi-vowel together with a vowel can also form a syllable; and
6. a segment of clusters of three with a vowel can form a syllable.

To derive the syllabic alphabet, we apply the above rules, appropriately combine the consonants
with the vowels based on the list of letters provided by Masengo [40] and add the list of special
syllables. It is important to note that new words or loan words can be generated from the alphabet.
For example, before a proper Swahili word for television (runinga) was coined, it was and is still
referred to as televisheni whose syllables can be found in the alphabet.

Table 1 outlines the Swahili syllabic alphabet.

Table 1. The Swahili syllabic alphabet.

mbwa mbwe mbwi ndwa ndwe ndwi ngwa ngwe ngwi njwa njwe njwi nywa
nywe shwa shwe shwi chwa chwe chwi pwa pwe pwi pwo swa swe
swi twa twe twi zwa zwe zwi cha che chi cho chu dha
dhe dhi dho dhu gha ghe ghi gho ghu kha khe kho khu
mba mbe mbi mbo mbu nda nde ndi ndo ndu nga nge ngi
ngo ngu ng’a ng’e ng’o nja nje nji njo nju nya nye nyi
nyo nyu sha she shi sho shu tha the thi tho thu vya
vye vyo bwa bwe bwi gwa gwe gwi jwa jwe jwi kwa kwe
kwi lwa lwe lwi mwa mwe mwi nza nze nzi nzo nzu ba
be bi bo bu da de di do du fa fe fi fo
fu ga ge gi go gu ha he hi ho hu ja je
ji jo ju ka ke ki ko ku la le li lo lu

ma me mi mo mu na ne ni no nu pa pe pi
po pu ra re ri ro ru sa se si so su ta
te ti to tu va ve vi vo vu wa we wi wo

wu ya ye yi yo yu vu za ze zi zo zu a
e i o u b d f k m n s – –

3. Related Work

In this section, we outline the previous works on Swahili and those that are in context with deep
learning methods and word representation for NLP.

3.1. Swahili Natural Language Processing

Efforts have been made to include Swahili among the automated languages in NLP. Most of the
works are characterized by morphological analysis to resolve ambiguity. Hurskainen [41] performed a
morphological analysis of Swahili using Constraint Grammar Parser while De Pauw et al. [36] used a
data-driven approach for morphological analysis of Swahili. The resultant lemma was used to compile
a corpus-based dictionary. Early experiments on English–Swahili translation were presented by
De Pauw et al. [17] who used GIZA++ to carry out word alignment. Elwell [22] attempted to leverage
the Swahili verbal mono-syllabicity morphemes with Naive Bayes algorithm for morphological
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analysis. A breakthrough in automating Swahili occurred when the university of Helsinki developed
both unannotated and annotated Swahili corpora that have been used for NLP tasks. Ng’ang’a [38]
used the corpus to present an automatic lexical acquisition method that learns semantic properties of
Swahili words by the self organizing Map algorithm. Earlier, De Pauw et al. [42] had used data-driven
taggers for part-of-speech tagging on the annotated Helsinki corpus. It should be noted that most
of these works employed the inferior machine learning algorithms when compared to deep learning
algorithms [1].

3.2. Deep Learning

Deep learning [5] has been adopted for processing in various fields including sensor drifting
because of its robustness [43]. These fields include NLP which has witnessed development from
handcrafted features in traditional approaches to machine learning and deep learning techniques.
According to Hassan and Mahmood [44], trained linear classifiers and n-gram models treat words as
atomic units; these models cannot share parameters and suffer from data sparsity. Artificial neural
networks [2] are designed to offer solutions to the limitations of the classical models. Bengio et al. [23]
proposed statistical language models where feed-forward neural networks had fixed length context.
According to Mikolov et al. [3], statistical models are limited because of the limited context, hence the
need for models that can implicitly encode temporal information for contexts with arbitrary length. It is
now common for NLP applications to employ deep neural networks [45] to learn word representations
using language models [44]. The language models could comprise of recurrent neural networks
(RNNs) [46] and/or convolutional neural networks (CNNs) [31].

RNNs are popular with sequential text processing because of their capability to capture and
preserve superior and appropriate statistics in a fixed-sized hidden layer. However, the long short term
memory (LSTM) [33] was introduced because RNNs only consider recent words. The need to consider
past and future information during text processing informed the development of bi-directional long
short term memory (Bi-LSTM) [47]. Afterwards, Srivastava et al. [32] proposed the highway networks
that have similar memory cells to the LSTM but can allow training of deeper networks by carrying
some input directly to the output. Recently, convolutional neural networks have found their way into
NLP though they were initially designed for computer vision [48]. This is motivated by the CNN’s
ability to extract high quality features, leading to CNN models posting significant results in sentiment
analysis [49], parsing [50], search query retrieval [51] and part-of-speech tagging [52]. The recent trend
is to combine the strengths of the CNN and the RNN to design superior models for NLP [21,44,49,53].

3.3. Word Representation

Learning word embeddings for frequent words is sufficiently handled by word representation
models such as word2vec [24] and Glove [54]. However, these models are deficient in representing
rare words because they rely on context in the corpus, hence the emergence of compositional models
where word representation vectors are generated from sub-word units such as characters, character
n-gram, morphemes and syllable-like units. Table 2 provides a summary of these compositional
models. The character-aware language models, although effective in handling the rare and new words,
inadequately capture semantic meaning of words because characters carry no semantic meaning.
The morpheme based models and models using syllable-like units take care of semantic meaning in
the word representation but the external segmentation algorithms introduce errors in the models [29].
Our proposed model uses a finite syllabic alphabet to resolve the problem of segmentation errors.
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Table 2. The various compositional models for word representation.

Subword Model Study

Morphemes
– Lazaridou et al. [14]

Morphological RNNs Luong et al., 2013 [27]
Morph2Vec Ustun et al., 2018 [29]

Characters C2W Ling et al., 2015 [8]
LSTM-char Kim et al., 2016 [11]

Word + Morpheme Morph-LBL Cotterell et al., 2015 [55]
MorphemeCBOW Qiu et al., 2014 [28]

Syllable-like
– Yu et al., 2017 [30]

LSTM-syl Assylbekov et al., 2017 [21]
Subword RNN Mikolov et al., 2012 [9]

n-gram
Charagram Weiting et al., 2016 [26]

Fasttext Bojanowski et al., 2017 [13]
– Grave et al., 2018 [56]

Word + Characters CWE Chen et al., 2015 [12]
Bi-LSTM/CNN Heigold et al., 2017 [57]

Characters + Morphemes Char2Vec Cao and Rei, 2016 [15]

Word, characters, Trigrams Bi-LSTM Vania and Lopez, 2017 [25]

4. The Proposed Model (WEFSE)

We present WEFSE architecture that comprises of a single layer of convolutional neural network
and a highway network. We further outline the syllable-aware language model. Generally, we compose
the word representation vectors from syllables such that the representation of a word w is given by:

w = f (Ss, σ(s)) (1)

where σ is the embedding function that looks up for syllable, stacks and returns a sequence of syllables
of a word; Ss is a parameter matrix representing the vocabulary of syllables; and f is a convolutional
function used to compose the word embeddings by taking σ(s) and Ss as input.

4.1. WEFSE

WEFSE uses a convolutional function to compose word representation vectors from the constituent
syllable embeddings. As illustrated in Figure 1, the model has a highway network for processing
the interaction among the syllables. With a slight modification of the work by Assylbekov et al. [21],
a word k that comes in as input is decomposed into a sequence of syllables by looking up the syllables
from a finite syllabic alphabet. That is, with the definite syllable alphabet S, the input word k is split
into a sequence of syllables s1...sl where l is the length of k:

k = [s1, ..., sl ]. (2)

Given S as a finite vocabulary of syllables and si ∈ S, the index of si is defined as a one-hot vector
1si ∈ R|S|×1, |S| being the size of the syllable vocabulary. We define a projection layer Ps ∈ Rd×|S|,
where d is the dimension of parameters for each syllable. The embedding for each syllable is therefore
obtained as:

Esi = Ps.1si ∈ Rd×1 (3)

The composed word embeddings Ew from the syllable embeddings Esi are given by:

Ew = [Es1 , ..., Esl ]. (4)
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Figure 1. The Architecture of WEFSE demonstrating how the Swahili word alikuja is split into its
respective syllables and subsequent composition of the embeddings. The convolutional layer provides
the composition function to generate the word embeddings.

4.1.1. Convolutional Neural Network

With s1....sl being the sequence of syllables of a word k, then the syllable-level representation of k
is given by the matrix Sk = [Es1 , .., Esl ] ∈ Rd×l where l is the length of word k, ith column corresponds
to the syllable embedding for Si. We then apply a narrow convolution between Sk and F ∈ Rd×n of
width n resulting into a feature map f k ∈ Rl−n+1 and then add a bias. That is, the ith element of f k is
computed as follows:

f k[i] = tanh(〈Sk[∗, i : i + n− 1], F〉 + b) (5)

where 〈A, B〉 = Tr(ABT) is the Frobenius inner product while b is the bias. With filters of varying
width, we compute max-over-time of each feature map as follows:

yk = maxi f k[i]. (6)

We then derive the word embeddings by concatenating the feature map as follows:

wt = [yk
1, .., yk

h] (7)

where h is the number of filters applied.

4.1.2. Highway Network

This layer is responsible for processing the interactions between the sequence of syllables.
The highway layer allows some dimensions of the word embeddings wt to be carried or transformed.
Typically, the highway layer performs the following:

z = t ◦ g(WHy + bH) + (1− t) ◦ y (8)

where g is a non-linearity, t = σ(WTy + bT) is the transform gate and (1− t) is the carry gate with WT
and WH being square matrices.
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4.2. Syllable-Aware Language Model

We adopt Vania and Lopez’s [25] version of the language model that uses finite output vocabulary.
This enables us to properly compare language models using the perplexity values because they provide
similar event spaces. Figure 2 illustrates the architecture of our language model that employs the
LSTM, a variant of the recurrent neural network language model of Mikolov et al. [3]. The language
model uses the generated word embeddings from syllable embeddings to make predictions of a target
word, hence the name syllable-aware. Given a sequence of words w1:t = w1, ..., wt and wt ∈ V where
V is a finite vocabulary set, we compute:

P(w1, ..wt) =
T

∏
t=1

P(yt|w1:t−1) (9)

where yt = wt if wt is in the output vocabulary and yt = UNK otherwise. We report the perplexity,
that is, the geometry average as:

Perplexity =
1

∏T
t=1 P(yt|w1:t−1)

(10)

The training in the language model involves minimizing the negative log-likelihood (NLL) of the
sequence, which is given by:

NLL = −
T

∑
t=1

log P(yt|w1:t−1) (11)

Figure 2. The syllable-aware language model architecture. The model demonstrates prediction of the
next word asubuhi from its context.

In particular, with the LSTM, once we have generated the word embeddings w1:t for a sequence
of words, we produce a sequence of states h1:t and then predict the next word accordingly using the
following equations:

ht = LSTM(wt, ht−1) (12)

P(yt+1|y1:t) = So f tmax(VT .ht) (13)

where wt is the word representation, ht−1 is the previous state, yt+1 is the predicted target word, y1:t
are the context words and V is the weight matrix.
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Note that the softmax is a d × V table, which encodes the likelihood of every word type in a given
context and V is from a finite output vocabulary. The LSTM uses xt = wt, ht−1, ct−1 to determine ht

as follows:

it = σ(Wixt + Uiht−1 + bi)

ft = σ(W f xt + U f ht−1 + b f )

ot = σ(Woxt + Uoht−1 + bo)

gt = tanh(Wgxt + Ught−1 + bg)

ct = ft ◦ ct−1 + it ◦ gt

ht = ot ◦ tanh(ct)

(14)

where σ, tanh and ◦ are element-wise sigmoid, hyperbolic tangent and multiplication functions,
respectively. it, ft and ot are the input, forget and output gates, respectively.

5. Experiments

We carried out various experiments to demonstrate the quality of the word embeddings
from syllable embeddings. We hereby describe the experimental setup, datasets, baselines and
training employed.

5.1. Datasets

We used Swahili, Xhosa and Shona datasets in the experiments. For Swahili, we used data
collected from online newspapers by Gelas et al. [34], which contain 28 million unique words whose
scope includes sports, general news, religion and family life. The dataset was already partitioned
into training, development and test data. However, following Kim et al.’s [11] approach, we created
small and medium datasets containing 28,000 and 514,000 unique words, respectively, for appropriate
comparison with other prior experiments. We obtained the small dataset by partitioning the provided
training data into train, development and test sets in the ratio 70:10:20, respectively, using a text
editor. For the medium dataset, we used the training, development and test data as provided by the
authors. The raw Xhosa https://github.com/godlytalias/Bible-Database/tree/master/Xhosa and
Shona https://github.com/teusbenschop/shona data were collected from respective online religious
materials, which limited the context of the data. This was meant to test the effect of the scope of data
to the quality of the embeddings [56]. We also partitioned the Xhosa and Shona datasets following
the method applied to obtain the small Swahili dataset. We then preprocessed Swahili, Xhosa and
Shona datasets by lowercasing, removing punctuation and incorporating the start and end of sentence
markers, as well as replacing singletons with <unk> for uniformity with prior works, although syllables
are capable of handling out of vocabulary words. Table 3 provides the summary of the datasets.

Table 3. The various datasets used in this study. The partition sizes are presented as k and M for
thousand and million words, respectively.

Dataset Unique Words Train Development Test

Swahili (small) 28 k 6.84 M 970 k 2 M
Swahili (medium) 514 k 204 M 1.8 M 1.09 M

Xhosa 24 k 2.25 M 321 k 642 k
Shona 22 k 2.7 M 385 k 771 k

5.2. Baselines

We benchmarked the quality of WEFSE on the works of Assylbekov et al. [21] and Vania and
Lopez [25]. Assylbekov et al. [21] carried out experiments using various models (sum, concatenate and
convolutional neural network) to demonstrate the performance of syllable-like units in various models.

https://github.com/godlytalias/Bible-Database/tree/master/Xhosa
https://github.com/teusbenschop/shona
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We trained Swahili on these models using both the applied external hyphenator algorithm and our
finite syllabic alphabet. These experiments informed us on the model to adopt for our composition
function. We used the work of Vania and Lopez [25] to compare how syllables from a finite alphabet
could perform against characters and character trigrams. In addition to this, we tested whether the
syllables could post good results when bi-directional LSTM is used as the composition function; we
report the results of the baseline experiments in Table 4.

5.3. Experimental Setup

We carried out our experiments using the Tensorflow framework with the dimensions of character,
syllable and word embeddings set to 200, 200 and 300, respectively. The baseline experiments
adopted the experiment settings of the respective works. The various datasets were placed in
respective sub-folders and stored in a common folder named data. Similar to Vania and Lopez
[25] and for comparison purposes, we set the maximum output vocabulary to most frequent 5000
training words. We implemented the LSTM with hidden units of size 200 and adopted the settings of
Assylbekov et al. [21] for the convolutional neural and highway networks; the details are provided in
the Appendix A.

5.4. Training

The choices made for optimization were guided by the works of Zaremba et al., Assylbekov et al.,
Kim et al., and Vania and Lopez [11,21,25,58]. We applied varying optimization settings for the small
and medium Swahili datasets with the small dataset running a batch size of 20 for 25 epochs and
the medium dataset using 100 and 15 for batch size and number of epochs, respectively. For the
convolutional layer, the features per width and convolutional dimension were set the same as
Assylbekov et al. [21]. We trained by truncated back propagation through time, propagating at
35 time steps using stochastic gradient descent [59]. The learning rate began at 1.0 and was reduced to
half if the validation perplexity did not decrease by 0.1 after three epochs [25]. Following Kim et al. [11],
we randomly initialized the model parameters over a uniform distribution [−0.05, 0.05] and applied
regularization through dropout with probability of 0.5 on the LSTM input-to-hidden layers and
hidden-to-output softmax layer. However, we did not use dropout on the initial highway to the LSTM
layer.

6. Results and Discussion

In this section we report and explain the results from the baseline experiments and our model.
The quality of the word embeddings is informed by low perplexity values of the language models.

6.1. Baseline Results

We performed two baseline experiments to assess the quality of WEFSE. Assylbekov et al. [21]
composed word embeddings from syllable-like units using sum, concatenation (concat) and
convolutional neural network (cnn) models. These models provided us with a platform to assess
our word embeddings (WEFSE) by comparing the quality of word embeddings generated from finite
syllables and syllable-like units. Therefore, we ran the small Swahili dataset on the models using
syllables from both the syllabic alphabet and an external hyphenator. The results of these experiments
are reported in Table 4 where the LSTM-syl (cnn) model outperforms the LSTM-syl (sum) and LSTM-syl
(concat) models for both the syllables from the hyphenator and our syllables. This is attributed to the
ability of convolutional neural networks to extract quality syllable features that are used to compose
the word embeddings. However, the syllable-like units outperform our syllables across the models
though the results are competitive to state-of-art models. Note the number of unique syllables in
the scenarios; the hyphenator generates 18,440 unique syllables compared to 210 from our syllabic
alphabet for the same dataset. This demonstrates that syllable-like units are random combinations of
characters that do not carry any semantic meaning. According to Ustun et al. [29], quality embeddings
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are composed from meaningful sub-word units. We resolved to use the CNN for our model based on
this baseline experiment.

The work of Vania and Lopez [25], in which words, characters, character trigrams and morphemes
are used to compose word embeddings using bi-directional LSTM and add functions, offered another
benchmark for our WEFSE. However, we did not experiment on the morphemes or the add function
because of the need for an external segmenter and the earlier baseline experiment which had used
sum function. The objective was to assess our WEFSE on a bi-directional LSTM as a composition
function and compare the performance of syllables to characters and trigrams. Again, we carried out
the experiments using the small Swahili dataset and the results are outlined in Table 4. The syllable
model outperforms the character-aware counterpart negating the conclusion by Assylbekov et al. [21]
that characters are superior to syllables. However, the trigrams outperform both character-aware and
syllable-aware models, even though they possess no semantic meaning. Generally, the two baselines
experiments demonstrated the superiority of CNNs over bi-directional LSTMs in the extraction of
quality features for NLP tasks. However, a compositional model combining the two functions is worth
exploring and we leave it for future consideration.

Table 4. The baseline results for the LSTM-syl [21] and Bi-LSTM [25]. Our Model (WEFSE) posts very
competitive results to state-of-art on the LSTM-syl (cnn + WEFSE) model. The unit of measure is
perplexity; the lower is the value, the better is the representation. The bolded values represent the
best performance.

Model Valid Test Unique Syllables

LSTM-syl (sum) 39.082 39.082 18,440
LSTM-syl (concat) 59.399 63.625 18,440

LSTM-syl (cnn) 37.509 38.935 18,440
Bi-LSTM (char) 68.968 70.976 –

Bi-LSTM (trigram) 62.181 64.548 –

LSTM-syl (sum + WEFSE) 54.189 58.189 210
LSTM-syl (concat + WEFSE) 87.546 95.906 210

LSTM-syl (cnn + WEFSE) 43.567 45.867 210
Bi-LSTM (WEFSE) 63.196 65.548 213

Generally, we argue that our model is better than the baselines in representing Swahili words.
This is because we are convinced that proper representation of Swahili words should effectively
cater for its agglutinative features, especially in the verbs that may consist of subject, tense, relative,
root and some extensions, which are themselves syllables. This implies that a good compositional
model for Swahili should split the words into sub-word units without distorting the agglutinative
components in terms of orthography and position. Table 5 provides a comparative analysis on how
the compositional models were splitting Swahili words. It clearly demonstrates that syllable models
maintain the agglutinative components. We therefore expect superior word representation vectors
from syllables as compared to characters and trigrams.

Table 5. Comparative analysis of how Swahili words are split when characters, trigram and syllables
are used as compositional components. The first two are verbs with subject prefix, tense prefix and
root while the last two are noun and pronoun, respectively.

Word Characters Trigrams Syllables

walikuja w, a, l, i, k, u, j, a wal, ali, lik, kuj, uja, walikuja wa, li, ku, ja
atalipa a, t, a, l, i, p, a ata, tal, ali, ipa, atalipa a, ta, li, pa
mchezo m, c, h, e, z, o mch, che, hez, ezo, mchezo m, che, zo

mimi m, i, m, i mim, imi, mi, mimi mi, mi
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6.2. Our Model Results (WEFSE)

We present the results of our syllable-aware language model in Table 6. The experiments were
carried out on Swahili, Xhosa and Shona, which are agglutinative and syllabic-based languages.

We observed unexpected results on the Shona and Xhosa datasets where the character model
slightly outperforms the syllable model. We attribute these results to the limited context of the datasets
and the fact that Swahili is morphologically richer than Xhosa and Shona [60]. For Swahili, the syllable
model achieves better results than the character model on both the small and medium datasets.
The perplexity values achieved by this model compete favorably with state-of-the-art models in NLP.
The results on the medium dataset allude to the fact that rare words are well handled when the word
embeddings are composed from syllable embeddings. Indeed, the model represents the words better
because the syllabic alphabet supplies the constituent syllables of any word for the model to learn
from. Therefore, these results validate the quality of WEFSE and our hypothesis.

It should be noted that the syllable vocabulary sizes are different because we used unique syllabic
alphabet for Swahili, Xhosa and Shona. Xhosa has a large syllabic vocabulary size that employs
the entire English alphabet. During processing, we added two characters to encapsulate each word,
padding character, and start and end of sentence markers to the syllable dictionary. This explains the
size of Swahili vocabulary.

Table 6. The perplexity results (PPL) of the WEFSE model. The Syllable model completely outperforms
the character counterpart on both small and medium datasets. The bolded values represent the
best performance.

Dataset Character Syllable

Size PPL Size PPL
Xhosa 37 114.127 272 114.618
Shona 33 110.167 235 110.242

Swahili (small) 33 31.576 213 31.229
Swahili (medium) 33 47.893 219 45.859

Further, we investigated the effect of different character and syllable embedding dimensions on
the perplexity values. Figure 3 shows that there is no statistically significant effect of the dimension on
perplexity values. However, the most appropriate embedding dimensions for our experiment could
have been 200 or 500 for both characters and syllables; we used a dimension of 200.

Figure 3. The effect of different character and syllable dimensions on perplexity values. The most
appropriate dimension for our experiment is 200 or 500.
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Communication is critical in every sector of a community, society, region, country or continent.
This is because communication supports every field including health, education, trade, engineering,
industry, transport, service, hospitality and games. Therefore, automated information systems which
are facilitated by NLP play an important role in economic development of a region. We are of the
opinion that our WEFSE will inspire development of such systems for East and Central Africa to foster
and enhance regional integration and development.

6.2.1. Qualitative Analysis

We also used the nearest neighbor test to explore the quality of the WEFSE compared to word2vec
by Mikolov et al. [24], where we considered the cosine similarity of the Top 5 words for in-vocabulary
(wanakutana and mchezo) and nonce words (mulinga and kusorta) in the small Swahili test file. The results
in Table 7 attest to the ability of our word embeddings to associate similar word. WEFSE processed and
associated words with the out-of-vocabulary (nonce) words as opposed to word2vec which returned
an error. Indeed, WEFSE associated syntactically and semantically similar words with wanakutana
being associated with present tense verbs while mchezo with nouns. This suggests that the word
representation vectors from WEFSE are superior because they exploit the composition aspect (syllables)
and context of the words. The results demonstrate that words in agglutinative and syllabic-based
languages are inadequately represented using word vectors. These results suggest that constructing
word embeddings from syllable embeddings is useful in deep learning when training on data that can
benefit from contextual information, especially on NLP tasks such as machine translation (common in
automated systems using speech), sentiment analysis, parsing and question and answer systems.

Table 7. The syntactically and semantically similar words using nearest neighbors.

Model Wanakutana Mchezo Mulinga Kusorta

word2vec italeta mtoto - -
amri aliwataka - -
frank upande - -

kujihusisha mawaziri - -
waweze kiongozi - -

WEFSE wanasubiri mchele mulinda kusota
wanaamini mchepuo mulanda kusoma
wanatakiwa mchakato muhimu kusomea
wanachama mchango mulla kusomewa

wananchi mchaka musa kusonga

6.2.2. Word Analogy Task

We further evaluated the WEFSE using the word analogy test. This test uses a triplet of words
with the goal being to guess the fourth word such that given A is to B (A:B) and C is to D (C:D). In this
case, the vectors of A, B and C are used to evaluate the vector of D. The vector of D would be computed
by XB − XA + XC where XB, XA and XC are the vectors of words B, A and C, respectively. A typical
example of a word analogy question is “Boy:Girl::Man:?”. The average accuracy over the entire corpus
provides the performance measure for the analogy.

The non-existence of a Swahili word analogy dataset forced us to develop a dataset based on the
English dataset introduced by Mikolov et al. [24]. Therefore, because there is no direct translation
for some categories such as comparatives, superlatives, city-in-state and antonyms, we removed or
replaced them accordingly. For example, we added a new category for sounds (tanakali) and replaced
the cities with constituencies and their corresponding counties in Kenya. The resultant analogy dataset
has 12,864 questions on which we experimented using word2vec and our WEFSE. The results in Table
8 show that our model outperforms the word2vec model, which is based on words. This demonstrates
that word embeddings generated from syllables embeddings are better than word-based embeddings.
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Table 8. The word analogy results for WEFSE and word2vec. Our model outperforms the word-based
word representation. The bolded values represent the best performance.

Model Accuracy (%)

word2vec [24] 15.5
WEFSE (Ours) 64.8

7. Conclusions and Future Work

We presented the Swahili syllabic alphabet and used it to generate word representation vectors.
The study employed a convolutional neural network and a highway network to compose WEFSE.
We demonstrated the quality of the word embeddings with the syllable-aware language model,
achieving very competitive perplexity values that outperformed the character-aware counterpart on
both small and medium datasets. We also confirmed the quality of WEFSE using the word analogy
task after developing the Swahili analogy dataset. The performance of downstream NLP tasks
depends on the quality of word representation. We therefore propose using WEFSE on part-of-speech
tagging, machine translation and text classification tasks in future works. In addition, we will explore
combining the strength of CNNs and RNNs in modeling the composition function for generating
word embeddings from syllable embeddings. The need for a generic syllabic alphabet for all Bantu
languages is not far-fetched and will be part of our future considerations.
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Abbreviations

The following abbreviations are used in this manuscript:

NLP Natural Language Processing
WEFSE Word Embeddings From Syllable Embeddings
CNN Convolutional Neural Network
CNNs Convolutional Neural Networks
RNN Recurrent Neural Network
RNNs Recurrent Neural Networks
LSTM Long Short Term Memory
Bi-LSTM Bi-directional Long Short Term Memory

Appendix A

The model used tanh and ReLU as the non-linear activation functions in the convolutional
and highway layers, respectively. For the small dataset, we set the CNN output dimension as
(1 + 2 + 3) × 60 and feature per width as 60. For the medium dataset, the CNN output dimension
was (1 + 2 + 3) × 195 and feature per width was 195. Generally, the convolutional filter widths were
[1, ..., L] where L = 2, 3, 4 was experimented. We ensured that the highway layer dimension was equal
to the CNN output dimension.

During training, the same as Assylbekov et al. [21], we propagated at 35 time steps using stochastic
gradient descent on both the small and medium datasets. The learning rate was initialized to 1.0
and reduced by half if the validation perplexity value did not decrease by 0.1 after three epochs [25].
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We trained for 25 and 15 epochs on the small and medium datasets, respectively. A 0.5 probability
dropout was used for regularization [59] with model parameters initialized randomly using uniform
distribution [−0.05, 0.05].
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