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Featured Application: The proposed feature extraction method can be typically applied in the
fault diagnosis of rolling bearings and other rotating machinery.

Abstract: The incipient damages of mechanical equipment excite weak impulse vibration, which is
hidden, almost unobservable, in the collected signal, making fault detection and failure prevention at
the inchoate stage rather challenging. Traditional feature extraction techniques, such as bandpass
filtering and time-frequency analysis, are suitable for matrix processing but challenged by the
higher-order data. To tackle these problems, a novel method of impulse feature extraction for
vibration signals, based on sparse non-negative tensor factorization is presented in this paper.
Primarily, the phase space reconstruction and the short time Fourier transform are successively
employed to convert the original signal into time-frequency distributions, which are further arranged
into a three-way tensor to obtain a time-frequency multi-aspect array. The tensor is decomposed
by sparse non-negative tensor factorization via hierarchical alternating least squares algorithm,
after which the latent components are reconstructed from the factors by the inverse short time Fourier
transform and eventually help extract the impulse feature through envelope analysis. For performance
verification, the experimental analysis on the bearing datasets and the swashplate piston pump
has confirmed the effectiveness of the proposed method. Comparisons to the traditional methods,
including maximum correlated kurtosis deconvolution, singular value decomposition, and maximum
spectrum kurtosis, also suggest its better performance of feature extraction.

Keywords: sparse non-negative tensor factorization; feature extraction; impulse fault; phase space
reconstruction; time-frequency distribution

1. Introduction

In modern industry, the increasing complexity of mechanical equipment assigns great significance
to the normal operation of every single part. An unexpected failure could lead to the instability or
even breakdown of the mechanical system [1,2]. In engineering practice, incipient fault prognosis is
expected to provide early warning before the occurrence of catastrophic failure.

Evidently, vibration signals are effective tools for condition monitoring and fault diagnosis,
mainly because of their revelations of dynamic information and their convenience for measurements.
In Stanisław’s study, various measurement systems for evaluating the vibrations of rolling bearings
were thoroughly compared [3]. Generally, due to the complexity of the transmission, the vibration
signal with incipient fault often incorporates a large amount of the interference apart from the fault
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characteristic components. The interference may include the harmonic components that are related
to operational status and stochastic noise, such as electromagnetic interference. Thus, the feature of
impulse fault is inundated and covered unobservable in the data.

To date, plenty of studies have been carried out to identify the impulse fault components. In the
theory of probability and statistics, the kurtosis, as a measure for the shape of data distribution,
is conducive to capture the outliers (e.g., abnormal impulses) in the data [4]. Jia et al. further
investigated that peculiarity, enforcing the impulses in the signal, in an improved algorithm named
the maximum correlated kurtosis deconvolution (MCKD), to indicate the periodic fault transients [5].
MCKD has received growing attention, and it can be categorized as a single-dimensional method.

With respect to two-dimensional methods like time-frequency analysis, the time-frequency
distribution (TFD) obtained by short time Fourier transform (STFT) [6], Wigner distribution, wavelet
transform [7], etc., provides an effective tool for analyzing non-stationary vibration signals, as it
incorporates information from both the time-domain and frequency-domain. Also, it is interesting
to note that relevant studies based on matrix analysis emerged. Given the non-negativity of TFD,
Lin et al. combined the time-frequency analysis with non-negative matrix factorization for feature
extraction in [8]. Leng et al. utilized singular value decomposition (SVD) to identify relevant
information from background noise, which was combined with envelope analysis to detect a fault
feature of rolling bearings in [9]. Jiang et al. introduced the ratios of neighboring singular values to
distinguish different beating fault types [10]. Specifically, SVD resorts to the Hankel matrix to obtain
a two-dimensional representation for a time series, which signals the trend of the high-dimension
analysis. The study of Qingbo and Xiaoxi reports a combination of time-frequency analysis and
manifold learning for signature enhancement [11], in which phase space reconstruction (PSR) is
used for constructing a three-dimensional TFD manifold. It provides finesse for enhancing the
impulse feature, but inconvenience appears, as the TFDs must be changed into vectors for manifold
learning. The techniques mentioned are admittedly efficacious for feature extraction in two-dimensional
representations; however, the applications are limited when confronted with higher-order data.

For data in a multi-dimensional representation, such as 3-way RGB images, it is efficient to directly
use multi-way arrays rather than matrices for data processing. Tensors are the multi-way extension of
matrices and provide a pertinent representation of natural data with multi-dimensional formation [12].
Tensor factorization, which recovers meaningful hidden structure or principal components from the
multi-way array, was gradually popularized and widely applied in various fields, such as brain
science [13,14], computer vision [15], speaker recognition [16], and user preference and modeling [17].
From the large-scale data of different kinds, low-rank representations can be found using tensor
factorization models; e.g., the PARAFAC, Tucker decomposition and linked CANDECOM/PARAFAC
models [18]. Further insights into different tensor factorization models and their applications can be
traced in [19,20]. However, few studies are found interlinking both tensor factorization and vibration
signals. Yang et al. estimated latent sources from single-channel vibration signal for fault diagnosis
with the help of the unmixing feature of tensor decomposition [21]. The tensor was constructed from
one-dimensional time series after segmentation. Furthermore, Li et al. utilized multiple TFDs for
tensor construction and presented a non-negative tensor factorization (NTF)-based source separation
framework for multi-channel vibration signals in [22]. Chaofan and Yanxue proposed the noise
reduction model based on non-negative tensor factorization (NTF) for vibration signals of rotary
machinery, which was verified efficacious in fault detection through the experiments on gears and
bearings [12]. Wang et al. gave consideration to the information loss of transforming a TFD into a
vector and proposed the tensor manifold learning algorithm for feature extraction of bearing fault,
in which they skillfully projected each TFD on a projection feature vector for manifold learning [23].
Tensors were introduced, yet limitations on the low dimensionality remained.

To accurately extract the fault impulses, as well as to make the best use of the advantage of
tensor factorization, we present a novel feature extraction finesse for vibration signals based on sparse
non-negative tensor factorization (SNTF). Sparseness constraints are imposed based on L1 norms to
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improve the parts-based representation of the decomposition. The method can be summarized into
four major steps: PSR, STFT, tensor decomposition via SNTF, and envelope analysis. Multiple TFDs are
organized to build a three-way time-frequency tensor. Following this, the hierarchical alternating least
squares (HALS) algorithm based on SNTF is introduced to find the optimal factor matrices, based on
which different feature subspaces are separated for TFD reconstruction. In the last step of the method,
envelope analysis is carried out to extract the characteristic frequency of the impulse fault.

Main contributions of this work are summarized as follows: (1) The proposed method made up
for the weaknesses of existing fault extraction models, which are incapable or inflexible of dealing
with multi-way data; (2) by the virtue of the three-way time-frequency tensor, the SNTF is capable of
finding dominant components within multiple time-frequency distributions.

The remaining content of the paper is organized as follows. Section 2 begins by laying out
the basic unfolding model of NTF with the update rules based on alternating least squares (ALS),
and also illustrates the principle of SNTF solved by the HALS algorithm. The procedure of fault feature
extraction is thoroughly demonstrated in Section 3. The experiments on the vibration signal of fault
bearings, as well as the comparisons to conventional methods, are presented in Section 4. Finally,
conclusions are drawn in Section 5.

2. Basic Theory of Non-Negative Tensor Factorization

2.1. Alternating Least Squares Algorithm for NTF

A tensor, in a broad sense, is a multi-dimensional matrix whose modes or ways represent the
number of dimensions. A third order tensor (or three-way tensor) Y ∈ RI×T×Q can be regarded as
a combination of the frontal slices Yq ∈ RI×T, (q = 1, 2, . . . , Q). Thus, the third order NTF model is
transformed into a matrix factorization model by unfolding (matricizing) the tensor, as given by

Yq = ADqXq + Eq, (q = 1, 2, . . . , Q),
s.t. A, Dq, Xq > 0,

(1)

where Dq ∈ RJ×J are diagonal scaling matrices and Xq are source matrices representing latent
components. Index J is a preset value denoting the reduced dimensionality. By absorbing Dq into Xq,
it is equivalent to give Equation (2) with scaled source matrices:

Yq = AXq + Eq (2)

The hybrid strategy to solve the above NTF model minimizes a set of cost functions based on
the squared Euclidean distance [19]. With ALS algorithm under Karush–Kuhn–Tucker (KKT) optimal
conditions, the factor matrix A is estimated by fixing matrix X ∈ RJ×TQ to solve the minimization
problem:

min DF(Y||AX) = 1
2 ||Y−AX||2F = 1

2 tr(Y−AX)
T
(Y−AX),

s.t. ∇ADF(Y||AX) = [−YX
T
+ AXX

T
] = 0,

(3)

where Y ∈ RI×TQ is the row-wise unfolding matrix of tensor Y, and X ∈ RJ×TQ remains fixed and is
equal to [X1, X2, . . . , XQ]. Alternatively, the source matrices Xq are found with fixed A by

min DF(Yq||AXq) =
1
2
||Yq −AXq||

2
F, (q = 1, 2, . . . , Q). (4)

In practice, sparsity constraints are additionally introduced to the factors Xq and A to improve the
ability of feature representation. Thus, we further solve the sparse NTF problems:

minDF(Y||AX) =
1
2
||Y−AX||2F + αA||A||1, (5)
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min DF(Yq||AXq) =
1
2
||Yq −AXq||

2
F + αXq||Xq||1, (q = 1, 2, . . . , Q), (6)

where αA and αXq are the sparseness regulation coefficients. The stationary points of the cost functions
are determined by resorting to the KKT conditions, and the update rules are obtained:

Xq ←

[
(XqXT

q )
−1
(ATYq − αXq 1J×T)

]
+

, (7)

A←
[
(YX

T
− αA1I×J)(XX

T
)
−1

]
+

(8)

2.2. Hierarchical Alternating Least Squares Algorithm for NTF

The HALS algorithm [24] uses a set of local cost functions to obtain the simple update rules in
vector-wise form, and is robust for both under-determined models and over-determined models. It is
also suitable for solving problems relating to sparse representation and large-scale matrices [25,26].
The extensions of HALS algorithms are also developed based on alpha divergence and beta divergence
for rank-one tensor approximation [26].

For a third order tensor Y ∈ RI×T×Q, we consider the decomposition based on the parallel factor
analysis (PARAFAC) model for efficiency, in which the tensor Y is estimated by the outer product
of the vectors from three component factors A = [a1, a2, . . . , aJ] ∈ RI×J, B = [b1, b2, . . . , bJ] ∈ RT×J,
C = [c1, c2, . . . , cJ] ∈ RQ×J; i.e.,

Y =

J∑
j=1

a j ◦ b j ◦ c j + E⇔ yitq =

J∑
j=1

ai jbt jcqj + eitq (9)

The concept is to define residue matrices as:

Y( j) = Y−
∑
p, j

ap ◦ bp ◦ cp = Y−
J∑

j=1
a j ◦ b j ◦ c j + a j ◦ b j ◦ c j

= E + a j ◦ b j ◦ c j, ( j = 1, 2, . . . J),
(10)

and alternatively minimize the set of local cost functions according to the ALS algorithm:

D( j)
F (Y( j)

||a j ◦ b j ◦ c j) =
1
2
||Y( j)

−

J∑
j=1

a j ◦ b j ◦ c j||
2
F =

1
2
||Y( j)

(1)
− a jcT

j � bT
j ||

2
F, (11)

where Y( j)
(1)

is the mode-1 unfolding of the residue Y( j), and � denotes the Kahatri–Rao product.
The stationary points of the above minimization are determined by the KKT optimality conditions

given as
a j, b j, c j > 0,

∇a jD
( j)
F (Y( j)

||a j ◦ b j ◦ c j) = 0, (12)

∇b jD
( j)
F (Y( j)

||a j ◦ b j ◦ c j) = 0, (13)

∇c jD
( j)
F (Y( j)

||a j ◦ b j ◦ c j) = 0. (14)
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Hence, the update rule for a j can be obtained as follows

a j ←


Y( j)
(1)

(b j � c j)

(b j � c j)
T(b j � c j)


+

=


Y( j)
(1)

(b j � c j)

(bT
j b j). ∗ (cT

j c j)


+

, ( j = 1, 2, . . . , J), (15)

where .∗ represents the Hadamard product. Especially when the vectors are correspondingly normalized,
i.e., b j/||b j||2 and c j/||c j||2, the above rule can be further simplified as:

a j = [Y( j)
(1)

(b j � c j)]
+

. (16)

Finally, the updaterules for b j and c j are analogously accessed.

2.3. HALS Algorithms for Sparse Non-Negative Tensor Factorization

Similar to the sparse nonnegative matrix factorization, the sparseness constraints are imposed on
the decomposed vectors for the improvement of the sparsity level and the ability of local representation.
The SNTF problems can be solved by HALS algorithm as demonstrated below. For convenience,
we abbreviate this method as HALS-SNTF.

By employing the L1-norm as the sparsity regulation term, we shall solve the minimization
problems as follows:

D( j)
F (Y( j)

||a j ◦ b j ◦ c j) =
1
2
||Y( j)

−

J∑
j=1

a j ◦ b j ◦ c j||
2
F + α||a j||1 + α||b j||1 + α||c j||1, (17)

for j = 1, 2, . . . , J subject to nonnegativity constraints, where α > 0 represents the unified sparseness
regulation parameters. Analogous to the method discussed in Section 2.2, it is efficient to obatain the
learning rule for vector a j:

a j ←


Y( j)
(1)

(b j � c j) − α1I×1

(bT
j b j). ∗ (cT

j c j)


+

, ( j = 1, 2, . . . , J) (18)

which can be rewritten as a j = [Y( j)
(1)

(b j � c j) − α1I×1]
+

when b j and c j are normalized. Also, the update

rules for b j and c j are generated in a similar way alternatively.

3. Feature Extraction Method of an Impulse Fault

At the inchoate stage of the machinery fault, the weak characteristic components, inundated with
a large amount of background noise, carry the information of certain damages and require accurate
extraction. For single-channel vibration signals, this section proposes an effective strategy that employs
both the phase space reconstruction and the sparse non-negative tensor factorization to tackle the issue
of weak impulse feature extraction.

3.1. Principle of Phase Space Reconstruction

The PSR is based on the conception that the correlated components within a dynamic system
affect and determine the behavior of every single component, as the separated component incorporates
the information from other components equally. By observing one component with different time
delays, PSR is capable of determining the dimensionality of the system’s attractor.

Consider the one-dimensional vibration signal x(n), (n = 1, 2, . . . , N); it can be reorganized as
several overlapping segments,

x(n) =
(
Sm

1 , Sm
2 , . . . , Sm

r

)
, (19)
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r =
N −m
τ

+ 1, (20)

where Sm
i (i = 1, 2, . . . , r) denotes the phase point vector, τ represents the time delay between two

consecutive vectors, and m is the dimension of the vector (also called embedding dimension). Thereupon,
with the help of PSR, the original sequence x(n) can be reconstructed into a two-dimensional matrix or
phase space, X ∈ Rm×r,

X =


x1 x1+τ · · · x1+kτ · · · x1+(r−1)τ
x2 x1+τ+1 · · · x1+τ+1 · · · x1+(r−1)τ+1
...

...
. . .

...
. . .

...
xm x1+τ+(m−1) · · · x1+kτ+(m−1) · · · x1+(r−1)τ+(m−1)

, (21)

where the last element of the original signal is given by x1+(r−1)τ+(m−1) = xN.
In PSR method, the time delay τ and the embedding dimension m are crucial to the accuracy of

the reconstructed phase-space attractor. For time series, the phase space vector may fail to represent
the local feature of the original signal if m is too small, while conversely, an embedding dimension that
is too high will cause unnecessary redundancy and costly computation. Similarly, an inappropriate
time delay may bring uncorrelatedness to different signal segments.

When local damages occur in the bearing, a series of periodic impulses will be excited, reflecting
the fault information. The impulse response signal that attenuates in its natural period is the major
object of feature extraction. Given a noisy impulse series, as shown in Figure 1, it is apparent that,
the embedding dimension should be greater than the impulse period T, so that every phase will
incorporate at least one impulse component. In other words, the m-point embedding dimension is
subject to m > fs × T or m > fs/ fi, where T is the period of impulses in seconds and fs represents the
sampling rate. In practice, fi cannot be determined in advance, while the revolving speed fr is easily
accessible. Thus, the restraint can be based on fr to formulate m > 3 × fs/ fr, which also takes into
account the theoretical characteristic frequency of bearing faults. Moreover, as STFT is used to perform
on each phase point vector in the next step, the length of m can be taken as the power of two out of the
efficiency in calculation.
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As for the time delay, in consideration of the fact that the adjacent phase point vectors should
incorporate the elements of the same impulse, τ is limited within the interval [ fs

fr
, m].

Overall, the empirical criteria can be given as follows: m = 2int(log2(
3 fs
fr
))+1,

fs
fr
≤ τ ≤ m,

(22)
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where int(·) denotes the rounding operation. Nevertheless, the signal quality definitely affects the
spectrum analysis. In application, a further expanded m is also suggested for a signal with low signal
to noise ratio, and the extension depends on the computing power.

3.2. Time-Frequency Distribution Construction

The time-frequency analysis techniques, including short time Fourier transform, wavelet transform,
and Wigner distribution, provide solutions to mapping vibration signals on a time-frequency plane that
incorporates the information from both time-domain and frequency-domain. Due to the convenient
operation and good interpretability, STFT is employed to obtain the time-frequency distributions for
every signal segment (or phase point vector), as discussed in the previous section.

STFT, in essence performing Fourier transform on the windowed signal segments, is defined in
discrete form as follows:

STFTx(n, m) =
nT+N−1∑

k=nT

x(k)w(k− nT)e− j 2πkm
N (23)

where n, m represents the index of time sequence and frequency sequence, T denotes the sliding
interval of the window ω(k), and N is the window length.

As for the window function, to strike a balance between the frequency resolution and the energy
leakage, let us select the Hanning window. Yet subject to the Heisenberg uncertainty principle, the pitfall
of STFT is the inevitable tradeoff between time and frequency resolution, for which an appropriate
width of the window function should be determined to obtain the best time-frequency concentration.
With respect to the existing norm-based measures, such as Rényi entropy, and Jones–Parks norm ratio,
the Stankovic measure integrates the window energy with the norm of STFT spectrogram to provide
an automatic determination of the best window length [27]. This concentration measure is given by

H(N) =


N∑

n=1

N∑
m=1

(
1

E(N)
|STFT(n, m)|2

) 1
2


2

, (24)

where the window energy can be written simply using the window function:

E(N) =
N−1∑
k=0

|ω(k)|2. (25)

In this way, the Stankovic measure finds an optimal window length N when H(N) reaches a
minimum. As a shorter window has less energy and a higher value of H(N), while a longer window
does the opposite, the introduction of E(N) seemingly strikes a balance between the measure of
short windows and long windows. We finally select the length N, according to Stankovic measure,
but empirically at which the slope of H(N) starts to turn flat.

With the help of STFT, all column vectors in the phase space are transformed into multiple
TFDs, which are then stacked up to create a three-way tensor. By synthesizing the PSR technique
and STFT, the vibration signal is circularly and completely utilized to generate a third order
time-frequency representation.

3.3. Non-Negative Time-Frequency Tensor Analysis

Conventional matrix factorization methods, including independent component analysis, singular
value decomposition, etc., only serve in the context of two-way expressions. However, tensor
factorization is effective in the application of multi-way (or high-order) data analysis and possesses
great potential in sparse representation. Moreover, the nonnegativity constraints can be introduced
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to enhance the interpretability of the decomposed factors, while the sparsity constraints improve the
local-based representation.

As the fundamentals of SNTF algorithms have been discussed, we are interested in the decomposed
factors derived from the time-frequency tensor, as illustrated in Figure 2. By the virtue of the tensor
factorization method, we obtain the following factors: The frequency matrix A, the time matrix B,
and the phase matrix C. The matrix C implies the proportion of the phase space information reserved
in the corresponding feature subspace (or source component), e.g., vector c j, implies which phase (of
Q) is the most dominant for consisting the jth latent component.Appl. Sci. 2019, 9, x 8 of 26 
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Based on the decomposed factors, we rebuild the time-frequency distributions separately by
performing the product of the vector from the frequency matrix and the time matrix. Thereupon,
we have multiple (the number of TFDs is up to the reduced-dimensionality index J) reconstructed
TFDs that are principally correlated to the latent component:

TFDs = asbs
T, (s = 1, 2, . . . , J). (26)

On these reconstructed TFDs, we perform the inverse short time Fourier transform (ISTFT) to
compute the represented signal waveforms, which can be regarded as the principal components or
source components of the original high-order data.

STFT is an invertible transform based on the discrete Fourier transform (DFT). ISTFT starts with
the inverse DFT (IDFT) to recover a previously windowed frame, obtaining x̃(n):

x̃(n) ==
nT+N−1∑

k=nT

STFTx(n, m)e+ j 2πkm
N . (27)

However, discontinuities may appear between different recovered frames after IDFT, for which
another windowing operation should be performed to defeat the problem. Hristo introduced a
synthesis window v(k) to every x̃(n), which is thoroughly demonstrated in [6].

Obviously, the vibration signals collected from the machinery equipment are generally a mixture
of status components, weak impulse components, and severe interference. As a result, signs of
damage can hardly be recognized in either the time domain or frequency domain. However, the above
strategy may efficiently reconstruct the original signal with less background noise. Based on the above
knowledge, we assume that SNTF decompose the multi-TFD tensor into the linear sum of these factors:
The feature subspace of periodic vibration, the feature subspace of noise, the feature subspace of other
interference, and other subspaces of latent signals. To take it one step further, envelope demodulation
is employed in order to extract the impulse feature within the signal, whereupon the characteristic
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frequency with an implication of fault should be presented in the corresponding envelope spectrum,
which is difficult to realize using the conventional feature extraction methods.

3.4. Feature Extraction Method for Vibration Signals Based on Sparse Non-Negative Tensor Factorization

Based on the above elaboration, a novel feature extraction method for vibration signals is proposed.
The method combines the merits of the PSR technique and the SNTF model, to effectively extract
the fault feature of periodic impulses in the vibration signals. The overall procedure is concluded in
Algorithm 1 given as follows:

Algorithm 1: Feature Extraction Method for Vibration Signals Based on SNTF

Step 1. The original one-dimensional signal x(n) is converted into a two-dimensional phase space X by the PSR
technique.
Step 2. Perform STFT on the phase point vectors to acquire multiple time-frequency distributions.
Step 3. Permutate the multiple TFDs to generate a third-order tensor Y.
Step 4. Select a reduced-dimensionality index J, and employ the SNTF-HALS algorithm to decompose the
above tensor Y. This step returns the frequency matrix A, the time matrix B, and the phase matrix C.
Step 5. The reconstructed TFDs are obtained by asbs

T, (s = 1, 2, . . . , J), and the principal components
(waveforms) are restored by ISTFT.
Step 6. Feature extraction. For a selected waveform, envelope demodulation is used to capture the
characteristic frequency of certain damages.

The method is also visualized as a flow chart as presented in Figure 3.
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4. Experiments on Feature Extraction of Machinery Faults

This section provides different experimental cases for evaluating the effectiveness of the proposed
model. Sections 4.1 and 4.2 offer two case studies on the benchmarked bearing datasets. Comparisons
to other feature extraction models, including MCKD, SVD, and maximum spectrum kurtosis (MSK)
are attached. The experiment on a swashplate piston pump is given in Section 4.3.

4.1. Feature Extraction of Impulse Fault on Bearing Dataset—Case 1

In order to validate the effectiveness of the proposed method, the bearing dataset provided by the
University of Cincinnati was adopted for analysis [28]. The vibration signals were measured over the
lifetime of the bearings until failure. Accordingly, we selected the data at the stage of incipient failure
for validation and further analysis.

4.1.1. Experimental Settings

The experimental platform is shown in Figure 4, which consists of a transmission shaft, an AC
motor, and 4 Rexnord bearings. A radial load of 2721.6 kg was applied on bearing 2 and 3 as a
whole. The vibration signals were collected via PCB 353B33 accelerometers (PCB Piezotronics, Depew,
NY, USA) installed on bearing housing. The data acquisition module was NI DAQ 6062E (National
Instruments, Austin, TX, USA). Each record consisted of 20,480 points, with a sampling rate of 20 kHz.
Other relevant experimental settings are concluded in Table 1.
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Elsevier, 2019.

Table 1. Experimental settings of case 1.

Bearing Model Running Speed Sampling Rate Fault Position Characteristic
Frequency

Rexnord ZA-2115 2000 RPM 20,000 Hz Outer Ring 236.9 Hz

Specifically, the test signals were recorded during 12 February and 19 February 2004, when a
failure occurred after over 100 million cycles causing a crack in the outer race of bearing 1. With the
purpose of extracting the impulse feature in the signals at the stage of incipient faults, we examined the
record for the 1st channel at 03: 42, 16 February 2004 (74 h before the end of the experiment), as shown
in Figure 5.
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Figure 5. The vibration signal of bearing 1 for further analysis: (a) In the waveform only a faint trace of
impulse is found; (b) the spectrum contains multiple frequency components, with resonance features
located at around 1000 Hz, and between 3000 Hz and 5000 Hz.

4.1.2. Feature Extraction Based on SNTF

Based on the feature extraction method proposed above, we first reconstructed the phase space for
the selected data. The length of the signal x(n) was 20,480. With the speed at 2000 RPM, we obtained
the embedding dimension m at 211 (2048), and the time delay τ at 600. The number of the phase point
vectors was 31 (rounded down for the consistency in vector length). Accordingly, the reconstructed
phase space X ∈ R2048×31 was derived.

When applying STFT to the phase point vectors of X, the width of tye Hanning window was set
to 53. Thereupon, we acquired the three-way time-frequency data (2048× 2048× 31), on which the
modulus operation was performed to obtain a non-negative time-frequency tensor Yt f ∈ R

2048×2048×31.
Then, we set the reduced-dimension index J at 3, knowing that the two high-frequency resonance

bands in the spectrum (see Figure 5b) could be separated from the low-frequency component using
SNTF. We let the sparseness regulation parameter α be 0.20, and performed the SNTF-HALS method to
factorize the tensor Yt f into three sparse nonnegative matrices: A ∈ R2048×3, B ∈ R2048×3, and C ∈ R31×3.
A and B respectively, indicate the data distributions in frequency domain and time domain, as presented
in Figure 6, where we separately plotted them as curves.
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Based on the two factors, three TFDs (see Figure 7) were reconstructed via asbs
T, (s = 1, 2, . . . , J),

mentioned previously in Section 3.4. As a result, evident correlations exist between the factors and
the TFDs. For example, the frequency-wise component at around 1000 Hz in reconstructed TFD 1
(Figure 7a) matches with the peak in the first graph in Figure 6a; both reconstructed TFD 2 and TFD 3
incorporate the prominent component at around 4200 Hz, which correspond with the trends of the 2nd
and 3rd curves in Figure 6a.
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Figure 7. Reconstructed time-frequency distributions based on the vector product: (a) Reconstructed
time-frequency distribution (TFD) 1; (b) reconstructed TFD 2; (c) reconstructed TFD 3.

From the figures above we can see that the periodic impulse can be found in each TFD along the
time axis and that this feature is more evidently suggested in the third TFD. In order to extract such a
frequency component, we perform the inverse STFT on the third TFD to recover the latent component
signal. Then the envelope demodulation is applied to generate the corresponding envelope waveform
and spectrum, as presented in Figure 8.
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Figure 8. Results of the envelope demodulation: (a) The envelope waveform of latent component three;
and (b) the corresponding envelope spectrum.

According to the envelope spectrum, the frequency component at 234.4 Hz is prominent, which can
be identified as the characteristic frequency of the outer race fault of the bearing. Specifically, as the
theoretical fault frequency is calculated with the hypothesis of rollers’ pure rolling, the deviation is
partly due to the sliding of the rollers. With this result, the efficacy of the feature extraction method
based on Sparse NTF is revealed.

4.1.3. Comparisons with Other Methods

In order to verify the effectiveness of feature extraction, some representative models were adopted
for comparisons.
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Maximum correlated kurtosis deconvolution (MCKD) is one of the mainstream algorithms for
revealing specific impulse series from a signal and is used for analyzing the same vibration signal.

First, based on the sampling rate fs of 20,000 Hz and the characteristic frequency, extracted
previously at 234.4 Hz (0.0043 s), we derived the deconvolution period Tp at 86 (rounded). Then,
the length of the filter L also required determination. For finding a best L, we set a loop interval
in calculation, e.g., 100 to 500, to locate the one with a maximum correlated kurtosis. In this case,
L was 400.

The latent impulses extracted by MCKD are presented in Figure 9. The frequency spectrum shows
the characteristic frequency and its harmonic. However, it also contains more irrelevant components as
compared to the SNTF envelop spectrum. Another drawback of MCKD is that it requires an accurate
period Tp in advance. A deviation between the thereotical characteristic frequency and the authentic
one might produce undisirable results.
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Next, we performed the feature extraction based on singular value decomposition (SVD), which has
extensive applications in the field of signal processing. In essence, SVD is a generalization of eigenvalue
decomposition and pertains to matrix analysis methods. To employ this method, we first consecutively
selected 2048 points of data from the vibration signal, and then converted the data into a Hankel matrix,
H ∈ R2019×30, with 30 row vectors (similar to PSR but with a time delay of 1).
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With the help of SVD, we obtained the following singular values: σ1 ≥ σ2 ≥ σ3 . . . ≥ σ30,
which reveal the distribution of relevant signal and irrelevant interference. After employing the
greatest three singular values for signal reconstruction, the frequency band of 4000 to 5000 Hz was
restored, as shown in Figure 10a. Eventually, we performed the Hilbert transform to derive the
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envelope spectrum, as presented in Figure 10b. Similarly, the fault characteristic frequency was also
extracted in the envelope spectrum, while the feature is less evident than the previous methods.
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Figure 10. Results based on singular value decomposition (SVD): (a) SVD-reconstructed spectrum;
and (b) the corresponding envelope spectrum.

Finally, the maximum spectrum kurtosis (MSK) method was also adopted to extract the fault
feature. Based on STFT, the central frequency and the resolution of the optimal bandpass filter can be
obtained. The central frequency fctr is selected when the value of kurtosis reaches a maximum, and the
resolution ∆ f is determined by the sampling rate and the window width; i.e., ∆ f = 2 fs/Nw. We used
a segment of 2048 points of the original signal and set the width of Hanning window at 45, from which
we derived fctr at 3750 Hz and ∆ f at 663 Hz, as shown in Figure 11a. Thus the characteristic frequency
band of (3087 Hz, 4413 Hz) was accessed and thereupon employed for envelope demodulation.
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Figure 11. Results based on maximum spectrum (MSK): (a) Kurtogram of the signal; (b) envelope
spectrum of the filtered signal.

As presented in Figure 11b, a weak signature of the fault characteristic frequency is found in the
envelope spectrum, but almost buried by other interferences. This finding suggests that the maximum
spectrum kurtosis method is less effective in this application, compared to the SNTF methods.

Overall, the experimental results indicate that the MCKD is insufficient, as multiple peaks mix
with the fault frequency and its harmonics in the spectrum, which can be attributed to the inaccuracy
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in the deconvolution period and the high sensitivity of correlated kurtosis under non-gaussian noise.
MSK, which adaptively selects a frequency band with maximum kurtosis for demodulation, exhibits
less satisfactory results with more interfering low-frequency components (e.g., 118 Hz and 175 Hz).
The work in [5] combines the above two methods to obtain more a prominent kurtogram, but the
issue of MCKD is not comprehensively illustrated. As for SVD-based extraction, the result presents
dominant but irrelevant peaks (e.g., 118 Hz) besides the fault frequency, indicating that the method
needs improvement in both the selection and the interpretability of singular subspaces to avoid
introducing redundancy. Between the three models, SVD obtains relatively better results in this case.

Apart from the spectrum with a distinct fault frequency in Figure 8, other indications also
present the advantages of our proposed method. SNTF decomposes the multi-TFD tensor into a few
low-rank representations that embody the vibrations with different characteristics. The sparseness
constraint plays a role in promoting the parts-based feature, as can be found in the reconstructed
TFDs. Interpretability is improved by virtue of the non-negativity constraint, as the non-zero elements
of SNTF decomposition are all positive values, allowing only additive combinations, rather than
subtractions that occur in SVD.

4.2. Feature Extraction of Impulse Fault on Bearing Dataset—Case 2

To further verify the effectiveness of the proposed method, we also analyzed the bearing data from
the Case Western Reserve University, which has been extensively used for the verification of diagnostic
models. Smith et al. presented a benchmarked study of bearing diagnotics with this dataset and
divided the bearing data into three categories—“obivious,” “weak,” and “cannot be diagnosed” [29].
Specifically for Case 2, we would like to test our model on the bearing data catagorized as a “weak” fault.

4.2.1. Experimental Settings

The experiment was conducted using a 1.5 kW motor (Reliance Electric Motors, Hudson, WI,
USA) and a dynamometer (Reliance Electric Motors, Hudson, WI, USA), as presented in Figure 12.
Data was collected using a 16-channel DAT recorder at 12,000 samples per second. The fan-end bearing
fault data was selected for analysis. The single-point fault (0.35 mm in diameter, 0.28 mm in depth)
was created via electro-discharge machining on the inner raceway. For brevity, we summarize the
relevant experimental settings in Table 2, and Figure 13 shows the selected data in waveform and
frequency spectrum.
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Table 2. Experimental settings of case 2.

Bearing Model Running Speed Sampling Rate Fault Position Characteristic
Frequency

SKF 6203-2RS 1730 RPM 12,000 Hz Inner Ring 143.2 Hz
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Figure 13. The original vibration signal: (a) The waveform incorporates a few impulses; (b) in the
spectrum, prominent resonance bands stand out at around 500 Hz, 1000 Hz, 1300 Hz, and 3250 Hz.

4.2.2. Feature Extraction Based on SNTF

First, a phase space containing different time-delay segments can be built from the original time
series (24,800 samples). Based on the criteria for choosing the embedding dimension, we extended the
m at 213 (8192) points, considering the signal in that case contained more complex components. Time
delay τ was taken by half length of m at 4096. Accordingly, five phase point vectors were obtained and
combined as a new phase space, X ∈ R8192×5.

Second, STFT was performed on each phase vector to generate five TFDs. In similar way,
a three-way non-negative time-frequency tensor, Yt f ∈ R

8192×8192×5, was obtained.
Next, we applied HALS-SNTF to decompose the tensor. As the index J determines the low

rank of the decomposed factors, knowing that the frequency spectrum (see Figure 13b) incorporates
four distinct resonance peaks, it is reasonable to assume the four peaks could be separated from the
low-frequency component by SNTF and to assign five to J. The sparseness regulation parameter α
remains at 0.20. Then, the tensor, Yt f ∈ R

8192×8192×5, was decomposed using HALS-SNTF into three
factors. We visualized the frequency matrix and time matrix in Figure 14.
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Figure 14. Decomposed factors of SNTF: (a) Frequency matrix A; (b) time matrix B.

As the frequency componet as and the time component bs share one-to-one correspondence,
five TFDs were reconstructed via asbs

T, (s = 1, 2, . . . , 5), as shown in Figure 15. It is worth mentioning
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that a single component within a factor might share interactions with other components. By “one-to-one
correspondence,” we presume that the frequency component as is characterized by time component bs

and that the most dominant feature can be indicated by the frequency distribution of as.

Appl. Sci. 2019, 9, x 18 of 26 

that a single component within a factor might share interactions with other components. By “one-to-
one correspondence,” we presume that the frequency component sa  is characterized by time 
component sb  and that the most dominant feature can be indicated by the frequency distribution of 

sa . 

   
(a) (b) (c) 

  
(d) (e) 

Figure 15. Illustrations of the reconstructed TFDs: (a–e) Reconstructed TFD 1–5. Components lie in 
different frequency band after tensor factorization and reconstruction. 

From the above TFDs, we can see that the original time-frequency information held within the 
tensor is separated along the frequency axis into the five feature subspaces. In a sense, the vibration 
information within a specific frequency band is separated by SNTF. 

Then we attempted to recover the time-domain waveforms from the above TFDs for feature 
extraction. ISTFT turns the TFD into a time series, on which the envelop waveform and envelope 
spectrum are then calculated. The results were derived for every TFD, and we present the opitimal 
two in Figure 16. 

  
(a) (b) 

Am
pl

itu
de

Am
pl

itu
de

Figure 15. Illustrations of the reconstructed TFDs: (a–e) Reconstructed TFD 1–5. Components lie in
different frequency band after tensor factorization and reconstruction.

From the above TFDs, we can see that the original time-frequency information held within the
tensor is separated along the frequency axis into the five feature subspaces. In a sense, the vibration
information within a specific frequency band is separated by SNTF.

Then we attempted to recover the time-domain waveforms from the above TFDs for feature
extraction. ISTFT turns the TFD into a time series, on which the envelop waveform and envelope
spectrum are then calculated. The results were derived for every TFD, and we present the opitimal
two in Figure 16.
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In Figure 16c we clearly see that the envelope spectrum extracts some major components, including
the runing speed fr, the characteristic frequency fc (143.6 Hz) and the harmonics of fc. Specifically,
the periodic impulses relating to the inner ring damage are accompanied with an intrinsic oscillation
dominated by the resonance frequency at around 3200 Hz.

More components can be found in Figure 16d; e.g., the running speed and its harmonics.
Additionally, the modulation on the fault frequency is obvious. We attribute the phenomena to
the relatively lower interval of frequency band. Even so, the fault-induced impulse feature is
successfully extracted.

4.2.3. Comparison and Analysis

For verification, we also conducted the comparisons with MCKD, SVD, and MSK for case 2.
In the MCKD model, the deconvolution period is given at 84 (the sampling rate is 12,000 Hz and

the fc is 143.6 Hz) and the length of MCKD filter is 300. The periodic train of impulse is extracted,
prominent in the filtered waveform, as can be seen in Figure 17. Still, the frequency spectrum does
contain the characteristic frequency of an inner ring fault, fc and its harmonics, but it is relatively more
interfered by irrelevant components compared to the SNTF results.
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Figure 17. Results based on MCKD in case 2: (a) In the deconvolution signal, impulses are revealed;
(b) the frequency spectrum also captures the characteristic fault, but it is interfered.
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In the SVD model, a Hankel matrix was built, based on the one-dimesional vibration signal for
decomposition. Then, the components with large singular values were restored from the right singular
vector and the left singular vector, which were further processed via envelope analysis, as displayed
in Figure 18. We can see that the spectrum exposes the runing speed frequency fr, the characteristic
frequency fc, and other interference. The fault feature was extracted but not so prominently as by the
SNTF model.
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In the MSK model, the central frequency fctr appears at 3375 Hz, level five, with a maximum
kurtosis as presented in Figure 19a, and the frequency bandwidth ∆ f is thereby obtained at 750 Hz.
Thus, the signal within the band of from 2526 Hz to 4125 Hz is filtered and selected for envelope
demodulation. From the envelope spectrum in Figure 19b, we can see that multiple peaks stand out,
including the characteristic frequency of inner ring fault, fc. As this impulse component is affected by a
few other insignicant components, we hold that the MSK method is also less effective in this case.
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Based on the comparative studies in Sections 4.1 and 4.2, we can see that the SNTF-based method
has evidently better performance of fault feature extraction, the results of which indicate that periodic
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impulses can be extracted in one of the feature subspaces. An important advantage rooted in our
SNTF-based framework is the utilization of multiple TFDs, which allows comprehensive observations
of a single vibration signal, despite the varying degrees of impulse fault and the changing forms
of noise in different time intervals. Conventional approaches to feature extraction consider a single
time-frequency spectrogram [8,30], which might receive better results after improvement.

4.3. Experiment on the Swashplate Axial Piston Pump

Piston pumps are extensively used in aerospace, marine, automotive and other industries. Due
to the compact structure and complex components, a piston pump integrates both reciprocating and
rotating motion and therefore generates a large amount of vibration. As a result, the collected signals
are inundated with noise interference containing multiple excitations. In this section, we analyze the
vibration signals acquired from the swashplate axial piston pump to verify the performance of the
proposed method.

4.3.1. Experimental Settings

The schematic of our experimental test rig is presented in Figure 20, which is constructed with an
AC motor, shaft couplings, a gearbox, and an axial piston pump. The pump is driven by the motor
with a speed-increasing gearbox. Typically, the thrust ball bearing and the swashplate are designed for
the reciprocating motion of the pistons, which increases the output pressure.
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Figure 20. The swashplate axial piston pump test rig.

To mimic the bearing damage, a spalling defect on the ring of the thrust ball bearing was
manufactured using electro-discharge machining, as presented in Figure 21. Excited by the damage
of the bearing, the periodic impulse vibration will transfer to the housing of the pump through the
main shaft and a deep groove ball bearing on the left end. We acquire such compound vibrations via
the accelerometers (PCB Piezotronics) mounted in the radial direction of the ball bearing. The signals
are collected using NI 9234 data acquisition module. Other experimental settings are summarized
in Table 3.
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Table 3. Relevant experimental settings.

Bearing Model Running Speed Sampling Rate Fault Characteristic Frequency

D8111Q 3415 RPM 25,600 Hz 689.9 Hz

4.3.2. Feature Extraction Based on SNTF

Given the cost of computation, we only select the sampled signal for further analysis, which is
segmented at the length of 20,480 points. Figure 22 provides the waveform and spectrum of the original
signal during 0–0.08 s.
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Next, we convert the one-dimensional signal to a two-dimensional phase space representation by
virtue of PSR method. With the sampling rate of 25,600 Hz and the speed of 3415 Hz, the embedding
dimension m is 2048, and the time delay τ is set to 1024. Therefore, a total of 19 phase point vectors are
generated, creating a data matrix of 2048× 19.

On the basis of the Stankovic principle, we empirically choose for the Hanning window, the width
of 31 where the gradient of the concentration measure H(N) turns from steep to flat. Then, STFT is
performed on phase point vectors to find the time-frequency distributions, which are arranged in a
three-dimensional coordinate system to form the multi-aspect data tensor Yd ∈ R

2048×2048×19.
Based on the HALS-SNTF algorithm, as major peaks in the frequency spectrum are found at

1695 Hz, 4616 Hz, and 8094 Hz, the reduced-dimension index is set to three, and the data tensor is
decomposed further into factor matrices, within which we are interested in the frequency matrix A
and the time matrix B. By the vector product asbs

T, (s = 1, 2, 3), three reconstructed TFDs are obtained,
respectively, corresponding to three different feature subspaces, as provided in Figure 23a–c.
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Figure 23. The reconstructed TFDs based on the SNTF factors: (a) Reconstructed TFD 1; (b) reconstructed
TFD 2; (c) reconstructed TFD 3.
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Generally, the vibration signal of a faulty ball bearing can be regarded as a compound signal with
amplitude modulation. More specifically, it is the periodic impulse (the signal of a certain fault) that
modulates the system’s resonance signal. From the TFDs in Figure 23, we can see that the periodic
feature in the time axis is most prominent in TFD 2, and this feature lies in the presence of the resonance
frequency at around 4300 Hz and 8500 Hz. Whereupon, to extract the fault feature, we chose TFD 2 to
perform ISTFT and envelope demodulation successively. The results are presented in Figure 24.
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The envelope spectrum in Figure 24b extracts the frequency of 687.5 Hz, which is consistent
with the theoretical fault frequency of the thrust bearing. For comparison, the envelope spectra of
the reconstructed TFD 1 and TFD 3, are presented in Figure 25. They do contain the fault frequency
component, but they are apparently less observable than the spectrum in Figure 24.
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From the above results, the impulse feature of the vibration signal is finally extracted. Thereupon,
we can confirm that the feature extraction method based on SNTF is verified efficacious for primary
applications in the field of machinery fault diagnosis.
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5. Conclusions

The vibration signal of rotary machinery with impact faults is generally a mixture of multiple
sources, in which the characteristic component revealing the latent impulses, is often weak and difficult
to detect. Although many feature extraction techniques have been put forward to accurately identify
fault feature hidden in the signals, such as SVD, MSK, MCKD, etc., those methods only serve in
the context of two-dimensional representation. Their applications are limited when confronted with
naturally high-order data. Another issue is that the increasing complexity of modern machinery has
led to the growing difficulty for fault diagnosis due to multi-excitations and compound interferences.
With the purpose of handling these issues, we propose a novel strategy of fault feature extraction for
vibration signal based on sparse nonnegative tensor factorization.

SNTF is endowed with the ability of decomposing the multi-TFD tensor into meaningful low-rank
representations, which comprise vibrations of different characteristics. The utilization of multiple TFDs
allows comprehensive observations of a single vibration signal despite the time-varying interferences.
As we impose the sparseness constraint to the NTF model, the sparsity level of the factors is improved,
and the reconstructed components are less interfered by noise. The implementation of this strategy
on the experimental signals of the bearing dataset has indicated the effectiveness of the SNTF-based
feature extraction. The results of comparisons to other representative methods also suggest that the
proposed method possesses better performance of feature extraction. Pragmatically, we carried out
an experiment on a swashplate piston pump test rig, in which the impulse feature of the vibration
signal was successfully extracted. Therefore, the proposed method is verified feasible in practice
and can be identified as of great importance for vibration signal analysis in the field of mechanical
health management.

Further research might further explore a more adaptive approach for the determination of window
length in STFT. Also, it would be interesting to see the effect of applying NTF to fault diagnosis for a
more complex rotary machine.
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