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Abstract: As the focal length of an optical lens in a conventional camera is limited, it is usually
arduous to obtain an image in which each object is focused. This problem can be solved by multi-focus
image fusion. In this paper, we propose an entirely new multi-focus image fusion method based on
decision map and sparse representation (DMSR). First, we obtained a decision map by analyzing
low-scale images with sparse representation, measuring the effective clarity level, and using spatial
frequency methods to process uncertain areas. Subsequently, the transitional area around the focus
boundary was determined by the decision map, and we implemented the transitional area fusion
based on sparse representation. The experimental results show that the proposed method is superior
to the other five fusion methods, both in terms of visual effect and quantitative evaluation.

Keywords: multi-focus image fusion; low-scale images; decision map; sparse representation;
transitional area

1. Introduction

Multi-focus image fusion is a method of combining multiple images with different focal points
into a composite image in which all objects are completely focused. The composite image will be more
suitable for visual perception, making it easier for humans to further complete image processing tasks.
Multi-focus image fusion technology has been widely used in digital photography, computer vision,
military reconnaissance, and other fields [1].

With the maturity and improvement of image fusion technology, miscellaneous image fusion
methods have emerged in the past few years. As many new fusion algorithms have been proposed
recently, we feel inclined to divide the current fusion methods into four categories: multiscale
transform (MST) methods, spatial domain methods, sparse representation (SR) methods, and neural
network methods. Among the existing transform domain image fusion methods, MST is widely
used [2]. A variety of multiscale transforms have been proposed and applied to image fusion.
These include the Laplacian pyramid (LP), discrete wavelet transform (DWT) [3,4], dual-tree complex
wavelet transform (DTCWT) [5], and discrete cosine harmonic wavelet transform (DCHWT) [6].
The multiscale geometric analysis tools developed in recent years have higher directional sensitivity
than wavelets, such as shearlet transform [7], curvelet transform (CVT) [8], nonsubsampled contourlet
transform (NSCT) [9], and so on. All of these transform domain fusion methods have a similar
“decomposition–fusion–reconstruction” framework. First, the source images are decomposed into
a multiscale transform domain to obtain transform coefficients, and the transform coefficients are
then fused based on a certain fusion rule. Finally, the fusion coefficients are inversely transformed to
reconstruct the fused image.
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The inchoate spatial domain fusion methods average source images pixel-by-pixel, which usually
causes unsatisfactory results, such as blurry details and low-grade contrast. In order to overcome
these drawbacks, some block-based [10,11] and region-based methods [12,13] have been proposed
in recent years. The core principle is to select image blocks or regions from source images on the
basis of some focus measure metrics [14], such as gradient energy, spatial frequency, image variance,
etc. The block-based image fusion methods have a simple process of segmentation and calculation,
but the segmentation size directly affects the discrimination of the image block clarity, which easily
produces a “block effect”. The image fusion methods based on region segmentation are modified.
According to the characteristics of image focus information distribution, sophisticated segmentation
algorithms are used to split the images to be fused, which can determine the position of the focus
region accurately and improve the quality of image fusion. Nevertheless, due to the complexity of the
segmentation algorithm used, the efficiency of fusion methods is not high in practical applications.
In the last few years, some state-of-the-art algorithms have been presented, such as guided filtering
(GF) [15], image matting (IM) [16], and the bilateral filter [17]. To some extent, these methods can not
only extract the focused area from the source images more accurately but also maintain consistency
with the image source.

The essence of the sparse representation model is a more compact representation of important
information in natural signals with a handful of elements. In view of the efficient representation of
the sparse representation model, the model is diffusely used in target tracking, face recognition, and
image denoising. Numerous multi-focus image fusion methods based on sparse representation have
also been proposed [18–24]. For instance, Yang and Li first applied SR to multi-focus image fusion.
The method uses the smooth window technique to divide the images to be fused into several image
blocks and solves the sparse coefficients using the L1 norm. Finally, these coefficients are merged
according to the maximum selection fusion rule to reconstruct the fused image [18]. On this basis,
the authors used the synchronous orthogonal matching tracking sparse coding algorithm (SOMP) in
the multi-focus image fusion process, which can cause different images that need to be fused to use the
same atom for sparse representation to improve the algorithm performance and fusion efficiency [19].
Furthermore, Chen Li et al. combined sparse representation theory with other fusion algorithms
for multi-focus image fusion. However, the algorithm has a large amount of sparse decomposition
calculation and a high time requirement [20]. Subsequently, Liu et al. attempted to combine MST with
the sparse representation model. The proposed fusion structure overcomes the original defects and
can be applied to the fusion processing of multiple multi-focus images. However, the algorithm still
failed to effectively reduce the computational complexity, and there were still difficulties in practical
applications [21]. They also applied the adaptive sparse representation model to image denoising [22].
In [23], the SR model with dictionary learning was used in multi-focus image fusion. A large number
of experiments have shown that the fusion methods based on sparse representation are better than
the multiscale transformation methods. Nevertheless, as with most existing methods, existing fusion
methods based on sparse representation also have potential degradation problems, such as blocking
artifacts, artificial edges, and ringing effects.

Finally, the image fusion methods are mainly realized by artificial neural networks. Among them,
the pulse-coupled neural network (PCNN) is a cat neural cortex-based biological neural network
proposed by Eckhorn et al. [25], which is widely used in various image processing fields, including
image fusion. Researchers have developed PCNN-based multi-focus image fusion methods in the
multiscale transform domain [26–28] or directly in the spatial domain [29]. The most significant
advantage of the PCNN-based fusion method is that its information processing model can simulate
the human visual system so that a fusion image conforming to human visual characteristics can be
obtained. However, the fusion performance of the PCNN model is often affected by its large number of
free parameters, which makes it less stable. In addition, Liu et al. proposed a multi-focus image fusion
method based on a deep convolutional neural network (CNN) [30]. It uses a high-quality image patch
training deep convolutional neural network and its fuzzy version to encode the mapping, which can
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jointly generate activity level measurement and fusion rules and overcome some difficulties faced by
certain existing fusion methods.

Based on the analysis and research of existing multi-focus image fusion methods, we propose
a new multi-focus image fusion method based on decision map and sparse representation (DMSR),
which can not only satisfy the requirements of the visual effect and fusion performance but also
make the algorithm robust and adaptive. In our framework, the advantages of fusion methods based
on the decision map and sparse representation are combined. Considering that the human visual
system does not require much detail in identifying the focused and defocused area of the source
images, we generated a sparsity graph using low-scale images of the source images. In the existing
multi-focus image fusion methods based on the decision map, each pixel is strictly defined as focused
or defocused, which inevitably leads to erroneous judgment in the decision map. In particular, the
pixels of the uncertain region are difficult to determine simply as focus or defocus. In order to avoid
this defect, we analyzed the sparseness of the corresponding points in the sparsity graph and divided
each pixel into three categories—focused, defocused, and uncertain—to generate the initial decision
map. Then, the spatial frequency method was used to further divide each point in the uncertain
region of the initial decision map into focused or defocused points, and the final decision map was
determined. After obtaining the fused image based on the final decision map, the transitional area of
the source images was detected according to the final decision map, and the area was processed by
the multi-focus image fusion algorithm based on the sparse representation to obtain the transitional
area fusion result. Finally, the fused image based on the final decision map and the transitional area
fused image were averaged to obtain the final fused image. In order to verify the effectiveness of the
proposed method, we performed a large number of experiments using two data sets based on the three
target quality indicators. The experimental results show that our method is superior to the other five
methods, both in terms of visual effect and quantitative evaluation.

The remainder of this paper is organized as follows. Section 2 describes the specifics of our
proposed method. The experimental results, a comparison with the state-of-the-art methods and
objective evaluations are demonstrated in Section 3. Finally, Section 4 is the conclusion of this paper.

2. Proposed Fusion Scheme

The newly proposed multi-focus image fusion framework is shown in Figure 1. Obviously, the
fusion method consists of two main steps: generating a decision map and performing fusion. In the
first step, multi-focus feature analysis of the low-scale images of the two source images is performed
to obtain the corresponding clarity score maps. Then, they are normalized to get the initial decision
map, and the spatial frequency method is used to obtain the final decision map. Section 2.1 details
the creation of the score maps, and the specific process for further obtaining the initial decision map
and the final decision map are described in Section 2.2. In the second step, the fused image based on
the final decision graph and the transitional area fused image are obtained, respectively, and the two
images above are averaged to obtain the final fused image. Among them, the fusion process of the
transitional area is based on sparse representation, which is elaborated in Section 2.3.



Appl. Sci. 2019, 9, 3612 4 of 17

Appl. Sci. 2019, 9, x FOR PEER REVIEW 3 of 18 

which can not only satisfy the requirements of the visual effect and fusion performance but also make 
the algorithm robust and adaptive. In our framework, the advantages of fusion methods based on 
the decision map and sparse representation are combined. Considering that the human visual system 
does not require much detail in identifying the focused and defocused area of the source images, we 
generated a sparsity graph using low-scale images of the source images. In the existing multi-focus 
image fusion methods based on the decision map, each pixel is strictly defined as focused or 
defocused, which inevitably leads to erroneous judgment in the decision map. In particular, the pixels 
of the uncertain region are difficult to determine simply as focus or defocus. In order to avoid this 
defect, we analyzed the sparseness of the corresponding points in the sparsity graph and divided 
each pixel into three categories—focused, defocused, and uncertain—to generate the initial decision 
map. Then, the spatial frequency method was used to further divide each point in the uncertain 
region of the initial decision map into focused or defocused points, and the final decision map was 
determined. After obtaining the fused image based on the final decision map, the transitional area of 
the source images was detected according to the final decision map, and the area was processed by 
the multi-focus image fusion algorithm based on the sparse representation to obtain the transitional 
area fusion result. Finally, the fused image based on the final decision map and the transitional area 
fused image were averaged to obtain the final fused image. In order to verify the effectiveness of the 
proposed method, we performed a large number of experiments using two data sets based on the 
three target quality indicators. The experimental results show that our method is superior to the other 
five methods, both in terms of visual effect and quantitative evaluation. 

The remainder of this paper is organized as follows. Section 2 describes the specifics of our 
proposed method. The experimental results, a comparison with the state-of-the-art methods and 
objective evaluations are demonstrated in Section 3. Finally, Section 4 is the conclusion of this paper. 

2. Proposed Fusion Scheme 

The newly proposed multi-focus image fusion framework is shown in Figure 1. Obviously, the 
fusion method consists of two main steps: generating a decision map and performing fusion. In the 
first step, multi-focus feature analysis of the low-scale images of the two source images is performed 
to obtain the corresponding clarity score maps. Then, they are normalized to get the initial decision 
map, and the spatial frequency method is used to obtain the final decision map. Section 2.1 details 
the creation of the score maps, and the specific process for further obtaining the initial decision map 
and the final decision map are described in Section 2.2. In the second step, the fused image based on 
the final decision graph and the transitional area fused image are obtained, respectively, and the two 
images above are averaged to obtain the final fused image. Among them, the fusion process of the 
transitional area is based on sparse representation, which is elaborated in Section 2.3.  

AI

BI

Binarization 
and 

Normalization

Low-scale 
Image Multi-
Focus Feature 

Analysis

Uncertain Region 
Division

AS

BS
D D

 
(a) 

Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 18 

Fusion Based on 
Decision MapAI

BI
Fusion Based on 

Sparse 
Representation

Mean 
Operation

D

R

FI

FV FI

 

(b) 

Figure 1. Framework of the proposed fusion algorithm. (a) The process of generating the decision 
map; (b) fusion process. 

2.1. Clarity Score Map 

Firstly, wavelet decomposition is performed on the two multi-focus source images by a wavelet 
basis, and four low-frequency sub-band images of horizontal low-frequency and vertical low-
frequency (LL), horizontal low-frequency and vertical high-frequency (LH), horizontal high-
frequency and vertical low-frequency (HL), and horizontal high-frequency and vertical high-
frequency (HH) are obtained, respectively. Among them, the LL low-frequency sub-band images still 
maintain the overview and spatial characteristics of the source images and are suitable for the 
analysis and extraction of the subsequent source image focusing features, so they are selected as the 
low-scale images of the algorithm, as shown in Figure 2c,d. Next, the sparse representation of low-
scale images is carried out, and the corresponding sparsity graphs are generated. Finally, two 
corresponding clarity score maps are obtained by the image block-based clarity measurement 
method. The main steps of creating clarity score maps are described as follows: 

• The low-scale versions of source images LL
AI , LL

BI  H WR ×∈  are divided into n n×  image 
patches using the smooth window technique from top left to bottom right, and the sliding step 

is one. All patches are reshaped into n dimensional column vectors { }
1

Ni
A i

v
=

 and { }
1

Ni
B i

v
=

 

( , , ( 1) ( 1))i i n
A Bv v R N H n W n∈ = − + ∗ − +  via lexicographic ordering. 

• Given the global dictionary ( )n KR n K×Φ ∈ << , each column vector can be represented by the 

sparse coefficient vector { }
1

Ni
A i

x
=

 and { }
1

Ni
B i

x
=

 ( , )i i K
A Bx x R∈  with the orthogonal matching 

pursuit (OMP) sparse coding algorithm. The L1 norms of the sparse coefficient vector { }
1

Ni
A i

x
=

 

and { }
1

Ni
B i

x
=

 are calculated and reshaped to obtain the sparsity graphs AE  and BE  
( 1) ( 1)H n W nR − + × − +∈ . 

• Two score maps AS  and BS  H WR ×∈  are initialized with all zeroes. For a given pixel ( , )i ix y  in 
the sparsity graph E , its value measures the activity level of the pixel’s down-right corner 

n n×  image patch. For each corresponding pair of n n×  image patches, i
Ae  and i

Be  in 
the sparsity graphs, the sum of all the clarity values is calculated as follows: 

1 1

0 0
( , )n ni

i iu v
M E x u y v− −

= =
= + +   (1) 

where i
AM  and i

BM  denote the sum values, respectively. If i i
A BM M≥ , each score value 

within the n n×  corresponding patch is centered at ( , )i ix n y n+ +  in the clarity score 

Figure 1. Framework of the proposed fusion algorithm. (a) The process of generating the decision map;
(b) fusion process.

2.1. Clarity Score Map

Firstly, wavelet decomposition is performed on the two multi-focus source images by a wavelet
basis, and four low-frequency sub-band images of horizontal low-frequency and vertical low-frequency
(LL), horizontal low-frequency and vertical high-frequency (LH), horizontal high-frequency and
vertical low-frequency (HL), and horizontal high-frequency and vertical high-frequency (HH) are
obtained, respectively. Among them, the LL low-frequency sub-band images still maintain the overview
and spatial characteristics of the source images and are suitable for the analysis and extraction of
the subsequent source image focusing features, so they are selected as the low-scale images of the
algorithm, as shown in Figure 2c,d. Next, the sparse representation of low-scale images is carried out,
and the corresponding sparsity graphs are generated. Finally, two corresponding clarity score maps
are obtained by the image block-based clarity measurement method. The main steps of creating clarity
score maps are described as follows:

• The low-scale versions of source images ILL
A , ILL

B ∈ RH×W are divided into
√

n ×
√

n image
patches using the smooth window technique from top left to bottom right, and the sliding

step is one. All patches are reshaped into n dimensional column vectors
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are calculated and reshaped to obtain the sparsity graphs EA and EB ∈ R(H−

√
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√
n+1).

• Two score maps SA and SB ∈ RH×W are initialized with all zeroes. For a given pixel (xi, yi) in the
sparsity graph E, its value measures the activity level of the pixel’s down-right corner

√
n×
√

n
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image patch. For each corresponding pair of
√

n×
√

n image patches, ei
A and ei

B in the sparsity
graphs, the sum of all the clarity values is calculated as follows:

Mi =

√
n−1∑

u=0

√
n−1∑

v=0

E(xi + u, yi + v) (1)

where Mi
A and Mi

B denote the sum values, respectively. If Mi
A ≥Mi

B, each score value within the
√

n×
√

n corresponding patch is centered at
(
xi +

√
n, yi +

√
n) in the clarity score map SA add

one, and vice versa, as shown in Figure 3. In addition, the total times of the comparison between
each corresponding pair of patches are recorded in a weight map W.

• Further, the clarity score maps SA and SB are normalized by averaging W at each pixel location.
The resulting clarity score maps are shown in Figure 2e,f.
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2.2. Decision Map

The above clarity score maps are binarized by a given threshold K1 and denoted as S′A and S′B,
as shown in Figure 4a,b (the focused pixels are marked as yellow, defocused pixels are marked as blue).
It can be observed that there may be some misjudgment areas caused by misclassification in the focused
area or the defocused area. Morphological techniques are used to filter out these misclassifications to
obtain the standard normalized clarity score maps. The results are shown in Figure 4c,d and denoted
as S′′A and S′′B . Thus, we can determine the location of the uncertain area when the focused areas of
Figure 4c,d overlap.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 18 

2.2. Decision Map 

The above clarity score maps are binarized by a given threshold 1K  and denoted as '
AS  and 

'
BS , as shown in Figure 4a,b (the focused pixels are marked as yellow, defocused pixels are marked 

as blue). It can be observed that there may be some misjudgment areas caused by misclassification in 
the focused area or the defocused area. Morphological techniques are used to filter out these 
misclassifications to obtain the standard normalized clarity score maps. The results are shown in 
Figure 4c,d and denoted as ''

AS  and ''
BS . Thus, we can determine the location of the uncertain area 

when the focused areas of Figure 4c,d overlap. 
 

   

(a) (c) (e) 

   
(b) (d) (f) 

Figure 4. (a) Binarized clarity score map '
AS ; (b) binarized clarity score map '

BS ; (c) standard 

normalized clarity score map ''
AS ; (d) standard normalized clarity score map ''

BS ; (e) initial decision 

map D ; (f) final decision map D . 

Finally, the initial decision map is obtained by 

'' ''

'' ''

1, if ( , ) 1 and ( , ) 0
( , ) 0, if ( , ) 0 and ( , ) 1

0.5, otherwise

A B

A B

S x y S x y
D x y S x y S x y

 = =


= = =



  (2) 

as shown in Figure 4e, where the white pixels indicate the uncertain area. In order to make the size 
of the decision map consistent with the source images, the upsampling operation is also carried on 
to the initial decision map. 

The next target is to generate the final decision map. As mentioned above, there is still an 
uncertain area in the initial decision map D . To obtain the final decision map, further analysis and 
processing of the uncertain area is needed. We use the spatial frequency method to divide the pixels 
of the uncertain area in the initial decision map D  into two categories—focused and defocused—to 
obtain the final decision map containing only the focused area and the defocused area. The spatial 
frequency method can be described as 

2 2( , ) ( ) ( )x ySF x y I I
Ω Ω

= ∇ + ∇   (3) 

Figure 4. (a) Binarized clarity score map S′A; (b) binarized clarity score map S′B; (c) standard normalized

clarity score map S′′A; (d) standard normalized clarity score map S′′B ; (e) initial decision map D̃; (f) final
decision map D.

Finally, the initial decision map is obtained by

D̃(x, y) =


1, if S′′A(x, y) = 1 and S′′B (x, y) = 0
0, if S′′A(x, y) = 0 and S′′B (x, y) = 1

0.5, otherwise
(2)

as shown in Figure 4e, where the white pixels indicate the uncertain area. In order to make the size of
the decision map consistent with the source images, the upsampling operation is also carried on to the
initial decision map.

The next target is to generate the final decision map. As mentioned above, there is still an uncertain
area in the initial decision map D̃. To obtain the final decision map, further analysis and processing of
the uncertain area is needed. We use the spatial frequency method to divide the pixels of the uncertain
area in the initial decision map D̃ into two categories—focused and defocused—to obtain the final
decision map containing only the focused area and the defocused area. The spatial frequency method
can be described as

SF(x, y) =
√x

Ω

(5xI)2 +

√x

Ω

(5yI)2 (3)

where I is the input image, Ω is a 7 × 7 window centered on the point (x, y), and 5x and 5y represent
the horizontal and vertical differences of the pixel points, respectively. The larger the spatial frequency
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value, the higher the clarity value of the point. Thus, points in the uncertain area of the initial decision
map D̃ can be classified according to the following decision rules:

D̃(x, y) =
{

1, if SFA(x, y) > SFB(x, y)
0, otherwise

. (4)

Assuming that the spatial frequency values of the corresponding uncertain pixel points in the two
source images are SFA(x, y) and SFB(x, y), respectively, and SFA(x, y) > SFB(x, y), the pixel point can
be determined as the focus point, and vice versa. Based on this, the final decision map D can be
obtained, as shown in Figure 4f.

2.3. Fusion

Based on the final decision map D, the fused image ĨF can be simply obtained by

ĨF(x, y) = D(x, y)IA(x, y) + (1−D(x, y))IB(x, y). (5)

However, in this way, the pixels in the transitional area are actually averaged. This can cause undesirable
effects such as the edge-blocking effect and artificial-edge effect. In order to suppress these effects at
the same time, it is considered that the pixel classification of the transitional area has the following
difficulties: the difference in the clarity of the pixels is small, the gray change is irregular, and the
traditional classification methods have difficulty with accurate division. For the transitional area,
we choose the fusion method based on sparse representation. The determination of the transitional
area and the specific fusion algorithm are as follows:

• The boundary line of the final decision map D is centered, the appropriate radius (3–5 pixels) is
set, and the corresponding rectangular area is delineated as the transitional area R.

• Via smooth window technology, each source image is divided into image blocks of size
√

n×
√

n;
image blocks containing transitional area pixels are converted into column vectors, and all column
vectors constitute a vector matrix V ∈ Rn×p (p is the total number of image patches intersecting the
transitional area). At the same time, the matrix Λ is used to record the initial spatial position of
each column vector.

• For the j-th patches v j
A and v j

B (1 ≤ j ≤ p), the discrete cosine (DC) components dc j
A and dc j

B are

extracted first, and then we get v′ jA and v′ jB with no DC component.

• The sparse coefficients of each vector in the vector matrix V′A and V′B are calculated by the sparse
coding algorithm OMP, and the corresponding sparse coefficient matrices CA and CB are obtained.
Then, each coefficient vector is processed according to the maximum pooling principle:

c j
F(τ) = c j

Γ̂
(τ), Γ̂ = arg max

Γ=A,B

(∣∣∣∣c j
Γ(τ)

∣∣∣∣) (6)

where j is the column index of the sparse coefficient matrix, and τ is the index of the atom in the
dictionary Φ.

• The fused vector V′F without the DC components is obtained by

V′F = ΦCF (7)

The fused DC component obeys the following rule:

dc j
F =


dc j

A+dc j
B

2 , if 0.85 ≤

∣∣∣∣∣∣ dc j
A

dc j
B

∣∣∣∣∣∣ ≤ 1.15

min(dc j
A, dc j

B), otherwise
(8)
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• The fused vector v j
F is determined as follows:

v j
F = v′ jF + dc j

F · 1 (9)

where each column vector v j
F in VF is reshaped into a block with size

√
n×
√

n and then overlaid
at its recorded position in Λ.

• Finally, the transitional area fused image VF based on the sparse representation and the fused
image ĨF based on the final decision map are averaged to generate the final fused image IF.
As shown in Figure 5, compared with the fused image ĨF based on the final decision map, our final
fused image IF is significantly clearer at the “brim edge” and “sweater texture”.
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On the fifth step of the algorithm, most of the existing fusion methods calculate the fused DC
components using a simple average. However, this easily produces fuzzy effects around some strong
edges due to the great change in brightness. The main reason for this is that the energy of the region with
high brightness diffuses into the region with low brightness when losing focus. Therefore, we modify
the fusion rule for DC components. When the DC components from different source images are close
to each other, we choose the average operation; otherwise, the minimal DC component is selected.

3. Experiment and Analyses

This section verifies the effectiveness of the proposed method by experimenting with different
types of source images. The fusion results of the proposed method are compared with several existing
fusion algorithms, including DCHWT [6], SOMP [19], GF [15], IM [16], and CNN [30].

3.1. Source Images

The experiment was performed on two image datasets. The first one included eight pairs of
popular multi-focus source images, as shown in Figure 6 [31]. The other one was composed of 20 pairs
of color multi-focus images selected from the Lytro picture gallery, as shown in Figure 7 [32].
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3.2. Parameter Setting

The 8 × 8 image patches were used in the computation of sparse coefficients for each pixel location.
Besides that, the block size of the sliding window used for clarity level comparison in the clarity score
map was also fixed to 8 × 8. The threshold K1 for binarizing clarity score maps was set as K1= 0.65.
The overcomplete dictionary Φ used in sparse representation had a size of 64 × 256, which was trained
globally from a large set of natural images. The residue error of the SOMP algorithm was set as ε= 5.
The DCHWT method was implemented based on multiscale transform toolboxes downloaded from
MATLAB Central [33], and its level of wavelet decomposition was set to 4. The codes for the GF and
IM methods can be found on Xu Dongkang’s homepage [34], and the codes for the NSCT-PCNN
are available on Qu Xiaobo’s homepage [35]. The parameters of these methods were set to their
recommended values.

3.3. Objective Evaluation Metrics

To evaluate the fusion quality of different fusion methods, three fusion quality metrics were
utilized in our experiment. The large value of the fusion quality metric indicates better fusion quality.

1. Normalized mutual information (MI), QMI [36]: QMI is used to overcome the deficit of MI [37].
QMI is defined as

QMI = 2
[

MI(A, F)
H(A) + H(F)

+
MI(B, F)

H(B) + H(F)

]
(10)

where H(X) is the entropy of image X, and MI(X, Y) is the mutual information between image
X and Y. The QMI measures the amount of information in the fused image inherited from the
source images.

2. Petrovic’s metric, QAB/F [38]: QAB/F evaluates the fusion performance by measuring the amount
of gradient information transferred from source images into the fused image. It is calculated by

QAB/F =

∑
i, j

(
QAF(i, j)WA(i, j) + QBF(i, j)WB(i, j)

)
∑

i, j(WA(i, j) + WB(i, j))
(11)

where QAF(i, j) = QAF
g (i, j) · QAF

o (i, j). QAF
g (i, j) and QAF

o (i, j) are the grad magnitude and
orientation at pixel location (i, j), respectively. QBF is computed similarly to QAF. WA(i, j) and
WB(i, j) are the weights of QAF(i, j) and QBF(i, j), respectively.

3. The quality index, visual information fidelity for fusion (VIFF) [39]: This is a multiresolution
image fusion metric based on visual information fidelity. To calculate the VIFF, the images are
divided into blocks in each sub-band, and visual information in each block is measured using
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different models, including the Gaussian scale mixture (GSM) model, the HVS model, and the
distortion model. The VIFF of each sub-band is then calculated, and an overall quality measure is
determined by weighting.

3.4. Experimental Results and Discussions

3.4.1. Evaluation on Popular Multi-Focus Images

In this section, we demonstrate the advantages of the proposed method (DMSR) on popular
multi-focus images. An example, the fused images of the “Lab” pair (640 × 480) using different fusion
methods is presented in Figure 8c–h. The “Lab” source images are shown in Figure 8a,b. For better
comparison, we also present the normalized difference images between the correctly focused source
image and the fusion results in Figure 9. It can be observed that the fused images obtained by DCHWT
or SOMP methods showed serious artifacts and visible fake edges around the “man”. The GF method
had ringing artifacts and blurring effects near the “men”. The IM method suffered from blurring
effects near the “men’s hair”. The CNN method could achieve better fusion quality, but some small
defects could still be found with careful observation, such as imperceptible artificial flaws on the “table”
(see the lower middle in Figure 9e). Comparatively, the DMSR produced the best fused image.
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Another example, the fusion results of the “Flowerpot” image pair (944 × 736) are shown in
Figure 10c–h. The normalized difference images between the correctly focused source image and
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the fusion results are shown in Figure 11. Similar to the previous example, the DCHWT and SOMP
method produced serious artifacts around the “horologe”. The fused image obtained by the GF method
suffered from a ringing effect, and the edges of the “horologe” were blurred. The results of the IM
method also showed similar artifacts near the “horologe”. Although the CNN method performed well
overall, it exposed obvious artifacts on the “ground” and the “wall” of the fused image. Comparatively,
the DMSR method exhibited the best visual quality.
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Figure 11. Normalized difference images between each of the fused images and Figure 10b.

To evaluate fusion performance more objectively, each pair of popular multi-focus images was
fused by six fusion methods. The values of metrics QMI, QAB/F, and VIFF were calculated and are
recorded in Table 1, with the best results indicated in bold. It can be seen that the DMSR method
outperformed all other methods and won in almost all the quality metrics.

Table 1. Quantitative assessments of different image fusion methods for popular multi-focus images.

Source
Images Metric

Method
DCHWT [6] SOMP [19] GF [15] IM [16] CNN [30] DMSR

Pepsi
QMI 1.1167 0.9030 1.2164 1.3080 1.2911 1.3033

QAB/F 0.7315 0.6666 0.7510 0.7550 0.7591 0.7583
VIFF 0.9273 0.9235 0.9498 0.9335 0.9511 0.9543

Clock
QMI 1.0417 0.8485 1.1509 1.1837 1.2058 1.2351

QAB/F 0.7165 0.6510 0.7427 0.7429 0.7464 0.7478
VIFF 0.9279 0.9235 0.9404 0.9322 0.9432 0.9469

Lab
QMI 1.0611 0.9481 1.1928 1.2221 1.2363 1.2583

QAB/F 0.7162 0.6708 0.7552 0.7506 0.7573 0.7584
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Table 1. Cont.

Source
Images Metric

Method
DCHWT [6] SOMP [19] GF [15] IM [16] CNN [30] DMSR

VIFF 0.8880 0.8642 0.9190 0.9112 0.9166 0.9182

Flowerpot
QMI 0.8935 0.8142 1.0215 1.0969 1.1539 1.1248

QAB/F 0.6706 0.6484 0.7252 0.7269 0.7326 0.7345
VIFF 0.8309 0.8450 0.8827 0.8891 0.8911 0.8913

Bookcase
QMI 0.9266 0.7737 1.0271 1.0943 1.1104 1.1353

QAB/F 0.6791 0.6374 0.7290 0.7246 0.7342 0.7357
VIFF 0.8600 0.8592 0.8820 0.8781 0.8800 0.9322

Leaf
QMI 0.7825 0.5467 0.8843 0.9883 0.9055 1.0241

QAB/F 0.7176 0.6447 0.7358 0.7386 0.7342 0.7353
VIFF 0.8049 0.8234 0.8071 0.8097 0.8103 0.8333

Book
QMI 1.1069 0.8243 1.1702 1.2093 1.2331 1.2739

QAB/F 0.7061 0.6273 0.7262 0.7228 0.7277 0.7279
VIFF 0.8501 0.8320 0.8497 0.8584 0.8496 0.8502

Flower
QMI 0.9139 0.6207 1.0960 1.1206 1.1263 1.1404

QAB/F 0.6969 0.6239 0.7175 0.7114 0.7183 0.7143
VIFF 0.9192 0.9150 0.9295 0.9243 0.9297 0.9318

3.4.2. Evaluation on Lytro Image Dataset

The Lytro image dataset was composed of 20 color multi-focus image pairs of the same size
(520 × 520). For visual evaluation, the fused results of the “Lytro17” image pair obtained by different
fusion methods are demonstrated in Figure 12. In order to observe the fusion effect of the transitional
area more intuitively, some details of the puppy have been intercepted and enlarged. The DCHWT
method still exhibited undesirable ringing artifacts around the head, as shown in Figure 12c. The same
phenomenon can also be seen in Figure 12d,e,g. As shown in the close-up views of Figure 12f, the IM
method suffered from severe blurring effects and false edges. Comparatively, the DMSR methods
produced ideal fusion images without perceptible artifacts along the focus boundary.
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Further, the quantitative assessments of the six methods are shown in Figure 13. The charts show
that the proposed method outperformed the others and obtained the best quality metrics.
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3.4.3. Evaluation on Three Multi-Focus Images

Our method was also suitable for more than two multi-focus images. The three source images for
“Toy” (512 × 512) are shown in Figure 14a–c, and close-up views are shown at the bottom for better
observation. Figure 14d,e show that the fused images obtained by the DCHWT and SOMP methods
showed serious blurring effects at the “ball” in the right corner. The GF fusion method produced
jagged edges around the “puppet”, as shown in Figure 14f. The IM fusion method exhibited slight
blurry artifacts in the upper-right corner of the “ball”, as shown in Figure 14g. Compared with other
methods, the CNN and DMSR performed well. As shown in Figure 14h,i, all focused areas from the
source images were merged into the fusion image with imperceptible artifacts. The values of QMI,
QAB/F, and VIFF for various fusion methods are presented in Table 2, with the best results indicated
in bold.
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/AB FQ , and VIFF for various fusion methods are presented in Table 2, with the best results indicated 
in bold. 
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Table 2. Quantitative assessments of different image fusion methods for three multi-focus images.

Metric
Method

DCHWT [6] SOMP [19] GF [15] IM [16] CNN [30] DMSR

QMI 1.1272 0.8180 1.1943 1.1943 1.2561 1.2588
QAB/F 0.7452 0.6743 0.7586 0.7409 0.7554 0.7605
VIFF 0.9288 0.8720 0.9560 0.9531 0.9600 0.9631

4. Conclusions

In this paper, we propose a new multi-focus image fusion method based on decision map and
sparse representation. By generating the initial decision map by focusing on feature analysis for
low-scale images, not only can the performance be guaranteed but the computational complexity can
also be effectively reduced. Aiming at the characteristics of difficult decisions in the transitional area,
we used the fusion algorithm based on sparse representation to directly fuse this and effectively reduce
the error caused by incorrect judgment while ensuring the quality of fusion. In addition, the fusion
method is also generalized to be capable of fusing more than two images. Experimental results show
that the fusion method proposed in this paper has better fusion quality than other methods, both in
terms of visual perception and objective measurement. In the future, we plan to evaluate whether the
method proposed here can be applied to multi-focus image fusion in dynamic scenes.
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