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Featured Application: This research dedicates to develop a pressure observer based nonlinear
controller for precise position control of the MRI-compatible pneumatic servo system with long
transmission lines.

Abstract: In this paper, the needle insertion motion control of a magnetic resonance imaging
(MRI) compatible robot, which is actuated by a pneumatic cylinder with long transmission lines, is
considered and a pressure observer based adaptive dynamic surface controller is proposed. The long
transmission line is assumed to be an intermediate chamber connected between the control valve
and the actuator in series, and a nonlinear first order system model is constructed to characterize
the pressure losses and time delay brought by it. Due to the fact that MRI-compatible pressure
sensors are not commercially available, a globally stable pressure observer is employed to estimate
the chamber pressure. Based on the model of the long transmission line and the pressure observer,
an adaptive dynamic surface controller is further designed by using the dynamic surface control
technique. Compared to the traditional backstepping design method, the proposed controller can
avoid the problem of “explosion of complexity” since the repeated differentiation of virtual controls
is no longer required. The stability of the closed-loop system is analytically proven by employing the
Lyapunov theory. Extensive experimental results are presented to demonstrate the effectiveness and
the performance robustness of the proposed controller.

Keywords: pneumatic servo system; long transmission line; pressure observer; dynamic surface
control; position tracking

1. Introduction

The magnetic resonance imaging (MRI) technique is widely used in clinical diagnosis due to
its ability to image without the use of ionizing x-rays and superior soft tissue contrast as compared
to computed tomography (CT) scanning. Recently, pneumatically actuated MRI-compatible robots,
which enable real-time magnetic resonance (MR) image-guided needle placement, are designed
for brachytherapy and biopsy by several researchers [1–15]. To fulfill the requirements for MR
compatibility of the robotic systems, pneumatic valves are commonly placed outside the scanner
room in the aforementioned works. Therefore, long transmission lines between the actuators and
valves are used. Since long transmission lines have a significant influence on the pressure dynamics of
the pneumatic system and MRI-compatible pressure sensors are not commercially available, precise
position control is one of the main technical challenges in robot development.

Indeed, considerable research effort has been devoted to addressing the issue related to long
transmission lines. Richer et al. [16] suggested a formula for the time delay and amplitude attenuation
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between the mass flows at the outlet and inlet of the line, as well as a formula for the pressure drop
along the tube. Although this approach was later employed in many other studies (Jiang et al. [14];
Richer et al. [17]), it has been proven improper for long transmission lines (>2 m) [18]. Yang et al. [8]
adopted a first order transfer function with time delay to describe the 9-m transmission line dynamics.
However, for some unknown reason, the authors omitted the transmission line dynamics in the
subsequent controller design. Based on the discretization of a general set of equations from fluid
mechanics, two similar distributed models of long pneumatic transmission lines were derived by
Li et al. [19] and Krichel et al. [20]. However, this type of model is not suitable for controller design for
their high order and low computational speed. Turkseven et al. [21] developed a simplified distributed
model to characterize the additional dynamics brought by the long transmission lines.

As previously mentioned, direct pressure measurement is unavailable for the lack of
MRI-compatible pressure sensors. However, pressure states are commonly used in controller design for
precise position control of a pneumatic actuator. To solve this problem, pressure observers were used
in place of a pressure sensor in many studies. Pandian et al. [22] investigated two design methods of an
observer to estimate the chamber pressures in a pneumatic cylinder. While a continuous gain observer
was used to estimate one of the chamber pressures with the assumption that the other one is measured
in the first method, a sliding mode observer was utilized to estimate both chamber pressures in the
second method. In this study, the mass flow rate was assumed to be exactly known, which is apparently
too restrictive in practice. Wu et al. [23] conducted an analysis on observability and concluded that the
pressure states in the pneumatic servo system are not locally observable from the measurement of the
output motion within several regions in the state space. Based on the actuator pressure dynamics,
various observers are developed, such as the sliding-mode observer (Bigras [24]), energy-based
Lyapunov observer (Gulati et al. [25]), and adaptive nonlinear observer (Langjord et al. [26]). It
should be noted that the performance of these observers relies on the accuracy of the valve model.
Driver et al. [27] developed a pressure estimation algorithm by utilizing the measured actuation force
and the hypothesized average air pressure in the actuator. Turkseven et al. [18] presented a pressure
observation method by using the measured force and piston displacement. However, the requirement
for force sensing in the MRI environment is particularly burdensome because the MRI-compatible
force sensor is not available commercially and its development cost is high.

Recently, the backstepping design method has been proven to be a very effective way to develop
nonlinear robust controllers for pneumatic servo systems. However, this method has the problem of
“explosion of complexity” since the requirement of repeated differentiation of virtual controls. Thus, a
practical implementation is difficult. To solve this problem, Swaroop et al. [28] proposed the dynamic
surface control (DSC) method, in which the calculation of the virtual control variable’s derivative
was prevented by introducing a filter at each design step. Since then, the DSC method has been the
topic of significant research efforts and a number of excellent theoretical contributions have been
made. The applications of DSC can be found in many engineering fields, for example, hydraulic servo
systems [29], underwater/autonomous surface vehicles [30], mobile wheeled inverted pendulum [31],
pneumatic artificial muscle [32], and servo motor [33].

In this study, the needle insertion motion control of the MRI compatible robot developed in our lab
is considered. The robot is actuated by a pneumatic cylinder with long transmission lines. The focus of
this paper is dealing with the issue of long transmission lines and realizing a high accuracy control of a
pneumatic actuator with a pressure observer. Therefore, the long transmission line is assumed to be an
intermediate chamber connected between the control valve and the actuator in series, and a pressure
observer based adaptive dynamic surface control is proposed. The main contributions are: (1) The long
transmission line dynamic is approximated as a nonlinear first order system, which can estimate the
pressure losses and time delay through the long transmission line precisely in real time. (2) A pressure
observer, which is proven to be globally stable, is developed to estimate the chamber pressure in a
pneumatic actuator with a long transmission line. (3) In contrast to most of the existing nonlinear
robust controllers synthesized by the backstepping method, by using the dynamic surface control
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(DSC) technique, the proposed controller can cope with the problem of “explosion of complexity”,
since the repeated differentiation of virtual controls is no longer required. The rest of this paper is
organized as follows: Section 2 presents the dynamic models and problem statement; Section 3 gives
the design and stability proof of the pressure observer based adaptive dynamic surface controller;
Section 4 presents the experimental results to demonstrate the performance of the proposed controller;
and Section 5 draws the conclusions.

2. Dynamic Models and Problem Formulation

As shown in Figure 1, a 5-DOF (degree of freedom) MRI compatible robot for abdominal and
thoracic punctures was built in our laboratory. The robot’s mechanism design was developed such
that all motions were decoupled and actuated by pneumatic cylinders. With the help of the robot,
the physician could manipulate the needle remotely without moving the patient out of the MRI
scanners. A schematic of the pneumatic servo system driving the needle insertion motion is depicted
in Figure 2. The pneumatic cylinder (customized product from XMC Corp., Ningbo, China), which
had a 150 mm stroke and 10 mm diameter bore, was made of nonmagnetic material to ensure MRI
compatibility. While Chamber A was controlled by a proportional directional control valve (FESTO
MPYE-5-M5-010-B), a tank was used to maintain the pressure of Chamber B at a specified constant
level for safety reasons. The control valve was connected to the cylinder via a 10 m transmission line
since it had to be placed away from the MRI scanner. A pressure observer was needed to estimate
the pressure of Chamber A, since direct measurement was expensive for the lack of MRI-compatible
pressure sensors. The main purpose of this paper was to find a way to deal with the issue of the long
transmission line and realize high accuracy control of a pneumatic cylinder with pressure observation.
For the purpose of comparison, the pressures at the two ends of the long transmission line, as well
as the supply pressure were measured by three pressure sensors (FESTO SDET-22T-D10-G14-I-M12).
The piston position was obtained with an optical position sensor (Micronor MR328). The controller
was programmed in Simulink on a dSPACE DS1103 control system with a 1 ms sampling period.
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Figure 2. Schematic of the pneumatic servo system used to drive the needle insertion motion.

As shown in [34], the motion of the piston–rod–needle assembly can be expressed as:

m
..
x = paAa − pbAb − p0Ar − b

.
x− FfSf(

.
x) − df, (1)

where x,
.
x, and

..
x are the piston position, velocity, and acceleration, respectively, m is the normal mass

of the piston–rod–needle assembly, pa and pb denotes the absolute pressures of actuator chambers,
p0 is the ambience pressure, Aa and Ab are the cross section areas of piston chambers, Ar is the cross
section area of the rod, b is the total load and cylinder viscous friction coefficient, Ff is the unknown
friction coefficient, Sf(

.
x) is a continuous function, which is always chosen as Sf(

.
x) = 2

πarctan(900
.
x),

FfSf(
.
x) is utilized as the smooth approximation for the usual static discontinuous Coulomb friction

force, and df represents the unmodeled dynamics and external disturbances.
With the assumption that the discharging and charging processes are both isothermal, the pressure

dynamic in the actuator chamber can be modeled as [16,35]:

.
pa =

RTs

Va

.
ma −

Aapa

Va

.
x, Va = Va0 + Aa(

Lc

2
+ x), (2)

where R is the gas constant, Ts is the ambient temperature, Va is the volume of the cylinder chamber A,
.

ma is the mass flow entering or exiting the chamber A, Va0 is the dead volume of the cylinder chamber
A, and Lc is stroke of the actuator.

.
ma can be calculated by [16]:

.
ma = (pl − pa)

pvAlDl

32RTsLlµ
, (3)

where pl is the average air pressure in the transmission line, pv is the measured air pressure at the work
port of the control valve, Ll, Al, and Dl denote the length, cross section area, and inner diameter of the
transmission line, respectively, and µ is the dynamic viscosity of air.

As shown in Figure 2, the long transmission line is assumed to be an intermediate chamber
connected between the control valve and the actuator in series, thus, the following equation is
formulated to represent the pressure dynamic of the line [16,35]:

.
pl =

RTs

Vl
(

.
mv −

.
ma), (4)
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where Vl is the volume of the transmission line, and
.

mv is the mass flow rate through the valve, which
can be calculated by [35]:

.
mv = A(u)Kq(pu, pd, Tu) =


A(u)CdC1

pu
√

Tu
, pd

pu
≤ pr,

A(u)CdC1
pu
√

Tu

√
1−

( pd
pu −pr

1−pr

)2

, pd
pu
> pr

, (5)

where A(u) is the effective valve orifice area, u is the control valve’s control input, Cd is the discharge
coefficient, C1 is a constant with a value of 0.0404, pu and pd are the upstream pressure and the
downstream pressure, respectively, Tu is the upstream temperature of air, and pr is the critical pressure
ratio. Therefore,

.
mv = A(u)Kq(ps, pv, Ts) when the line is charging, and

.
mv = A(u)Kq(pv, p0, Ts) when

the line is discharging.
Choose the state vectors x = [x1, x2, x3, x4]T as x1 = x, x2 =

.
x, x3 = pa and x4 = pl, thus the system

dynamics can be expressed in a state-space form as:
.
x1 = x2

m
.
x2 = Aax3 −Abpb − p0Ar − bx2 −AfSf(x2) − df

.
x3 = RTs

Va

.
ma −

Aax2
Va

x3
.
x4 = RTs

Vl
(

.
mv −

.
ma)

. (6)

The control objective is to synthesize a control input u for the system Equation (6) such that x
tracks the desired trajectory xd with a guaranteed transient and final tracking accuracy. Instead of
using the pressure sensor, a globally stable pressure observer is developed to estimate the pressure in
chamber A. The parametric uncertainties due to unknown b and Af and unknown external disturbances
will be explicitly considered in this paper.

Assumption 1: The desired trajectory xd is at least second-order differentiable, and xd,
.
xd, and

..
xd are bounded.

Then, there exists a compact set Ω0 =
{[

xd,
.
xd,

..
xd

]T
: x2

d +
.
x2

d +
..
x2

d ≤ B0

}
such that

[
xd,

.
xd,

..
xd

]T
∈ Ω0, where

B0 is a positive constant.

Assumption 2: The extent of parametric uncertainties and external disturbances can be predicted and given by
bmin ≤ b ≤ bmax, Ffmin ≤ Ff ≤ Ffmax, and dmin ≤ df ≤ dmax.

3. Controller Design

3.1. Pressure Observer

The following observer is proposed to estimate the pressure of the actuator chamber A and the
average air pressure in the transmission line:

.
p̂a = RTs

Va

.̂
ma −

Aa
.
x

Va
p̂a

.
p̂l =

RTs
Vl

(
.̂

mv −
.̂

ma)
, (7)

where p̂a and p̂l represent the estimates of pa and pl,
.̂

ma and
.̂

mv denote the estimated mass flow rates
according to Equation (3) and Equation (5) based on p̂a and p̂l. It should be noted that the proposed
observers are closed loop because of the relationship between the estimated mass flow rates and the
estimated pressures. Proof of the convergence between the actual pressures and the estimated ones
will be given later.
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To verify the convergence between the actual pressures and the estimated pressures, the following
Lyapunov function candidate was considered:

Vo = Vo1 + Vo2, Vo1 =
1
2
(p̃aVa)

2, Vo2 =
1
2
(p̃lVl)

2, (8)

where p̃a = pa − p̂a, and p̃l = pl − p̂l.
The time derivative of Vo1 is:

.
Vo1 = (paVa − p̂aVa)(

.
paVa + pa

.
Va −

.
p̂aVa − p̂a

.
Va)

= RTsVa(pa − p̂a)(
.

ma −
.̂

ma)
(9)

According the Equation (3), one can obtain:

1. pa > p̂a implies that
.

ma <
.̂

ma, yielding (pa − p̂a)(
.

ma −
.̂

ma) < 0.

2. pa < p̂a implies that
.

ma >
.̂

ma, yielding (pa − p̂a)(
.

ma −
.̂

ma) < 0.

3. pa = p̂a implies that
.

ma <
.̂

ma, yielding (pa − p̂a)(
.

ma −
.̂

ma) = 0.

Therefore,
.

Vo1 is negative semi-definite.
The time derivative of Vo2 is:

.
Vo2 = (plVl − p̂lVl)(

.
plVl −

.
p̂lVl)

= RTsVl(pl − p̂l)(
.

mv −
.̂

mv) −RTsVl(pl − p̂l)(
.

ma −
.̂

ma)
(10)

According the Equation (3), one can obtain:

1. pl > p̂l implies that
.

ma >
.̂

ma, yielding (pl − p̂l)(
.

ma −
.̂

ma) > 0.

2. pl < p̂l implies that
.

ma <
.̂

ma, yielding (pl − p̂l)(
.

ma −
.̂

ma) > 0.

3. pl = p̂l implies that
.

ma =
.̂

ma, yielding (pl − p̂l)(
.

ma −
.̂

ma) = 0.

For the mass flow rate relationship given by Equation (5), it has proven in [25] that the term
(pl − p̂l)(

.
mv −

.̂
mv) is always non-positive. Thus,

.
Vo2 and Vo are negative semi-definite, one can

conclude that the proposed pressure observers are globally Lyapunov stable with regard to the errors
in the estimated pressures.

3.2. Adaptive Dynamic Surface Controller

Step 1: Differentiate the trajectory tracking error e1 = x1 − xd with respect to time leads to:

.
e1 = x2 −

.
xd. (11)

Consider x2 as the first virtual control input, the virtual control law is designed as follows:

x2d =
.
xd − k1e1, k1 > 0, (12)

where k1 is a positive control gain. Following the dynamic surface control theory [28], the signal x2d is
fed to a low pass filter to obtain a new one x2d for the next design step:

τ1
.
x2d + x2d = x2d, x2d(0) = x2d(0), τ1 > 0, (13)

where τ1 is the filter parameter.

Step 2: Define the first surface error as s1 = x2 − x2d, its time derivative can be derived as:

.
s1 =

.
x2 −

.
x2d = Aax3 −

1
m

[
pbAb + p0Ar + bx2 + FfSf(

.
x) + df

]
−

1
τ1

(x2d − x2d), (14)
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where Aa = Aa/m.
Define x̃3 = x3 − x̂3, and let ς = x̂3 be the second virtual control input, the virtual control law is

designed as follows:

ςd =
1

Aa

 1
m

[
pbAb + p0Ar + b̂x2 + F̂fSf(

.
x) + d̂f

]
+

1
τ1

(x2d − x2d) − k2s1 −
h2

1

4η1
s1

, (15)

where k2 > 0 is a positive control gain, η1 > 0 is a controller parameter, and h1 is a known function
that will be determined later, b̂, F̂f,and d̂f are the estimates of b, Ff, and df, respectively. b̂, F̂f, and d̂f are
updated by:

.
b̂ = Projb̂(−

γ1

m
x2s1), (16)

.
F̂f = ProjF̂f

(−
γ2

m
Sf(x2)s1), (17)

.
d̂f = Projd̂f

(−
γ3

m
s1), (18)

where γ1 > 0, γ2 > 0,and γ3 > 0 are the observer gains, and the projection mapping is defined as:

Projξ̂(·) =


0, if ξ̂ = ξmax and · > 0
0, if ξ̂ = ξmin and · < 0
·, otherwise

, (19)

where ξ is a symbol that can be replaced by b, Ff, and df.
Similarly, the signal ςd is fed to a low pass filter to obtain a new one ςd for the next design step:

τ2
.
ςd + ςd = ςd, ςd(0) = ςd(0), τ2 > 0, (20)

where τ2 is the filter parameter.

Step 3: Define the second surface error as s2 = ς− ςd, its time derivative can be derived as:

.
s2 =

.
ς−

.
ςd =

.
x̂3 −

.
ςd = RTs

Va

.̂
ma −

Aax2
Va

x̂3 −
1
τ2
(ςd − ςd)

= −RTsa
Va

x̂4 + (RTsa
Va
−

Aax2
Va

)x̂3 −
1
τ2
(ςd − ςd)

(21)

where a =
pvAlDl

32RTsLlµ
.

Let ζ = −x̂4 be the third virtual control input, the virtual control law is designed as follows:

ζd =
Va

RTsa

[(Aax2

Va
−

RTsa
Va

)
x̂3 +

1
τ2

(ςd − ςd) − k3s2

]
, (22)

where k3 > 0 is a positive control gain. Similarly, the signal ζd is fed to a low pass filter to obtain a new
one ζd for the next design step:

τ3
.
ζd + ζd = ζd, ζd(0) = ζd(0), τ3 > 0, (23)

where τ3 is the filter parameter.

Step 4: Define the second surface error as s3 = ζ− ζd, its time derivative can be derived as:

.
s3 =

.
ζ−

.
ζd = −

.
x̂4 −

.
ζd = −

RTs

Vl
(

.̂
mv −

.̂
ma) −

1
τ3

(ζd − ζd). (24)
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Similarly, the following control law qd for
.̂

mv is proposed:

qd =
.̂

ma −
RTs

Vl

[
1
τ3

(ζd − ζd) − k4s3

]
, (25)

where k4 > 0 is a positive control gain.
Once the qd is calculated, the desired effective valve orifice area A(u) can be calculated by:

A(u) =


qd

Kq(ps,pv,Ts)
qd > 0

qd
Kq(pv,p0,Ts)

qd ≤ 0
. (26)

Thus, the input signal u for the proportional-directional control valve could be obtained according
to the relation between the input signal and effective valve orifice area.

The proposed pressure observer based adaptive dynamic surface control is illustrated in Figure 3.
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where 4 0>k  is a positive control gain. 
Once the qd is calculated, the desired effective valve orifice area A(u) can be calculated by: 
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Thus, the input signal u for the proportional-directional control valve could be obtained 
according to the relation between the input signal and effective valve orifice area. 
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3.3. Proof of Stability

Theorem 1. Consider the closed loop pneumatic servo system consisting of the plant Equation (6), the nonlinear
control law Equation (25), the pressure observers Equation (7), and the parameter and disturbance estimation
algorithm Equations (16)–(18) under the Assumption 1–2. If there exists a set of the feedback gains and the

filter constants satisfying γ = min
{
k1 − 1, k2 −

1
2 −Aa, k3 −

Aa
2 , 1

τ1
− 1, 1

τ2
−

1
2 −

Aa
2

}
> 0 , then the closed loop

system is uniformly and ultimately bounded.

Proof. Consider the following Lyapunov function candidate:

Vc = Vcs + Vcz + Vθ, Vcs =
1
2 e2

1 +
1
2 s2

1 +
1
2 s2

2 +
1
2 s2

3, Vcz = 1
2 z2

1 +
1
2 z2

2 +
1
2 z2

3,
Vθ = 1

2γ
−1
1 b̃2 + 1

2γ
−1
2 F̃2

f +
1
2γ
−1
3 d̃2

f
(27)

where z1 = x2d − x2d, z2 = ςd − ςd, z3 = ζd − ζd. Substituting Equation (12) into Equation (11) gives:

.
e1 = s1 + z1 − k1e1. (28)

Substituting Equation (15) into Equation (14) and noting x̂3 = s2 + ςd = s2 + z2 + ςd yields:

.
s1 = Aa(s2 + z2) −

1
m

[̃
bx2 + F̃fSf(

.
x) + d̃f

]
+ Aax̃3 − k2s1 −

h2
1

4η1
s1, (29)

where b̃ = b− b̂, F̃f = Ff − F̂f, d̃f = df − d̂f.
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Substituting Equation (22) into Equation (21) and noting x̂4 = s3 + ζd = s3 + z3 + ζd yields:

.
s2 =

RTsa
Va

(s3 + z3) − k3s2. (30)

Substituting Equation (25) into Equation (24) gives:

.
s3 = −k4s3. (31)

Therefore, the time derivative of V1 = Vcs + Vθ is:

.
V1 = −k1e2

1 − k2s2
1 − k3s2

2 − k4s2
3 + e1s1 + e1z1 + Aa(s1s2 + s1z2) +

RTsa
Va

(s3 + z3)

+γ−1
1 b̃

[ .
b̂− (−γ1

m x2s1)
]
+ γ−1

2 F̃f

[ .
F̂f − (−

γ2
m Sf(x2)s1)

]
+ γ−1

3 d̃f

[ .
d̂f − (−

γ3
m s1)

]
+s1

{
−

h2
1

4η1
s1 −

1
m

[̃
bx2 + F̃fSf(

.
x) + d̃f

]
+ Aax̃3

} (32)

It has been proved in [36] that with the projection mapping, the following properties hold:

b̃
[
Projb̂(−

γ1

m
x2s1) − (−

γ1

m
x2s1)

]
≤ 0. (33a)

F̃f

[
ProjF̂f

(−
γ2

m
Sf(x2)s1) − (−

γ2

m
Sf(x2)s1)

]
≤ 0. (34b)

d̃f

[
Projd̂f

(−
γ3

m
s1) − (−

γ3

m
s1)

]
≤ 0. (33c)

According to Assumption 1–2, there exists a known function h1 satisfies:

h1(t) ≥
1
m

[
|bmax − bmin||x2|+ |Ffmax − Ffmin|

∣∣∣Sf(x2)
∣∣∣+ |dmax − dmin|

]
+ Aa

∣∣∣ρ1
∣∣∣, (34)

where ρ1 is the bound of x̃3 as proven in the above step. From the smoothed sliding mode control
theory, the following inequality holds.

s1

− h2
1

4η1
s1 −

1
m

[̃
bx2 + F̃fSf(

.
x) + d̃f

]
+ Aax̃3

 ≤ η1. (35)

Substituting Equation (34) into Equation (32) yields

.
V1 ≤ −k1e2

1 − k2s2
1 − k3s2

2 − k4s2
3 + e1s1 + e1z1 + Aa(s1s2 + s1z2) +

RTsa
Va

(s3 + z3) + η1. (36)

The following inequalities can be obtained by using Young’s inequality.

e1s1 ≤
e2
1
2 +

s2
1
2 , e1z1 ≤

e2
1
2 +

z2
1
2 , s1s2 ≤

s2
1
2 +

s2
2
2

s1z2 ≤
s2
1
2 +

z2
2
2 , s2s3 ≤

s2
2
2 +

s2
3
2 , s2z3 ≤

s2
2
2 +

z2
3
2

(37)

Substituting Equation (37) into Equation (36) gives:

.
V1 ≤ −(k1 − 1)e2

1 − (k2 −
1
2 −Aa)s2

1 − (k3 −
Aa
2 −

RTsa
Va

)s2
2 − (k4 −

RTsa
2Va

)s2
3+

1
2 z2

1 +
Aa
2 z2

2 +
RTsa
2Va

z2
3 + η1

(38)

Following the similar analysis as done in [28], the following inequalities hold.

.
z1 +

z1

τ1
≤

∣∣∣∣∣ .
z1 +

z1

τ1

∣∣∣∣∣ ≤ ξ1,
.
z2 +

z2

τ2
≤

∣∣∣∣∣ .
z2 +

z2

τ2

∣∣∣∣∣ ≤ ξ2,
.
z3 +

z3

τ3
≤

∣∣∣∣∣ .
z3 +

z3

τ3

∣∣∣∣∣ ≤ ξ3, (39)
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where ξ1(e1, s1, z1, xd,
.
xd,

..
xd), ξ2(e1, s1, s2, z1, z2, xd,

.
xd,

..
xd), and ξ2(e1, s1, s2, s3, z1, z2, z3, xd,

.
xd,

..
xd) are

three continuous functions. Due to the fact that the set Ω0 is compact in R3 and the set Ω1 ={
[e1, s1, s2, s3, z1, z2, z3]

T : e2
1 + s2

1 + s2
2 + s2

3 + z2
1 + z2

2 + z2
3 ≤ 2B1

}
(where B1 > 0) is compact in R7, Ω0 ×Ω1

is thus compact in R10. Therefore, ξ1, ξ2, and ξ3 have maximums on Ω0 ×Ω1. Let M1, M2, and M3 be
the maximums of ξ1, ξ2, and ξ3 on Ω0 ×Ω1, respectively, one can obtain that:

z1
.
z1 +

z2
1

τ1
≤M1|z1|, z2

.
z2 +

z2
2

τ2
≤M2|z2|, z3

.
z3 +

z2
3

τ3
≤M3|z3|. (40)

With the use of Young’s inequality, one can obtain that:

z1
.
z1 ≤ −

z2
1

τ1
+

z2
1

2
+

M2
1

2
, z2

.
z2 ≤ −

z2
2

τ2
+

z2
2

2
+

M2
2

2
, z3

.
z3 ≤ −

z2
3

τ3
+

z2
3

2
+

M2
3

2
. (41)

Thus, the following inequalities can be obtained.

.
Vcz ≤ −

1
τ1

z2
1 −

1
τ2

z2
2 −

1
τ3

z2
3 +

1
2

z2
1 +

1
2

M2
1 +

1
2

z2
2 +

1
2

M2
2 +

1
2

z2
3 +

1
2

M2
3. (42)

Thus, the following inequalities can be obtained.

.
V1 ≤ −(k1 − 1)e2

1 − (k2 −
1
2 −Aa)s2

1 − (k3 −
Aa
2 −

RTsa
Va

)s2
2 − (k4 −

RTsa
2Va

)s2
3−

( 1
τ1
− 1)z2

1 − (
1
τ2
−

1
2 −

Aa
2 )z2

2 − (
1
τ3
−

1
2 −

RTsa
2Va

)z2
3 +

1
2 M2

1 +
1
2 M2

2 +
1
2 M2

3 + η1
(43)

By choosing k1 > 1, k2 >
1
2 + Aa, k3 >

Aa
2 + RTsa

Va
, k4 >

RTsa
2Va

, τ1 < 1, τ2 <
2

Aa+1
, and τ3 <

2Va
RTsa+Va

,
one has:

γ = min
{

k1 − 1, k2 −
1
2
−Aa, k3 −

Aa

2
−

RTsa
Va

, k4 −
RTsa
2Va

,
1
τ1
− 1,

1
τ2
−

1
2
−

Aa

2
,

1
τ3
−

1
2
−

RTsa
2Va

}
> 0

(44)
Then, it can be readily obtained that the following inequality holds.

.
V ≤ −2γV + η, (45)

where η = 1
2 M2

1 +
1
2 M2

2 +
1
2 M2

3 + η1. �

Clearly, if γ > η/2B1, then
.

V ≤ 0 on set Ω1, thus V will remain V(t) ≤ B1 for all t, provided that
the initial conditions satisfy V(0) ≤ B1. Therefore, the errors e1, s1, s2, s3, z1, z2, z3 are bounded. Hence,
one can conclude that the closed loop system is uniformly and ultimately bounded.

4. Experimental Results

In this section, the proposed controller was implemented for the servo control of the pneumatic
servo system as shown in Figure 2. The cylinder forward chamber was controlled by the valve through
a 10 m long transmission line with 4 mm inside diameter, while the pressure in the return chamber
was maintained at about 3 bar by utilizing a tank. A gel phantom was used to perform the following
needle insertion experiments. The system physical parameters and the parameters of the controller are
given in Table 1.
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Table 1. Parameters of the system and the proposed controller.

Symbol Value Unit

m 0.32 kg
Aa 7.854 × 10−5 m2

Ab 6.597 × 10−4 m2

Ar 1.257 × 10−5 m2

R 287 N m/(kg K)
Ts 300 K
ps 6 × 105 Pa

Va0 6 × 10−7 m3

Lc 0.125 m
Vl 1.257 × 10−4 m3

Cd 1.099 − 0.1075 × pu
pd

pr 0.29
Al 1.257 × 10−5 m2

Dl 0.004 m
Ll 10 m
µ 1.79 × 10−5 N s/m2

p0 1 × 105 Pa
b̂(0), bmin, bmax 9, 0, 15 N s/m

F̂f(0), F̂fmin, F̂fmax 6, 0, 20 N
d̂f(0), dmin, dmax 0, −10, 10 N

k1, τ1 40, 0.5
k2, h1, η1, τ2 50, 40, 0.4, 0.75

k3, τ3 50, 1.2
k4 90

γ1,γ2,γ3 100, 10, 10

The same control algorithm as the proposed controller, but in which the long transmission line was
characterized as a part of the cylinder’s dead volume and the chamber pressure was directly measured,
was first tested for tracking a sinusoidal trajectory and a smooth square trajectory. As shown in Figure 4,
the performance was poor for practical application, which indicates the need for an advanced method
to address the issue of long transmission line. The performance of the proposed controller was tested
on three types of reference trajectories: A 0.5 Hz sinusoidal signal, a smooth square signal, and a 4 s
periodic signal. Figure 5 shows the response of the system, and the tracking errors are presented
in Figure 6. The maximum absolute tracking errors (maxt{|e1|}) were about 2.51 mm, 2.68 mm, and
1.81 mm, while the final steady-state tracking errors (maxt≥5{|e1|}) were about 0.96 mm, 1.05 mm, and
1.39 mm. As seen, the proposed controller could significantly improve the system performance, which
indicates the effectiveness of the proposed long transmission line compensation method. However, it
should be noted that these needle insertion experiments were performed in a gel phantom, whose
resisting force behavior was simpler than real soft tissue. The interaction between needle and soft
tissue is very complex and may decrease the needle insertion precision in practical. Since the current
research focused on addressing the issue of long transmission line and realizing high accuracy control
of a pneumatic actuator with a pressure observer, modeling of needle-tissue interaction and further
improving needle insertion precision would be the subject of the next phase of this research.

The process of parameter and disturbance estimations is shown in Figure 7. It can be seen that the
estimates converged quickly, and the tracking error improvement could be achieved within several
seconds. Comparisons between the observed chamber pressure and the measured one are shown in
Figure 8. As can be seen, the estimated chamber pressure was close to its actual value, which indicates
the effectiveness of the proposed pressure observer. However, the estimation error during the charging
process was slightly bigger than the one during the discharging process. This might be due to the fact
that charging process was close to adiabatic and the discharging process was close to isothermal.
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Experiments were also conducted to verify the performance robustness of the proposed controller.
To simulate a sudden disturbance acting on the system, a big step signal was added to the output of the
position sensor at t = 22 s, and removed 10 s later. Figure 9 shows the control accuracy of the proposed
controller in this scenario for tracking a sinusoidal trajectory with a frequency of 0.5 Hz and amplitude
of 62.5 mm. It can be seen that the system performance did not deteriorate except the transient spikes
when the sudden disturbance was added or removed.
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5. Conclusions

In this paper, the precise motion control of a MRI compatible 1-DOF pneumatic servo system
was considered. The long transmission line was characterized as an intermediate chamber connected
between the valve and the cylinder in series, and a nonlinear first order system was used to approximate
its dynamics. Simultaneously, a globally stable pressure observer was developed to estimate the
chamber pressure. Based on the model of the long transmission line and the pressure observer, a
pressure observer based adaptive dynamic surface controller was developed and the stability of the
closed-loop system was proved via the Lyapunov method. In contrast to most of the existing nonlinear
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controllers synthesized with the backstepping method, by employing the dynamic surface control
technique, the proposed controller could cope with the problem of “explosion of complexity”, since
the repeated differentiation of virtual controls was no longer required. The experimental results
confirmed that the proposed controller was effective and had good performance robustness to sudden
disturbances, thus enabling future application in pneumatically actuated MRI-compatible robots.
However, precise motion control of pneumatic actuator did not necessarily lead to precise position
control needle tip. Modeling of the interaction between needle and soft tissue, and incorporating a
more accurate needle insertion force model in the controller design is an essential requirement for
practical robot-assisted needle insertion. Thus, these issues will be explored further in the next phase
of this research.
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