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Abstract: The evolution of interfacial morphology and shear strengths of the joints soldered with
Sn-0.3Ag-0.7Cu (SAC0307) and SAC0307-0.05Pr aged at 150 ◦C for different times (h; up to 840 h)
were investigated. The experiments showed the electronic joint soldered with SAC0307-0.05Pr has
a much higher shear strength than that soldered with SAC0307 after each period of the aging process.
This contributes to the doping of Pr atoms, “vitamins in alloys”, which tend to be adsorbed on
the grain surface of interfacial Cu6Sn5 IMCs, inhibiting the growth of IMCs. Theoretical analysis
indicates that doping 0.05 wt.% Pr can evidently lower the growth constant of Cu6Sn5 (DCu6), while
the growth constant of Cu3Sn (DCu3) decreased slightly. In addition, the electronic joint soldered
with SAC0307-0.05Pr still has better ductility than that soldered with SAC0307, even after a 840-h
aging process.
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1. Introduction

In microelectronic packaging, solder joints play an electrical, mechanical, and thermal role between
electronic devices and conductive substrates [1,2]. With miniaturized trends of integrated circuits in
electronic devices, the reliability of solder joints becomes particularly important, especially in severe
environments, such as high-temperature aging, thermal cycling, drop reliability, and so on [3–5].

In consideration of close relationship between microstructures and properties, interfacial
microstructure at the solder–substrate interface should be studied to enhance the mechanical reliability
of the joint. Numerous studies [6–8] have already demonstrated that one solder with more refined
microstructures and thinner interfacial intermetallic compound (IMC) layers usually has a better joint
reliability. To achieve this, several research groups are focused on developing composite materials
doped with different types of micro- and nano-scale metallic e.g., Ag [9], Ni [10], In [11], Al [12],
Co [13]; ceramic e.g., TiO2, ZrO2, Al2O3, and TiO2 etc. [9,14–16] and rare earth (RE) elements [17–19].
This is because most of these reinforcements are surface-active and prone to have adsorptions on
the surfaces of the grain. Therefore, a pinning effect was exerted by them on grain growth. Sadiq et
al. [20] studied the effect of RE La on the microstructures and mechanical properties of SAC alloy at
a temperature of 150 ◦C. Corresponding results showed that the average grain size of IMCs distributed
in La-doped solder was refined by up to 40% and the coarsening rate of the IMCs is slowed by 70%
when compared with those in the non-doped solder. Corresponding yield stress and tensile strength
are enhanced by 20% by minute lanthanum doping. In addition, the aging of nanoparticle-doped
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solder was also investigated, such as SAC387 solder doped with Co nanoparticle aging at 150 ◦C
for up to 1200 h. It was found that Co nanoparticles effectively suppressed the growth of interfacial
Cu3Sn IMCs but contribute to the growth of Cu6Sn5. Co nanoparticles will also experience surface
dissolution during reflow processes [21]. Although nanoparticles are the research hotspot presently,
doping technology and agglomeration are still key issues that remain to be resolved, especially for the
economically and easily available ceramic nanoparticles [22–24]. Hence, in this study, RE Pr was taken
to modify microstructure and properties of solders based on previous research on solders modified
by RE alloys [17,18]. For solder selection, lead-free solder has been adopted in this study according
to the directives of Waste Electrical and Electronic Equipment (WEEE) and Restriction of Hazardous
Substances (RoHS) [25]. Among the alternative lead-free Sn-based solder alloys such as Sn-9Zn (198 ◦C),
Sn-58Bi (138 ◦C), Sn-3.5Ag (221 ◦C), Sn-0.7Cu (221 ◦C), and Sn-3.0Ag-0.5Cu (217 ◦C) [26–29], Sn-Ag-Cu
has received wide acceptance due to its superior comprehensive properties. However, for fear of
plate-like Ag3Sn IMCs in Sn-Ag-Cu high-Ag solder ruining its drop reliability [7], the content of Ag
was decreased to 0.3 wt.% in this study.

Lots of previous research has only focused on studying RE alloys on the microstructure of solder
matrixes and solid–liquid reactions during soldering processes, whereas the reaction mechanism
during solid–solid processes should also be given attention. This could help researchers to better
understand the detailed failure mechanism of electronic device in service. Hence, this work is devoted
to investigating the evolution of interfacial microstructures and the shear strength of SAC0307/Cu
and SAC0307-0.05Pr/Cu solder under isothermal aging treatment (150 ◦C; up to 840 h). In addition,
the effect of 0.05 wt.% Pr on the detailed growth kinetics of interfacial morphology at SAC0307
solder/Cu substrate interface during solid–solid reactions were also analyzed.

2. Materials and Methods

SAC0307 alloy was prepared by fusing Sn, Ag, and Cu (Purity: 99.95 wt.%) at 900 ◦C ± 10 ◦C.
For fear of RE oxidation, RE Pr was doped in the Sn-Ag-Cu alloy mixture in the form of Sn-10Pr and
the melting temperature was adjusted to 550 ± 1 ◦C. Finally, SAC0307-0.05Pr was obtained by diluting
the above alloy mixture and then was shaped into bars.

Specimens for high-temperature aging were sliced from a cast sample. Interfacial specimens were
made by soldering the examined solders (SAC0307; SAC0307-0.05Pr) onto Cu substrate. The aging
temperature and time was selected as 150 ◦C and 840 h, respectively. For microstructure observation,
specimens were polished with 0.3 µm Al2O3 suspension and then etched with the corrosion liquid
(4% HNO3-alcohol). Microstructure observation was conducted by optical microscope, Scanning
electron microscope (SEM), and Energy dispersive spectrum (EDS) analysis. In addition, Image
Pro-Plus software was used to calculate IMC layer’s thickness.

The shear strengths of corresponding joints after each aging period were measured by a joint
strength tester (Mode: STR-1000). The joint specimens made through soldering ceramic resistors (0805)
on Cu substrates were put into a high-temperature environment. After shear loading, the fractographs
of shear joints were studied by SEM and EDS.

3. Results and Discussion

3.1. Microstructure Evolution after Isothermal Aging

Figure 1 provided the microstructure of SAC0307, SAC0307-0.05Pr, and their aged samples (up to
840 h). As can be seen, solder doped with 0.05 wt.% Pr has a much more refined microstructure
(Figure 1b) when compared with the original SAC0307 solder (Figure 1a). Obviously, IMCs in the
eutectic area distributing on the Sn matrix in SAC0307-0.05Pr solder were much more refined than
those in SAC0307 solder. In addition, the amount of eutectic areas was also increased after doping
0.05 wt.% Pr. After an 840-h aging treatment, IMCs in the eutectic area whether in the aged SAC0307
solder or in the aged SAC0307-0.05Pr solder grew larger (Figure 1c,d). However, the average size of
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the related IMCs in the aged SAC0307 were still larger in the aged SAC0307-0.05Pr and the amount
of eutectic areas was also smaller than those in SAC0307-0.05Pr. It should be noted that PrSn3 phase
with flower shape [30] emerged in the aged SAC0307-0.05Pr solder. Figure 1e shows the SEM image
of the microstructure of aged SAC0307-0.05Pr. Also, PrSn3 phase with the similar shape as that in
Figure 1d can be clearly seen, which was demonstrated by the EDS analysis of Point 1, shown in
Table 1. It was largely because RE Pr is a Sn-affinity element. With aging treatment, Sn and Pr atom
diffusion were accelerated and finally they were reacted as PrSn3. In addition, IMCs in the eutectic
area was also analyzed by EDS technique and the results showed the darker ones are mainly Cu6Sn5
and the bright ones are Ag3Sn IMCs. Figure 2 gives the detailed illustration of changes in IMCs in
both SAC0307 and SAC0307-0.05Pr solders during aging process. Usually, IMCs in SAC0307 grow
larger with a certain rate depending on Sn, Ag, and Cu atom diffusion rates, as can be seen from
Figure 2(aI–III). For SAC0307 with 0.05 wt.% Pr doped, the growth of IMCs in the eutectic area with
aging process was hindered since the surface-active Pr atoms tend to adsorb on the grain surface of
IMCs. Hence, the diffusion of Sn, Ag, and Cu atoms were inhibited, as shown in Figure 2(bI–III).
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SAC0307-0.05Pr solder at 150 ◦C for 840 h.
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Table 1. EDS analyzed results of related IMCs formed in the aged SAC0307-0.05Pr solder.

Element Position Sn Ag Cu O Pr

Unit wt.% At.% wt.% At.% wt.% At.% wt.% At.% wt.% At.%
Point 1 35.68 22.35 / / / / 10.57 49.23 53.75 28.42
Point 2 58.40 42.26 2.41 1.92 38.43 51.71 0.76 4.11 / /
Point 3 26.80 23.8 71.98 70.43 0.45 0.75 0.77 5.02 / /
Point 4 55.95 40.11 2.80 2.21 40.57 54.08 0.68 3.6 / /
Point 5 30.68 27.69 68.59 68.21 0.15 0.26 0.58 3.84 / /
Point 6 31.03 28.44 68.32 69.01 0.37 0.63 0.28 1.92 / /
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Figure 2. Illustration of changes in IMCs in (a) SAC0307 solder and (b) SAC0307-0.05Pr solder during
aging process.

Figures 3 and 4 show changes of interfacial microstructures of SAC0307/Cu and SAC0307-0.05Pr/Cu
joint subjected to different length of time of aging process. For the interfacial microstructure of
SAC0307/Cu solder, a continuous hill-like Cu6Sn5 interfacial IMC layer [31] with sharp protrusions
emerged after initial 72-h aging (Figure 3a). Moreover, a darker interfacial IMC layer, as identified to
be Cu3Sn [32] also grew near the Cu substrate. As aging time prolongs to 840 h, the radius of Cu6Sn5

increased with the number decreasing (Figure 3b–d). In addition, the thickness of Cu3Sn also increased,
and a detailed calculation is conducted in next section. In contrast to interfacial IMCs’ growth at
SAC0307/Cu interface with aging, Cu6Sn5 IMCs at SAC0307-0.05Pr/Cu interface were developed
without any sharp Cu6Sn5 protrusions and the interfacial IMC layer was much more flat than the
original aged one, even with aging treatment (Figure 4a–d). In addition, the growth of Cu3Sn was also
much slower than that at the SAC0307-0.05Pr/Cu interface. Figure 5 provides the changes in interfacial
IMCs at both SAC0307 solder/Cu interface and SAC0307-0.05Pr solder/Cu interface during the aging
process. Without Pr addition, the interfacial IMCs grows at a certain rate depending on the diffusions
of Sn atoms from solder and Cu atoms from Cu substrate to the solder/Cu6Sn5 or Cu6Sn5/Cu3Sn and
Cu3Sn/Cu interface. Hence, the shape of interfacial Cu6Sn5 IMCs varied with aging due to different
diffusion rate of atoms (Figure 5(aI–III)). However, with a minute amount of Pr addition, the interfacial
Cu6Sn5 IMCs became flatter due to the Pr atoms adsorbing on the surface of Cu6Sn5 IMCs, hindering
their growth, as shown in Figure 5(bI). With aging going on, the diffusion of Sn and Cu atoms were
largely affected by RE Pr atoms and the shape of interfacial IMC layer remains flat, as illustrated in
Figure 5(bII,III).
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Figure 3. SEM images of the interfacial morphology at SAC0307 solder/Cu interfaces aged at 150 ◦C for
different hrs: (a) 72 h; (b) 240 h; (c) 528 h; (d) 840 h.
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Figure 5. Illustration of changes in interfacial IMCs at (a) SAC0307 solder/Cu interface and
(b) SAC0307-0.05Pr solder/Cu interface during aging process.

3.2. Thickness Changes of Interfacial IMC Layer during Isothermal Aging

For interfacial IMC layers at both interfaces of SAC0307/Cu and SAC0307-0.05Pr/Cu, the thickness
of Cu6Sn5 and Cu3Sn IMC layers raised with aging time, as summarized in Table 2. With 840 h aging,
the total interfacial IMC layer thickness at SAC0307/Cu interface grew to 10.2 µm, whereas that at the
SAC0307-0.05Pr/Cu increased only to 6.5 µm. In addition, Cu3Sn IMC layers’ thicknesses at these
two types of interfaces reached 4.9 µm and 3.9 µm, respectively. Obviously, a minute amount of
Pr effectively hindered the growth of interfacial IMCs. Commonly, the growth and development of
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interfacial IMC layer is diffusion-controlled. The relationship between interfacial IMC layer thickness
and aging time meets the following classic diffusion formula [16]:

xt = x0 +
√

Dt (1)

where xt is interfacial IMC layer’s thickness change after one period of aging time t, x0 is its initial
thickness, D is the growth coefficient, as calculated from the slope of the fitted curve of interfacial IMC
layer thickness with aging time, as shown in Figure 6. The following lists the final results.

T(SAC0307-Total) = 5.04 + 0.18
√

t; T(SAC0307-Cu6Sn5) = 4.28 + 0.03
√

t;
T(SAC0307-Cu3Sn) = 0.76 + 0.14

√
t;

(2)

T(SAC0307-0.05Pr-Total) = 2.67 + 0.13
√

t; T(SAC0307-0.05Pr-Cu6Sn5) = 2.31 + 0.005
√

t;
T(SAC0307-0.05Pr-Cu3Sn) = 0.35 + 0.12

√
t;

(3)

Table 2. Detailed thickness change with aged time at the interfaces of solders/Cu.

Aging Hour (h) 72 240 528 840

Solder Interfacial IMC Layer Thickness (µm)

SAC0307
Total (Cu6Sn5+Cu3Sn) 6.42 8.04 8.9 10.2

Cu3Sn 1.93 3.05 3.96 4.9
Cu6Sn5 4.49 4.99 4.94 5.3

SAC0307-0.05Pr
Total (Cu6Sn5+Cu3Sn) 3.9 4.47 5.56 6.5

Cu3Sn 1.47 2.11 3.34 3.9
Cu6Sn5 2.43 2.36 2.22 2.6
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It can be calculated that the growth constant of total interfacial IMC layer (DT), Cu6Sn5 (DCu6),
Cu3Sn (DCu3) for the SAC0307/Cu joint was 3.11 × 10−10 cm2/s, 0.12 × 10−10 cm2/s and 2.02 × 10−10

cm2/s, respectively, while that for SAC0307-0.05Pr/Cu joint was 1.65 × 10−10 cm2/s, 0.0021 × 10−10 cm2/s
(approximate to 0), and 1.53 × 10−10 cm2/s, respectively. Obviously, doping 0.05 wt.% Pr can evidently
lower the growth constant of Cu6Sn5 (DCu6), while the growth constant of Cu3Sn (DCu3) was decreased
slightly. The decreased growth constant of Cu6Sn5 (DCu6) was mainly due to Pr atoms pinning on
the growth of Cu6Sn5. The suppressed mechanism for interfacial Cu3Sn was mainly associated with
a decreased gradient of Sn atom concentration at Cu6Sn5/Cu3Sn interface. In addition, it can be
observed that the decreased level for the growth constant of interfacial Cu6Sn5 (DCu6) is much larger
than that of DCu3. This can be explained as follows. Generally, there are two ways to form interfacial
Cu6Sn5. One is forming directly through Sn and Cu atom diffusion.

6Cu + 5Sn→Cu6Sn5 (4)
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The other is through sacrificing interfacial Cu3Sn,

2Cu3Sn + 3Sn→Cu6Sn5 (5)

For producing interfacial Cu3Sn IMCs, two approaches also can be reached. One is also
forming directly:

3Cu + Sn→Cu3Sn (6)

The other is developing through consuming interfacial Cu6Sn5 IMCs:

Cu6Sn5 + 9Cu→5Cu3Sn (7)

It can be seen that for directly forming interfacial Cu6Sn5 and Cu3Sn IMCs (Equations (4) and
(6)), per unit of Cu6Sn5 requires more Sn atoms than per unit of Cu3Sn. For indirectly forming them
(Equations (5) and (7)), Cu3Sn just needs abundant supply of Cu atoms, whereas that of Cu6Sn5 still
needs the supply of Sn atoms. Therefore, it can be concluded that what controls Cu6Sn5 IMCs’ growth
is the Sn atom diffusion and the solder/Cu6Sn5 interface state, while Cu atom diffusion determines the
interface state of Cu3Sn/Cu6Sn5 and determines the development of Cu3Sn. Obviously, most Sn source
comes from Sn-based solder, while most Cu source is from Cu substrate. Although most Pr atoms
were adsorbed on the Cu substrate, hindering Cu diffusion in the initial reaction period, its inhibition
effect was mainly on Sn atom diffusion with the growth of Cu6Sn5. Therefore, the interfacial Cu6Sn5

IMC growth was affected more than Cu3Sn IMCs.

3.3. Shear Strength and Fracture Morphology after Aging Process

Figure 7a provides the corresponding illustration of shearing process and Figure 7b is the detailed
plot between shear strength and aging time. Clearly, it can be observed that the shear strength of
SAC0307-0.05Pr/Cu decreases with aging time at a certain rate, while the shear strength of SAC0307/Cu
decreases also with a certain rate first but at a rapid decrease with aging time. After 840 h aging,
the shear strengths of SAC0307/Cu and SAC0307-0.05Pr/Cu were declined to 9.5 MPa and 7.5 MPa,
respectively. In addition, the shear strength of SAC0307-0.05Pr/Cu solder joint was larger than that of
SAC0307/Cu solder joint after each aging process. This was mainly associated with their interfacial
IMC layer’ growth, as explained above.
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Figure 8 provides SEM images of corresponding fracture morphology at SAC0307/Cu,
SAC0307-0.05Pr/Cu interfaces and the aged samples. Clearly, elongated dimples parallel to shear
direction can be observed on the surface of fractured SAC0307/Cu shear joint, indicative of a distinct
ductile fracture. For a fractograph of SAC0307-0.05Pr/Cu shear joint, dimples with smaller size emerge,
indicating better ductility. After 840 h aging treatment, the dimples of these two types of joints became
larger and more superficial, indicating the decrease in ductility with aging treatment. However,
the average size of dimples on surface of fractured SAC0307-0.05Pr/Cu shear joint was still a bit larger
than those on the fracture surface of SAC0307/Cu shear joint. It means the ductility of SAC0307-0.05Pr
was still better than SAC0307/Cu solder even with 840 h aging. However, it should be noted that Pr
oxides emerges on the fracture surface of SAC0307-0.05Pr/Cu shear joint after 840 h aging, possibly
due to the appearance of PrSn3 in the aged SAC0307-0.05Pr solder microstructure (Figure 1d).
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Figure 8. Fracture morphology on the surface of (a) SAC0307/Cu, (b) SAC0307-0.05Pr/Cu interface,
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4. Conclusions

The effect of 0.05 wt.% Pr on high-temperature microstructure and shear strength of
Sn-0.3Ag-0.7Cu/Cu low-Ag solder joint was studied and the following conclusions were obtained:

1. SAC0307-0.05Pr solder has a more refined microstructure with smaller size of Cu6Sn5 IMCs
distributed on Sn matrix after 840 h aging when compared to Sn-0.3Ag-0.7Cu solder. This is
because of the inhibiting effect on IMCs’ growth by Pr atoms adsorbing on their grain surfaces.
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2. During aging process, two types of interfacial IMC layers (Cu6Sn5 + Cu3Sn) were gradually
developed at solder/Cu interfaces and the thicknesses of them also increased with aging time.
Theoretical analysis indicated that doping 0.05 wt.% Pr evidently lowered the growth constant of
Cu6Sn5(DCu6), while the growth constant of Cu3Sn (DCu3) decreased slightly.

3. SAC0307-0.05Pr/Cu solder joint has a higher shear strength than SAC0307/Cu solder joint even
after 840 h aging. In this case, SAC0307-0.05Pr/Cu solder joint still has a better ductility than
SAC0307/Cu.
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