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Abstract: All real-world systems are affected by the saturation phenomenon due to inherent physical
limitations of actuators. These limitations should be taken into account in the controller’s design to
prevent a possibly severe deterioration of the system’s performance, and may even lead to instability
of the closed-loop system. Contrarily to most of the control strategies, which assume that the
saturation limits are constant in time, this paper considers the problem of designing a state-feedback
controller for a system affected by time-varying saturation limits with the objective to improve the
performance. In order to tie variations of the saturation function to changes in the performance of
the closed-loop system, the shifting paradigm is used, that is, some parameters scheduled by the
time-varying saturations are introduced to schedule the performance criterion, which is considered
to be the instantaneous guaranteed decay rate. The design conditions are obtained within the
framework of linear parameter varying (LPV) systems using quadratic Lyapunov functions with
constant Lyapunov matrices and they consist in a linear matrix inequality (LMI)-based feasibility
problem, which can be solved efficiently using available solvers. Simulation results obtained using an
illustrative example demonstrate the validity and the main characteristics of the proposed approach.

Keywords: LPV Systems; LPV control; Input saturation

1. Introduction

The phenomenon of saturation affects all real-world systems due to the inherent physical
limitations of actuation devices. Designing a control system without taking into account the presence
of saturation may lead to severe deterioration of the performance and even to instability of the
closed-loop system. For this reason, this issue has been investigated by several control theorists,
with recent results such as those reported in References [1–7]. Existing solutions may be divided into
two categories—anti-windup compensation [8], where a compensator is added to an already designed
controller in order to handle the saturation constraints and direct control design [9], in which the input
constraints are considered at the controller design stage.

In the vast literature addressing the saturation problem, the assumption that the saturation limits
are constant in time is made, to the best of the authors’ knowledge. For example, this assumption can
be found in Reference [10], where the region of attraction of a saturated linear parameter varying (LPV)
system with bounded parameter variations is optimized by means of parameter-dependent Lyapunov
functions, generalized sector conditions and a static output-feedback controller. The same assumption
holds in Reference [11], where the idea is to approximate the region of attraction using the concept of
quadratic boundedness, such that off-line optimization algorithms are presented to design a saturated
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dynamic output feedback controller for an LPV system with bounded disturbance. On other hand,
in Reference [12] the saturation phenomenon is included in the design problem of an H∞ dynamic
output-feedback controller for a class of uncertain discrete stochastic nonlinear time-varying systems
using the recursive linear matrix inequality (RLMI) approach, thus obtaining a suitable algorithm for
online applications.

However, from a practical viewpoint, it makes sense to consider time-varying saturation limits.
They could arise in control systems due to several reasons, such as the natural wear of engines and
devices, that would provide a progressively decreasing actuation signal or temporary shortages in the
availability of electrical or pneumatic power. Moreover, in trajectory tracking problems, the control
signal is usually obtained as the sum of a feedforward and a feedback component. When a time-varying
trajectory is considered, the feedforward component changes in time, which would be perceived by
the feedback controller as a time-varying saturation.

The main goal of this paper is to propose a methodology for designing state-feedback controllers
that take into account time-varying input saturations. It makes sense that a change in the saturation
function should be tied to a change in the performance achieved by the closed-loop control system
(e.g., if the maximum possible input decreases, the system’s response should become slower). For this
reason, the time-varying saturation limits are addressed using shifting specifications, following some
ideas found, for example, in References [13,14]. This means that some parameters are introduced
which, on the one hand, they are scheduled by the time-varying saturations and, on the other hand,
they schedule the performance criteria in such a way that different values of these parameters imply
different performances (in this paper, we will consider the guaranteed decay rate but the developed
results can be extended straightforwardly to other criteria, for example, pole clustering or H∞/H2

guaranteed bounds).
The direct consequence of introducing the above mentioned scheduling parameters is that

the closed-loop system becomes a parameter-varying system and the design conditions can be
determined within the framework of linear parameter varying (LPV) systems [15,16]. Notably,
many nonlinearities can be represented as varying parameters that depend on endogenous signals,
for example, states and inputs [17], which broadens the applicability of the design methodology to
nonlinear plants. Examples of successful applications of the LPV paradigm are—wind turbines [18],
vehicles [19,20] and drones [21].

As in Reference [13], the proposed approach is obtained using quadratic Lyapunov functions with
constant matrices and, therefore, the results might be somehow conservative when compared to other
types of Lyapunov functions, for example, parameter-dependent [22] or piecewise [23], which lead
to more complex mathematical calculations and are beyond the scope of this paper. The final design
procedure is developed using the theory of ellipsoidal invariant sets [24]. It consists on a linear matrix
inequality (LMI)-based feasibility problem, which can be solved efficiently using available solvers (the
reader is referred to Reference [25] for a tutorial on the application of LMIs to LPV analysis and design
problems).

This paper is structured as follows. In Section 2, the problem statement is introduced. In Section 3,
the procedure for controller design with constant saturation is given. In Section 4, the proposed
methodology is adapted to the case of time-varying input saturation. Section 5 presents an illustrative
example with simulation results. Finally, Section 6 summarizes the main conclusions and discusses
possible future work.

2. Problem Statement

Let us consider a continuous-time LPV system

ẋ(t) = A(θ(t))x(t) + B(θ(t))u(t),

y(t) = C(θ(t))x(t) + D(θ(t))u(t),
(1)
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where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input vector and θ(t) ∈ Θ ⊂ Rnθ is the scheduling
parameter vector, with Θ known, closed and bounded set. Matrices A(θ(t)), B(θ(t)), C(θ(t)) and
D(θ(t)) are the parameter-dependent state, input, output and feedforward matrices, respectively.

The polytopic representation of (1) is used throughout this paper. In this representation,
the system’s matrices are defined as a weighted sum of matrices that represent the system in the
N vertices of a polytope that contains Θ

ẋ(t) =
N

∑
i=1

µi(θ(t))(Aix(t) + Biu(t)),

y(t) =
N

∑
i=1

µi(θ(t))(Cix(t) + Diu(t)),

(2)

where matrices Ai, Bi, Ci and Di define the so-called vertex systems and µi are the coefficients of the
polytopical decomposition that satisfy

N

∑
i=1

µi(θ(t)) = 1, µi(θ(t)) ≥ 0, ∀i = 1, . . . , N. (3)

The time dependency of x, θ, y and u is dropped from now on and it will only be made explicit
when necessary. Also, without loss of generality, we consider the behaviour of the system starting
from a time instant t0 = 0. The extension to the case where t0 6= 0 is straightforward by means of a
simple translation of the time axis.

The following assumptions are made on (2):

Assumption 1. The state variables and the scheduling variables are measurable or can be estimated online.

Assumption 2. The input and output matrices are constant.

Assumption 3. System disturbances are not considered.

Assumption 4. The system (2) is stabilizable.

Remark 1. Note that Assumptions 1–3 are only made for the sake of keeping the mathematical complexity
somehow simpler and could be removed by extending the results presented in this paper taking into account
existing techniques in the literature. For instance, inexactly measured parameters were considered by
Reference [26]; the complexity arising from parameter-varying input and output matrices can be dealt with
using conditions based on Polya’s theorems [27]; disturbances can be considered under a quadratic boundedness
framework, see for example, Reference [28]. On the other hand, Assumption 4 is a necessary (not sufficient)
condition in order to solve the controller design problem described in this paper. Note that recent work has
suggested a practical test to assess this property in systems described by a polytopic representation [29].

Considering the above assumptions, the output equation can be neglected and (2) becomes

ẋ =
N

∑
i=1

µi(θ)Aix + Bu. (4)

In this paper, we consider the case in which the input signal is affected by a nonlinearity, such that
the change Bu→ Bsat(u) arises in (4), with sat(u) denoting a symmetric saturation

sat(u) =

{
sign(u)γ if | u |> γ

u if | u |≤ γ
, (5)
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where > and ≤ are meant element-wise and γ ∈ Rm
+ is the saturation limit value, which is considered

constant in Section 3 and time-varying within the interval [γj, γj] in Section 4.
The contribution of this work lies in proposing conditions to design an LPV state-feedback

controller that ensures the stability of the system (4). In order to obtain these conditions,
three ellipsoidal regions are established in the state domain—region E contains the set of allowed
initial conditions of the system; region V is defined by a quadratic Lyapunov function, whose unit
level curve contains E ; and, finally, region U corresponds to an ellipsoidal subset of the region of the
state space L, in which the input u is not saturated. These four regions satisfy the relation

E ⊆ V ⊆ U ⊆ L. (6)

On the basis of (6) a set of LMIs that provide conditions for the design of the LPV state-feedback
controller is obtained.

Remark 2. Note that the proposed design methodology considers the input to work only in its linear region,
which introduces additional conservativeness. This drawback could be alleviated by scheduling the controller
also with saturation indicator parameters, as suggested by Reference [30].

3. Design with Constant Input Saturation

Let us define the state-feedback control law for (4) as

u = K(θ)x =
N

∑
i=1

µi(θ)Kix, (7)

where K(θ) ∈ Rm×n is the parameter-dependent gain matrix and Ki ∈ Rm×n, i = 1, . . . , N denotes the
gain matrix for each vertex i.

Let us also define the region E as the one that determines the allowed initial states. It is defined
by means of matrix R � 0 as follows

E ={x ∈ Rn : xT Rx ≤ 1}. (8)

In order to consider exactly (5) within the design, polyhedral Lyapunov functions should be
considered, which adds computational complexity since the arising design conditions cannot be
expressed as LMIs. For this reason, let us consider an ellipsoidal maximal volume region U contained
in the hyper-rectangle described by (5), as follows

U = {u ∈ Rm : uTQu ≤ 1}, (9)

where Q = WΛWT , Q � 0, W is a rotation matrix that describes the axes orientation of the ellipsoid and

Λ =


1

γ1
2 . . . 0

...
. . .

...
0 . . . 1

γm2

 . (10)

Hereinafter, without loss of generality, we assume that W = I since in most of the cases the axes
of the ellipsoidal region U are aligned with the axes of the input space.

Note that the ellipsoid U , although defined in the input space, is mapped onto the state space as a
parameter-varying ellipsoid by means of the state-feedback control law, as follows

U (θ) = {x ∈ Rn : xTK(θ)TQK(θ)x ≤ 1}. (11)
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The following theorem provides the conditions to obtain the vertex gains Ki that ensure the
closed-loop stability with guaranteed decay rate α ∈ R+ of the system obtained as the interconnection
of (4) and (7).

Theorem 1. Consider the continuous time LPV system (4), the control law (7) and the regions E and U defined
in (8) and (11), respectively, with given matrices R � 0 and Q � 0, and a desired α ∈ R+. If x(0) ∈ E ,
there exist a symmetric matrix P � 0 and matrices Γi such that the following set of LMIs is feasible

P � 0, (12)

AiP + BΓi + PAi
T + Γi

T BT + 2αP ≺ 0, (13)[
P I
IT R

]
� 0, (14)

[
Q−1 Γi
Γi

T P

]
� 0, (15)

and the vertex gains of the LPV state-feedback controller are calculated as Ki = ΓiP−1. Then the closed-loop
system obtained as the interconnection of (4) and (7) is stable and has a guaranteed decay rate α. Moreover,
the control law u(t) computed as (7) is such that u ∈ U .

Proof. By defining the quadratic Lyapunov function, V(x) = xT P−1x, where P � 0, the closed-loop
stability inequality is obtained for each vertex i from the condition V̇(x) < 0

AiP + BΓi + PAi
T + Γi

T BT ≺ 0, ∀i = 1, . . . , N, (16)

where Γi is obtained by means of a change of variable, as follows

Γi = KiP. (17)

The term 2αP can be added to the inequalities (16) to ensure a guaranteed decay rate of the
derivative of the Lyapunov function, which can be used to tune the closed-loop transient properties [24],
thus obtaining (13).

Thereupon, let us introduce the ellipsoidal region V , which corresponds to the unit level curve of
the Lyapunov function V(x)

V ={x ∈ Rn : xT P−1x ≤ 1}. (18)

By introducing an inclusion relation between E and V , one can guarantee that, as long as the
system is working in the linear region of the saturation function, any state trajectory x(t) which starts
from an initial state contained in E will necessarily remain inside region V . In particular, the inclusion
E ⊆ V can be expressed by the following inequality

xT P−1x ≤ xT Rx, (19)

which, by means of appropriate manipulations, leads to

R− P−1 � 0, (20)

and, by means of Schur complements, leads to (14).
Finally, taking into account the inclusion V ⊆ U (θ), we can guarantee that any state trajectory

contained in the unit level curve of the Lyapunov function will also lie in the region of linearity of the
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actuators, such that no saturation occurs and, hence, convergence of x to 0 when t→ ∞ is ensured for
any x(0) ∈ V (hence, for any x(0) ∈ E ). In particular, the above inclusion is described by

xTKi
TQKix ≤ xT P−1x. (21)

Applying (17) to (21), the following inequality is obtained

P− Γi
TQΓi � 0, (22)

and applying the Schur complement to (22) one gets (15)

Remark 3. Note that the quadratic Lyapunov function used in the proof of the Theorem 1 introduces
conservativeness due to the constant matrix P. The conservativeness can be decreased by modifying V(x)
through a parameter-dependent matrix P(θ), although such modification would add computational complexity
to the LMI problem.

4. Design with Time-Varying Input Saturation

Following some ideas that appeared in Reference [13], we adapt the controller’s design to deal with
time-varying input saturation limits. In the proposed method, we add a new scheduling parameter
vector to describe changes in time of the saturation function and we use it to schedule both the
controller and the achieved performance. More specifically, the vector of varying parameters θ(t) in
(4), is augmented with another vector φ(t) ∈ Φ ⊂ Rm that is linked to γ(t) by the following relation

φj(t) =
γj

2 − γj(t)
2

γj
2 − γj

2
j = 1, . . . , m. (23)

Note that the values of φj, j = 1, . . . , m, calculated as in (23) are constrained to belong to the
interval [0, 1]. Also note that (23) can be used to express γj(t) as a function of φj(t), as follows

γj(t)
2 = γj

2 + φj(t)(γj
2 − γj

2). (24)

As a consequence, the expression for U in the input space becomes

U (φ) = {u ∈ Rm : uTQ(φ)u ≤ 1}, (25)

and, taking into account the new scheduling parameters, let us modify (7) as follows

u = K(θ, φ)x =
N

∑
i=1

µi(θ)
M

∑
j=1

ηj(φ)Kijx. (26)

Similar to the previous section, the region U (φ) is mapped onto the state domain as a
parameter-varying ellipsoid by means of the new state-feedback control law (26), as follows

U (θ, φ) = {x ∈ Rn : xTK(θ, φ)TQ(φ)K(θ, φ)x ≤ 1}. (27)

The following theorem, akin to Theorem 1, provides the conditions to obtain the vertex gains Kij
of the LPV state-feedback controller (26) that ensure the closed-loop stability of the system (4) and the
ability to change the guaranteed decay rate according to changes in the time-varying saturation limits.

Theorem 2. Consider the continuous time LPV system (4), the control law (26) and the regions E and
U (φ) of the state space described by (8) and (27), respectively, with given matrices R � 0 and Q(φ) � 0,
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and a desired parameter-varying decay rate α(φ) ∈ R+ that varies within the interval [α, α]. Assume that
parameter-dependent matrix Q(φ)−1 and the function α(φ) can be expressed in polytopic form as follows

Q(φ)−1 =
M

∑
j=1

ηj(φ)Qj
−1, (28)

α(φ) =
M

∑
j=1

ηj(φ)αj, (29)

where M is the number of vertices of Φ. If x(0) ∈ E , there exist a symmetric matrix P � 0 and matrices Γij
such that the following set of LMIs is feasible

P � 0, (30)

AiP + BΓij + PAi
T + Γij

T BT + 2αjP ≺ 0, (31)[
P I
IT R

]
� 0, (32)

[
Qj
−1 Γij

Γij
T P

]
� 0, (33)

and the vertex gains of the LPV state-feedback controller are calculated as Kij = ΓijP−1. Then the closed-loop
system obtained as the interconnection of (4) and (26) is stable and has guaranteed decay rate α(φ). Moreover,
the control law u(t) computed as (26) is such that u ∈ U (φ).

Proof. Theorem 2 ensures the closed-loop system’s stability in the same way as Theorem 1, adding the
adaptive capacity of the controller to decrease the closed-loop performance when the saturation limits
decrease. Hereunder, a sketch of this proof is presented.

By defining the same quadratic Lyapunov function of Theorem 1 with the constraint (30) and
the control law (26), the closed-loop stability inequality is obtained for each value of θ and φ from the
condition V̇(x) < 0

A(θ)P + BΓ(θ, φ) + PA(θ)T + Γ(θ, φ)T BT ≺ 0, (34)

where Γ(θ, φ) = K(θ, φ)P.
Additionally, (29) is added to (34) through the parameter-dependent term 2α(φ)P in order

to adjust online the closed-loop performance depending on the instantaneous saturation limits.
As a consequence, we ensure a guarantee decay rate of V̇(x) that varies within the interval [α, α],
thus obtaining

A(θ)P + BK(θ, φ) + PA(θ)T + K(θ, φ)T BT + 2α(φ) ≺ 0, (35)

that can be described by (31) for each vertex i = 1, . . . , N and j = 1, . . . , M of Θ and Φ, respectively.
Thereupon, let us consider the regions (8) and (18) and the inclusion E ⊆ V described by (19) to

obtain (32).
Finally, by means of appropiate manipulations and the application of Schur complements,

the inclusion V ⊆ U (θ, φ) leads to the following inequality[
Q(φ)−1 Γ(θ, φ)

Γ(θ, φ)T P

]
� 0, (36)

that can be described by (33) for each vertex as mentioned above.
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Note that the polytopical representation of Q(φ)−1 described by (28) is valid for Q(φ) given by
the following

Q(φ) =


1

γ1(φ1)2 . . . 0
...

. . .
...

0 . . . 1
γm(φm)2

 . (37)

In this case, the polytopic weights appearing in (28) and (29) are calculated as follows

ηj(φ) =
m

∏
h=1

γjh(φh), (38)

where

γjh(φh)

{
φh if mod(j, 2h) ∈ {1, . . . , 2h−1}
(1− φh) else

. (39)

Additionally, the vertex coefficients αj of α(φ) can be obtained as follows

αj =
αCj + α(1− Cj)

m
, (40)

where Cj = |{h ∈ {1, . . . , m} : mod(j, 2h) ∈ {1, . . . , 2h−1}}| and |A| denotes the cardinality of the
set A.

Remark 4. Note that, in this paper, for illustrative purposes and to maintain the overall formulation simple,
we have decided to consider a scheduled guaranteed decay rate as performance criterion but the results could be
generalized to other criteria, for example, sector clusters in the complex plane to avoid undesired oscillations [31].

5. Illustrative Example

In this section, an illustrative example is introduced to show the closed-loop performance of an
LPV state-feedback controller, designed with Theorem 2, under time-varying input saturation limits.
Note that the results corresponding to an LPV controller designed using Theorem 1 are omitted because
they can be considered a particular case of Section 4 in which the saturation scheduling variables
are frozen.

Figure 1 presents the followed control-loop scheme throughout the example.

  

ϕ(t)

Ɵ(t) 

u(t) 

x(t) 

LPV

STATE-FEEDBACK

CONTROLLER

LPV

PLANT

Figure 1. Control scheme.
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Let us consider the LPV plant modelled as in (1) with the following state-space matrices (note that
the system is open-loop unstable for every frozen value of θ(t))

A(θ(t)) =

[
10− 5θ(t) θ(t)
9θ(t)− 9 θ(t) + 1

]
, (41)

B =

[
1 0
0 0.5

]
, C = I2×2, D = 02×2, (42)

where B, C and D are constant due to Assumptions 2 and 3, θ(t) ∈ [0, 1] and the parameter-varying
state matrix A(θ(t)) can be written in the polytopic form (2) with vertex state matrices

A1 =

[
10 0
−9 1

]
, A2 =

[
5 1
0 2

]
. (43)

Let us consider a time-varying input saturation, where the saturation limits of u1 and u2 are
γ1(t) ∈ [10.0, 15.0] and γ2(t) ∈ [5.0, 7.5] respectively.

Following the method described in Section 4, the LPV state-feedback controller K(θ, φ) is
scheduled by the following parameters

φ1(t) =
γ1

2 − γ1(t)
2

γ1
2 − γ1

2
,

φ2(t) =
γ2

2 − γ2(t)
2

γ2
2 − γ22

.

(44)

The controller’s design is obtained solving the LMIs (30)–(33) of Theorem 2, which are
particularized as follows 

P � 0[
P I; IT R

]
� 0

A1P + BΓ1j + PA1
T + Γ1j

T BT + 2αjP ≺ 0

A2P + BΓ2j + PA2
T + Γ2j

T BT + 2αjP ≺ 0[
Qj
−1 Γ1j; Γ1j

T P
]
� 0[

Qj
−1 Γ2j; Γ2j

T P
]
� 0

, (45)

where j = 1 . . . 4 and R has been chosen as

R =

[
100 0
0 100

]
, (46)

so that the expected initial condition for the system lies in a circle centered in the origin of the state
space, with radius 0.1. On the other hand the polytopical expression of (29) for M = 4 is

α(φ) = φ1φ2α1 + (1− φ1)φ2α2 + φ1(1− φ2)α3 + (1− φ1)(1− φ2)α4, (47)

and it is chosen to vary within the interval [1, 10] obtaining the following coefficients through (40)

α1 = 1 , α2 = α3 = 5.5, α4 = 10. (48)
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Finally, taking into account the variability of γ1(t) and γ2(t), the matrices Qj are given by

Q1 =

[
1

152 0
0 1

7.52

]
, Q2 =

[
1

102 0
0 1

7.52

]
, Q3 =

[
1

152 0
0 1

52

]
, Q4 =

[
1

102 0
0 1

52

]
. (49)

By using the SeDuMi solver [32] and the YALMIP [33] toolbox, we find a solution of (45) that,
through Kij = ΓijP−1, allows us to calculate the eight controller vertex gains.

Hereafter, two different scenarios are used to show that the designed LPV state-feedback controller
is able to guarantee the closed-loop system stability and its capacity to adapt its performance taking
into account the time-varying limits of the input saturation.

5.1. Scenario I

The purpose of Scenario I is to evaluate the closed-loop system stability and its closed-loop
performance for a given initial condition with three different constant values of the control input
saturation. To do this, we simulate the closed-loop response from an initial state x(0) = [0.42, 0.04]T

and θ(t) = 1− e−t. Finally, fixing the frozen values of φ1 = φ2 = 0, φ1 = φ2 = 0.5 and φ1 = φ2 = 1,
thus obtaining instantaneous saturation limits values γ1 = 15 and γ2 = 7.5, γ1 = 12.75 and γ2 = 6.37
and γ1 = 10 and γ2 = 5, respectively.

As shown in Figure 2, the closed-loop system stability is guaranteed for all the values of γ1

and γ2 that were mentioned. Moreover, note that the system’s response that was evaluated with the
scheduling parameters φ1 = φ2 = 0, corresponds to the maximum allowed limit values of γ1 and γ2,
obtaining the fastest system response and showing that the designed LPV state-feedback controller is
able to adjust the system’s performance depending on the different values taken by γ.

Figure 2. Scenario I: closed-loop system response.

Figure 3 shows the instantaneous values of the saturation limit of u1 and u2 for the three frozen
values of φ1 and φ2 and the evolution of the control signals. For illustrative purposes, since the signal
u1 takes only negative values during the system’s response, only the lower bound of the saturation
is plotted. As a variation of the saturation limit occurs, the input signal changes as a result of the
adaptability capacity of the designed controller. For example, the interval of linearity of the control
signal u1 corresponds to [−15, 15] when φ1 = φ2 = 0 and to [−10, 10] when φ1 = φ2 = 1. Note that if
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the controller gain corresponding to φ1 = φ2 = 0 had been used for the case in which φ1 = φ2 = 1,
then saturation would have occurred.

Figure 4 shows the evolution of the Lyapunov function V(x) for the three frozen values of φ1 and
φ2, which correspond to guaranteed decay rates of 10, 5.5 and 1 respectively. It can be seen that the
largest decay rate corresponds to the fastest closed-loop system response, whose saturation scheduling
parameters are φ1 = φ2 = 0 and α(φ) = 10. Also, all the functions are under the unit value, hence it is
guaranteed by design that none of the control inputs saturates, as already shown in Figure 3.

Figure 3. Scenario I: control input responses (the saturation limits are shown as dotted lines).
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Figure 4. Scenario I: Lyapunov functions evolution.

5.2. Scenario II

Scenario II shows the adaptability of the designed controller to changes in γ along the transient
response of the closed-loop. We consider x(0) = [0.42, 0.04]T and θ(t) = 1 − e−t. Also, we fix
sat(u2) = γ2 and we vary sat(u1) such that it switches between its known limits γ1 and γ1.
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Figure 5 shows that the designed LPV state-feedback controller is able to adapt the generated
control signal u1 taking into account the changes in sat(u1).

Figure 6 shows the evolution of the Lyapunov function V(x), which decreases slower when
the guaranteed decay rate α(φ) = 5.5, as a result of fixing φ2 = 0 and faster when α(φ) = α. As a
consequence, the closed-loop system performance is modified online according to changes in the
saturation limits.

Figure 5. Scenario II: adaptability of control signal u1.
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Figure 6. Scenario II: Lyapunov function and guaranteed decay rate.

6. Conclusions and Future Work

In this paper, the problem of designing an LPV state-feedback controller that takes into account the
time-varying saturation limits has been investigated. The design procedure corresponds to checking the
feasibility of an appropriate set of LMIs, which can be solved efficiently using available solvers. Finally,
the results obtained in the illustrative example correspond to the case where the LPV state-feedback
controller designed following the proposed methodology is evaluated in an LPV mathematical system
with time-varying boundaries, showing that the controller guarantees the closed-loop stability and its
capacity of adjusting the system’s performance in front of the variability of the saturation limits.

Future work will focus on applying the procedure described in this paper to design an LPV
controller using robust control techniques combined with a model reference control for UAV vehicles.
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Moreover, in order to deal with exogenous disturbances, for example, wind gusts in the application
of UAV control, the results presented in this paper will be extended to the case where disturbance
rejection is considered.
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