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Featured Application: The results obtained in this paper will provide a scientific reference for
the applications of ultra-short pulses in laser micromachining,.

Abstract: Partially coherent pulsed beams have many applications in pulse shaping, fiber optics,
ghost imaging, etc. In this paper, a novel class of partially coherent pulsed (PCP) sources with circular
spatial coherence distribution and sinc temporal coherence distribution is introduced. The analytic
formula for the spatial-temporal intensity of pulsed beams generated by this kind of source in
dispersive media is derived. The evolution behavior of spatial-temporal intensity of the pulsed
beams in water and air is investigated, respectively. It is found that the pulsed beams exhibit
spatial-temporal self-focusing behavior upon propagation. Furthermore, a physical interpretation of
the spatial-temporal self-focusing phenomenon is given. This is a phenomenon of optical nonlinearity,
which may have potential application in laser micromachining and laser filamentation.
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1. Introduction

As we all know, the coherence properties of a light source have a marked impact on the
characteristics of the propagated field, especially on the intensity profile. Hence, it is a possible way to
modulate the beam shape by regulating the coherence of the source [1-7]. In the past few decades,
extensive work have been done to control the coherence distribution of light sources in order to obtain
desired far-field intensity profile or extraordinary propagation behaviors [8-32], such as self-splitting,
self-focusing, self-steering, and flat-topping, ring-shaped, rectangular, gridded, dark-hollow, or cusped
intensity profiles, which have many applications in remote sensing [33], imaging [34], optical trapping
and optical communications [35].

In 2017, a new class of partially coherent light sources with circular coherence was introduced [36]
and synthesized through a time multiplexing approach [37]. Then, Hyde IV et al. proposed another
alternative approach for synthesizing this class of sources [38]. The self-focusing propagation
phenomenon of this class of sources was also founded, whose propagation properties through oceanic
turbulence is also being explored [39]. All the above-mentioned references are confined to stationary
optical fields or beams.

On the other hand, random optical pulses with partial temporal or spectral coherence represent
more widespread partially coherent light fields, which have many applications in pulse shaping, fiber
optics, ghost imaging etc. [40—42]. In practice, many real sources, such as excimer lasers, free-electron
lasers, or random lasers generate partially coherent pulse trains [43]. Usually, the Gaussian Schell-model
(GSM) pulses with Gaussian correlation function are used to describe the partially coherent pulsed
(PCP) field, which is called partially coherent GSM pulsed beams [44—46], whose propagation properties

Appl. Sci. 2019, 9, 3616; doi:10.3390/app9173616 www.mdpi.com/journal/applsci


http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/2076-3417/9/17/3616?type=check_update&version=1
http://dx.doi.org/10.3390/app9173616
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 3616 20f13

are investigated in detailed [47-55]. In 2013, the non-uniformly PCP source with non-conventional
correlation functions are introduced by Lajunen and Saastamoinen [56]. The propagation properties of
various non-uniformly PCP source exhibit many interesting behaviors, such as pulse self-splitting,
self-focusing and adjustable pulse profile [57-61].

In this paper, we present a novel class of spatially and temporally PCP source with circular spatial
coherence distribution and sinc temporal coherence distribution. The propagation properties of pulsed
beams generated by this source in two common dispersive media, i.e., water and air are investigated.
It is found that, the pulsed beams exhibit spatial-temporal self-focusing behavior upon propagation in
water or air. The condition that the self-focusing takes place at spatial domain and temporal domain
simultaneously is acquired. In Section 2, based on the optical coherence theory of non-stationary field,
we obtain the spatial-temporal intensity distribution of the proposed PCP beams. In Section 3, we give
numerical calculations, and present the spatial-temporal self-focusing behavior of the pulsed beams in
water and air, respectively. In addition, a physical interpretation of the spatial-temporal self-focusing
phenomenon is presented. In Section 4, we summarize the results.

2. Theory

Consider a statistically PCP source located in the plane z = 0, radiating a beam-like field that
propagates into the positive half-space z > 0. The statistical properties of the 2D source at points
p1 = (x},y7) and pa = (¥}, y7), at different instant time f19 and t2, can be characterized by the mutual
coherent function (MCF), which is defined as a two-point two-time correlation function without
spatiotemporal coupling:

Lo(p1, t10; P2, ta0) = R(p1, p2) T (t10, t20) )
where s o s 9
+ —
R(p1, p2) = exp(— plzw%pz] sin C[— pzozpl] )
2 o4 t2 2 _p
T(t0,t20) = exp|~2S2 [sinc| -2 | exp[—io( Ly by ®)
272 T2

where sincx = sinmx/mx and wy is the carrier frequency of pulsed beams. wy and ¢ denotes beam width
and spatial coherent parameter, respectively. Ty and T represent pulse duration and temporal coherent
length, respectively. The beams generated by this kind of pulsed source expressed by Equation (1)
are regarded as the spatially and temporally PCP beams with circular spatial and sinc temporal
coherence distribution. The spatial part of mutual coherent function Equation (1) is the same as that in
reference [39], which has a circular coherence distribution. Equation (1) can be also written as:

To(p1,t10; P2, too) ffPR (v1)pr(v2)H (p1, tr0, 1, v2)H(p2, ta0, 01, v2)dvidvs 4)
where
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where pr(v1) and pr(v;) are rect weight functions of H(:). In the plane z > 0, by means of the extended
Huygens-Fresnel integral with paraxial approximation, the propagation properties of PCP beams with
circular spatial and sinc temporal coherence distribution in dispersive medium in spatiotemporal
domain can be characterized by the following integral formula [1,62]:

r(71,1‘2, tl/tZ/Z) (an) ;?affff rO plrt101p2/t20)

[—ik( r1-p1) Z—Z(rz—Pz) ]

X exp d2p1d%p, (10)

X exp [—ia)() w]dtwdtzo,

where k = n(w)/c denotes the wave number, in which n(w) is refractive index of medium and c is the
speed of light in vacuum. In this paper, we assume that the medium is a linear dispersive medium
whose refractive index is given by n(w) = naw + np, where n, and ny, are constants. And a = wgfyz, with
B2 representing the group velocity dispersion, which is related to 1, by , = na/c. And np, = 2B,wpc
— ¢/vg, where vy is the group velocity of the pulse [63]. Here, the time coordinate is a retarded time,
which is calculated in a frame moving with group velocity of the pulses.

On substituting Equations (4) and (7) into (10), by interchanging the orders of the integrals, we can
derive the formula:

r(fl/i‘zlh,fz,z):f f pr(v1)pr(v2)H (11, t1,01,02,2)H(12, t2, 01,02, 2)dv1d0 (11)

where
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By inserting Equations (8) and (9) into (13) and (14), respectively, after a tedious integral calculation,
one can obtain:
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According to Equation (11), we can get spatial-temporal intensity as:
I(r,5;7,t,2) = f f pR(vl)pT(vz)|HR(r, vl,z)| |HT(t, vz,z)} douidv, (21)

Equation (21) is the main formula derived in this paper, which is used to investigate the
spatial-temporal intensity evolution of the PCP beams in dispersive medium.
If we choose the Gaussian weight function to replace Equations (5) and (6), respectively, i.e.,

g2
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and considering Equations (4), (7)—(9), we can obtain:
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where o, = 0/ y/mand T. = T,/ y/r. As can be seen from Equations (25) and (26), the spatial part and
temporal parts of HCFs have non-uniform coherence distribution. And spatial and temporal parts of
MCFs are the same as those in Ref. [64] and Ref. [56], respectively.

3. Spatial-Temporal Self-Focusing of PCP Beams in Dispersive Medium

In this section, the propagation properties of the proposed PCP beams in dispersive medium are
investigated. Water and air are chosen as two common examples of dispersive medium. The evolution
behavior of the proposed PCP beams upon propagation is explored by detailed numerical simulations.
In the following calculation, the pulses and medium parameters are chosen to be wy =1cm, 0 =1 cm,
To =6 ps, Te = 4 ps, wy = 2.355 rad/fs and B, = 24.88 ps*> km~! unless different values are specified.

3.1. Water Case

Figures 1a—c and 2a—c give the evolution of normalized spatial-temporal intensity of PCP beams
with different values of time ¢ in the x-z plane, while the corresponding on-axis profile are given in
Figures 1d and 2d, respectively. Figure 1 is the case of rect weight function case, which corresponds
to the pulses with circular spatial and sinc temporal coherence distribution. Figure 2 is the case of
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Gaussian weight function, which corresponds to pulses with non-uniform coherence distribution.
We choose water as the dispersive medium with refractive index ng = ¢/vg = 1.3425 (water, 20 °C). As can
be seen, there is an intensity maximum upon propagation, i.e., the spatial-temporal self-focusing takes
place upon the water medium propagation. In addition, detection time t has an important effect on the
intensity distribution of pulsed beams. With increasing time ¢, the value of the peak intensity becomes
small and the focal spot shifts slightly far from the source plane. Physically, the spatial-temporal
intensities of the pulsed beams depend on the spatial positions and detection time ¢, respectively.
As can be seen from Equation (20), detection time f has a close relationship with pulse duration T(z).

Furthermore, as shown in Equation (18), T(z) is dependent of z. That is why the detection time affects
intensity peak and position of peak intensity.
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Figure 1. Evolution of normalized spatial-temporal intensity I(x, t, z) of PCP beams with rect weight
function with different values of time t: (a)t =0, (b) t =1 ps and (c) t = 2 ps in the x-z plane. (d) On-axis
normalized spatial-temporal intensity versus propagation distance z.
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Figure 2. Evolution of normalized spatial-temporal intensity I(x, t, z) of PCP beams with Gaussian
weight function with different values of time : (a) t =0, (b) t =1 ps and (c) { = 2 ps in the x-z plane.
(d) On-axis normalized spatial-temporal intensity versus propagation distance z.
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Figures 3a—c and 4a—c give the evolution of normalized spatial-temporal intensity of PCP beams
with different values of x in the f-z plane, while the corresponding on-axis and off-axis profile are given
in Figures 3d and 4d, respectively. Figure 3 is the case of rect weight function, while Figure 4 is the
case of Gaussian weight function. As can be seen, the spatial-temporal self-focusing occurs not only at
on-axis (x = 0) but also the off-axis (x # 0). And, with increasing x, the focal spot shifts slightly towards
the source plane. Physically, the spatial-temporal intensities of the pulsed beams depend on the spatial
positions and detection time t, respectively. When detection time f is fixed, the intensity distribution
has a marked impact on position coordinates, which can be seen easily from Equations (17) and (19).
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Figure 3. Evolution of normalized spatial-temporal intensity I(x, ¢, z) of PCP beams with rect weight
function with different values of x: (a) x = 0, (b) x = 0.2 cm and (c) x = 0.4 cm in the t-z plane.
(d) Normalized spatial-temporal intensity versus propagation distance z with t = 0.
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Figure 4. Evolution of normalized spatial-temporal intensity I(x, t, z) of PCP beams with Gaussian
weight function with different values of x: (a) x =0, (b) x = 0.2 cm and (c) x = 0.4 cm in the -z plane.
(d) Normalized spatial-temporal intensity versus propagation distance z with t = 0.
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Figures 5 and 6 give the contour graph of normalized spatial-temporal intensity distribution of
PCP beams at the z plane with different values of propagation distance z. Figure 5 is the case of rect
weight function, while Figure 6 is the case of Gaussian weight function. It is shown that at the z =0
plane, the pulse duration and beam spatial width is quite large. With increasing z, the pulses focus
first on the temporal dimension, then on the spatial dimension. However, at some critical distance,
the pulses focus on temporal dimension and spatial dimension simultaneously (see Figure 5cz = 0.2 km
and Figure 6¢ z = 0.04 km).

(@) (b)
7=0.1km

z=0.2km 7=0.4km

- -&(an)l 2 - -lx(é)m)l 2

Figure 5. Contour graph of normalized spatial-temporal intensity distribution I(x, t, z) of PCP beams
with rect weight function at z plane with different values of z: (a) z =0, (b) z = 0.1 km, (¢) z = 0.2 km
and (d) z = 0.4 km in the x-t plane.

(b)
7=0.03km

7z=0.04km
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Figure 6. Contour graph of normalized spatial-temporal intensity distribution I(x, t, z) of PCP beams
with Gaussian weight function at z plane with different values of z: (a) z = 0, (b) z = 0.03 km,
(c) z=0.04 km and (d) z = 0.2 km in the x-t plane.
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The spatial-temporal self-focusing behavior shown in Figures 5 and 6 can be interpreted as follows.
There is some kind of relationship between spatial parameters and temporal parameters, which can
be easily seen from the beam spatial width in Equation (17) and pulse duration in Equation (18) of
elementary modes of PCP beams; this is because Equations (17) and (18) imply that there are minima
for the beam width and pulse duration, respectively. Hence, there are intensity maximum during
propagation, when beam widths or pulse durations arrive minima at the same time. More specifically,
Equations (17) and (18) can be expanded and re-written as:

w?(z) = mz> + iz + ¢ (27)
T2(z) = 122 + boz + 3 (28)
16mv2w? + 1 8o w?
_ 1% _ 0 .2
a1 = kzw% s V1 — k , €1 = Wy (29)
16mv2TE + 1)p2
ap = M, b = —8H02T(2)ﬁ2, c1 = T(z] (30)

2
TO

From Equations (27) and (28) we see that w?(z) and T?(z) are quadratic functions of z, and will
reach minima when z; = —-b1/2a; and z, = —b,/2a;, respectively, i.e., the intensity maximum appears
at distances:

4nkvlwg 1)
2 mip = ————————,
1 min 167120%w3 +1
4o, TA
210
Z2 min = , 32
2/min (167202T¢ + 1)p2 (32)

where z1 in depends on the v; and incident beam width wy. z; min has an internal relationship with
spatial coherence length ¢ by the rect weight function pr(v;) shown in Equation (5), while z3 min
depends on the v, and the pulse duration. And, zy iy, is in connection with temporal coherence length
T. by the rect weight function pr(v;) shown in Equation (6). Hence, when the self-focusing takes place
at spatial and temporal dimensions simultaneously, the relationship between spatial parameters and
temporal parameters can be obtained as follows:
4 4
ko, wj _ 0, T}
ler?v*wi +1  (16m203T5 +1)2

(33)

After a comparison between rect weight function and Gaussian weight function, it was seen that
the intensity profiles of PCP beams with rect weight function are similar to the case of Gaussian weight
function. However, specifically, the spatial-temporal self-focusing effect of the latter is more noticeable
and the focal spot is much small—the value of peak intensity can reach 17.4 for the Gaussian weight
function case. Nevertheless, the value is 9.3 for the rect weight function. In addition, the positions of
focal spots where self-focusing in the spatial and temporal dimensions takes place simultaneously are
different from each other. The positions of focal spot are z = 0.2 km and z = 0.04 km for the rect weight
function and Gaussian weight function, respectively. That is to say, the spatial-temporal self-focusing
effect of the latter takes place more early.

3.2. Air Case

In the following calculation, we present the evolution behavior of PCP beams in air medium.
Because the refractive index ng = 1.00028 of air is much closer to the 1, and the second-order dispersion
coefficient , = 0.021233 ps? km™! is very small. Hence, we choose more short pulse duration and
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temporal coherence length, namely, Ty = 200 fs and T = 100 fs in order to present the self-focusing
more clearly. The other parameters are the same as the case of water.

Figures 7 and 8 give the contour graph of normalized spatial-temporal intensity distribution
I(x, t, z) of PCP beams at z plane with different values of z. Figure 7 is the case of rect weight function,
while Figure 8 is the case of Gaussian weight function. From Figures 7 and 8, we can see that the similar
spatial-temporal self-focusing phenomenon takes place, i.e., the pulses focus first on the temporal
dimension, then focus on the spatial dimension with increasing propagation distance z. At some
critical distance, the spatial-temporal self-focusing phenomenon takes place (see Figure 7c z = 0.13 km
and Figure 8c z = 0.04 km). Compared with rect weight function, for the case of Gaussian weight
function, the spatial-temporal self-focusing behavior appears more early and noticeable. Physically,
Gaussian weight function compared with rect weight function has better energy focusability.
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Figure 7. Contour graph of normalized spatial-temporal intensity distribution I(x, f, z) of PCP beams
with rect weight function at z plane with different values of z: (a) z = 0, (b) z = 0.07 km, (c) z = 0.13 km
and (d) z = 0.3 km in the x-t plane.
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Figure 8. Contour graph of normalized spatial-temporal intensity distribution I(x, t, z) of PCP beams
with Gaussian weight function at z plane with different values of z: (a) z = 0, (b) z = 0.02 km,
() z=0.04 km and (d) z = 0.2 km in the x-t plane.
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Figure 9 gives the on-axis and off-axis normalized intensity profile of PCP beams in air for the
rect weight function (a,b) and Gaussian weight function (c,d), respectively. In general, the similar
self-focusing phenomenon can be found for the rect weight function and Gaussian weight function
of PCP beams. What is more, the self-focusing effect of PCP beams with Gaussian weight function
is more noticeable than the case of rect weight function. Mathematically, there are high degrees of
resemblance between rect function and Gaussian function. Physically, Gaussian weight function has
better energy focusability than rect weight function.
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Figure 9. On-axis and off-axis normalized spatial-temporal intensity profile I(x, t, z) of PCP beams at z

plane with different values of ¢ (a,c) and x (b,d).

4. Conclusions

In the present work, a novel class of spatially and temporally PCP source with circular spatial
and sinc temporal coherence distribution is introduced. The evolution of pulsed beams generated
by this kind of source in dispersive media is investigated. Water and air are chosen as two typical
examples of dispersive medium. It is found that the pulsed beams exhibit spatial-temporal self-focusing
behavior upon water/air propagation. The relationship between spatial parameters and temporal
parameters of pulsed beams is acquired, where self-focusing takes place at spatial and temporal
dimension simultaneously. A detailed comparison between the pulsed beams and the normal
non-uniformly correlated PCP beams is performed. The results show that the spatial-temporal
self-focusing phenomenon of non-uniformly correlated PCP beams with Gaussian weight function is
more noticeable, and takes place more early. The results obtained can have potential applications in
laser micromachining and laser filamentation [65]. For example, in laser micromachining, a proposed
pulsed source might be generated in order to obtain a self-focusing spot upon propagation, where
a suitable peak intensity is adopted to ablate the proposed material. In the process of micromachining,
the profile of the focal spot can be modulated to improve fabrication resolution. In addition, in the field
of laser filamentation, the intensity inside the filament can be enhanced by manipulating the mutual
coherent function (MCF) of proposed pulsed source using a Spatial Light Modulater (SLM).
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