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Featured Application: Prediction of crack propagation of functionally graded materials (FGMs).

Abstract: This paper presents the numerical prediction of stress intensity factors (SIFs) of 2-D
inhomogeneous functionally graded materials (FGMs) by an enriched Petrov-Galerkin natural
element method (PG-NEM). The overall trial displacement field was approximated in terms of Laplace
interpolation functions, and the crack tip one was enhanced by the crack-tip singular displacement
field. The overall stress and strain distributions, which were obtained by PG-NEM, were smoothened
and improved by the stress recovery. The modified interaction integral M̃(1,2) was employed to
evaluate the stress intensity factors of FGMs with spatially varying elastic moduli. The proposed
method was validated through the representative numerical examples and the effectiveness was
justified by comparing the numerical results with the reference solutions.

Keywords: enhanced PG-NEM; functionally graded material (FGM); stress intensity factor (SIF);
modified interaction integral

1. Introduction

In the late 1980s, a new material concept called functionally graded material (FGM) was proposed
to resolve the inherent problem of traditional lamination-type composites [1]. The sharp material
discontinuity across the layer interface causes the stress concentration, which may trigger the layer
delamination. This crucial stress concentration can be significantly minimized by inserting a graded
layer between two distinct homogeneous material layers [2,3]. This is because the material discontinuity
completely disappears according to the material composition gradation, where the constituent particles
of two base materials are mixed up in a random microstructure within a graded layer to maximize
the desired performance [4–6]. Naturally, a functionally graded material is an inhomogeneous
material, with spatially non-uniform material properties characterized by continuity and functionality.
In addition to the suppression of stress concentration, the material concept of FGM rapidly and
continuously spread throughout engineering and fields [7–10].

Early research efforts were concentrated on material characterization, fabrication, modeling,
and analysis [1,11,12]. This was because the mechanical behaviors of FGMs are governed by the
geometric dimensions and orientation, microstructure, and volume fractions of constituent particles.
Recently, however, the concern toward the crack problems has increased because the structural failure
of FGMs is dominated by micro-cracking [7,13,14]. In this regard, an accurate numerical prediction
of stress intensity factors and the crack propagation has been an essential research subject [15,16].
For these subjects, an accurate reproduction of the 1

√
r

singularity in the near-tip stress field in highly
heterogeneous media becomes a key task [17–20].
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To evaluate the stress intensity factors of FGMs with cracks, one can consider the use of the
well-known J− or M−integral methods. However, these conventional indirect integral methods cannot
reflect the spatially varying material properties of FGMs. The studies on the fracture mechanics
of inhomogeneous bodies were initiated in the 1970~80s by assuming the spatially varying elastic
modulus as an exponential function [17,21]. The standard integral methods were modified and/or
refined to reflect the spatial non-uniformity of material properties by subsequent investigators.
The most works were made by utilizing the finite element method [15,22–25]. However, since late
1990s, the employment of meshless methods to crack problems of inhomogeneous bodies has been
actively advanced, particularly for the computation of SIFs by the modified M−integral method [26,27].
Here, the extension of the natural element method (NEM) is worth noting, even though it was restricted
to 2-D homogenous material [28].

The natural element method was introduced to overcome the demerits of conventional meshless
methods [29], the difficulty in enforcing the displacement constraint and the numerical integration.
The Laplace interpolation functions in NEM strictly obey the Kronecker delta property so that the
imposition of displacement constraint becomes easy. In addition, Delaunay triangles, which were
produced during the process for introducing Laplace interpolation functions, also serve as a background
mesh for the numerical integration. In particular, PG-NEM can further improve the numerical
integration accuracy by maintaining the consistency between the Delaunay triangle and the integration
region [30]. Although Laplace interpolation functions provide the high smoothness of C1-continuity,
there is still room for further improvement in capturing the high stress singularity at the crack tip.

In this context, this paper introduces an enriched PG-NEM to explore whether and how much the
enrichment of interpolation function increases the prediction reliability of stress intensity factors for
FGMs. The validity of enrichment was reported for homogeneous materials [31,32], but it was rarely
reported for inhomogeneous materials. The trial function is enriched by the asymptotic displacement
fields of mode I and II, and the approximated overall stress field is enhanced by the patch recovery
technique. The proposed method was validated through the illustrative numerical examples and its
effectiveness was quantitatively evaluated.

2. 2-D Inhomogeneous Cracked Bodies

2.1. Linear Elasticity of 2-D Cracked Bodies

Figure 1 represents a 2-D linearly elastic isotropic inhomogeneous material with an edge crack
which is contained within a bounded domain Ω ∈ <

2 with the boundary ∂Ω = ΓD ∪ ΓN ∪ Γc.

Here, ΓD and ΓN indicate the displacement and force boundary regions, and Γc = Γ+
c ∪ Γ−c denotes the

traction-free crack surface. As a representative non-homogeneous material, FGMs are characterized by
the spatially varying elastic modulus E and Poisson’s ratio ν over the bounded domain Ω. For the
mathematical description purpose, two Cartesian co-ordinate systems are employed,

{
x, y

}
for the

2-D linear elasticity problem and
{
x′, y′

}
for the SIF evaluation of crack respectively. Assuming the

crack surface is traction-free and neglecting the body force b, then the displacement field u(x) in the
Cartesian coordinate system

{
x, y

}
is subjected to the equilibrium equations

∇ · σ = 0 in Ω (1)

with the displacement constraint
u = û on ΓD (2)

and the force boundary condition

σ · n =

{
t̂ on ΓN

0 on Γ±c
(3)
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Here, σ are the Cauchy stresses, n the outward unit vector normal to ∂Ω, and t̂ the contour traction.
When the displacement and strains are assumed to be small, the Cauchy strain ε is constituted to the
Cauchy stress σ via the (3× 2) gradient-like operator L such that

ε = ε(u) = Lu (4)

Letting D be the constitutive tensor, the stresses and strains are constituted by

σ = D : ε (5)

Note that the displacement, strains, and stresses are calculated based on the co-ordinate system{
x, y

}
and transformed into the co-ordinate system

{
x′, y′

}
.
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Figure 1. An inhomogeneous isotropic body with an edge crack.

For a homogeneous cracked body, the energy release rate per unit crack propagation along the
x′−axis can be estimated by the path-independent J−integral defined by

J =
∫

Γ

(
Wδ1 j − σi j

∂ui
∂x′1

)
n′ jds (6)

using the indicial notation (i.e., x′1 = x′ and x′2 = y′), the Dirac delta function δ1 j, and the strain-energy
density W = σ · ε/2 = εi jDi jklεkl/2. Here, Γ indicates an arbitrary closed path, which surrounds the
crack tip counterclockwise. As shown in Figure 2, it is expanded to C = Γ + Γ−c + Γ+

c + Γo in order to
generate a grayed donut-type region A, in which a smooth function q(x)(0 ≤ q ≤ 1) is introduced to
recast the integral into an equivalent domain form [33]. The function q, called by weighting function,
becomes unity on Γ, zero on Γo, and arbitrary value between 0 and 1 within the grayed donut region A.
Then, the above Equation (6) can be expanded as following

J =
∫

A

(
σi j

∂ui
∂x′1

−Wδ1 j

)
∂q
∂x′ j

dA +

∫
A

∂
∂x′ j

(
σi j

∂ui
∂x′1

−Wδ1 j

)
qdA (7)

according to the divergence theorem, together with n′ = −n′i on Γ in C. By further expanding the
second term on the right hand side, Equation (7) becomes

J =
∫

A

(
σi j

∂ui
∂x′1

−Wδ1 j

)
∂q
∂x′ j

dA +

∫
A

(
∂σi j

∂x′ j
∂ui
∂x′1

+ σi j
∂2ui

∂x′ j∂x′1
− σi j

∂εi j

∂x′1
−

1
2
εi j
∂Di jkl

∂x′1
εkl

)
qdA (8)
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But, the second integral on the right-hand side of Equation (8) becomes zero according to
the equilibrium (1), compatibility (4), and the material uniformity. Therefore, the J−integral for
homogeneous materials becomes the area integral defined by

J =
∫

A

(
σi j

∂ui
∂x′1

−Wδ1 j

)
∂q
∂x′ j

dA (9)

But, for non-homogeneous materials, the last material derivation term within the second
integrand of Equation (8) does not become zero. Therefore, Equation (8) ends up with a more
general J̃−integral [34], which is given by

J̃ =
∫

A

(
σi j

∂ui
∂x′1

−Wδ1 j

)
∂q
∂x′ j

dA−
∫

A

1
2
εi j
∂Di jkl

∂x′1
εklqdA (10)

The last term in Equation (10) becomes extremely small as a contour Γ0 shrinks to the crack tip,
but its contribution is not negligible when the domain of integration A is reasonably large.
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2.2. Modified Interaction Integral M̃(1,2)

In order to extract KI and KII from J−integral, one needs to employ the interaction integral,
in which two equilibrium states of a cracked body are considered. State 1 is the real equilibrium state
of a body that is subjected to the prescribed boundary conditions, while state 2 stands for an auxiliary
equilibrium state which would be the asymptotic near-tip fields for modes I or II. Another equilibrium
state, called state S, could be established by combining these two states, for which the J̃−integral in
Equation (10) is rewritten as [21]

J̃(S) =
∫

A


(
σ
(1)
i j + σ

(2)
i j

)∂(u(1)
i + u(2)

i

)
∂x′1

−W(S)δ1 j

 ∂q
∂x′ j

dA +

∫
A

∂
∂x′ j


(
σ
(1)
i j + σ

(2)
i j

)∂(u(1)
i + u(2)

i

)
∂x′1

−W(S)δ1 j

qdA (11)

with three different strain energy densities, W(1), W(2) and W(1,2), defined by

W(S) = 1
2

(
σ
(1)
i j + σ

(2)
i j

)(
ε
(1)
i j + ε

(2)
i j

)
= 1

2σ
(1)
i j ε

(1)
i j + 1

2σ
(2)
i j ε

(2)
i j + 1

2

(
σ
(1)
i j ε

(2)
i j + σ

(2)
i j ε

(1)
i j

)
= W(1) + W(2) + W(1,2)

(12)
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By utilizing the equilibrium (1) (i.e., ∂σ(·)i j /∂x j = 0) and the compatibility (4) (i.e., ε(·)i j = ∂u(·)
i /∂x j),

Equation (11) can be further simplified as

J̃(S) =
∫

A

(σ(1)i j + σ
(2)
i j

)∂(u(1)i +u(2)i

)
∂x′1

−

(
W(1) + W(2) + W(1,2)

)
δ1 j

 ∂q
∂x′ j

dA

+
∫

A
1
2

−ε(1)i j
∂Di jkl
∂x′1

ε
(1)
kl + σ

(1)
i j

∂ε
(2)
i j

∂x′1
−
∂σ

(2)
i j

∂x′1
ε
(1)
i j + σ

(2)
i j

∂ε
(1)
i j

∂x′1
−
∂σ

(1)
i j

∂x′1
ε
(2)
i j

qdA

= J̃(1) + J̃(2) + M̃(1,2)

(13)

Here,

J̃(1) =
∫

A

σ(1)i j

∂u(1)
i

∂x′1
−W(1)δ1 j

 ∂q
∂x′ j

dA−
1
2

∫
A
ε
(1)
i j

∂Di jkl

∂x′1
ε
(1)
kl qdA (14)

J̃(2) =
∫

A

σ(2)i j

∂u(2)
i

∂x′1
−W(2)δ1 j

 ∂q
∂x′ j

dA (15)

denote the J̃−integrals for state 1 and state 2 respectively, and

M̃(1,2) =

∫
A

σ(1)i j

∂u(2)
i

∂x′1
+ σ

(2)
i j

∂u(1)
i

∂x′1
−W(1,2)δ1 j

 ∂q
∂x′ j

dA +

∫
A

1
2

σ(1)i j

∂ε
(2)
i j

∂x′1
−

∂σ
(2)
i j

∂x′1
ε
(1)
i j + σ

(2)
i j

∂ε
(1)
i j

∂x′1
−

∂σ
(1)
i j

∂x′1
ε
(2)
i j

qdA (16)

indicates the modified interaction integral. All the quantities in Equation (16) are evaluated based on
a coordinate system aligned to the crack tip, and the identification of domain of integration A and the
weighting function q(x) will be described in details in Section 3.2.

Since two J̃−integrals for inhomogeneous cracked bodies which are subject to mixed-mode loading
also represent the energy release rates, one can obtain

J̃(1) =
1

Etip

(
K(1)2

I + K(1)2

II

)
(17)

J̃(2) =
1

Etip

(
K(2)2

I + K(2)2

II

)
(18)

And
J̃(S) = J̃(1) + J̃(2) +

2

Etip

(
K(1)

I K(2)
I + K(1)

II K(2)
II

)
(19)

where Etip at the crack tip is Etip for plane stress, while it is Etip/
(
1− ν2

)
for plane strain. By equating

Equation (13) with Equation (19), one can obtain

M̃(1,2) =
2

Etip

(
K(1)

I K(2)
I + K(1)

II K(2)
II

)
(20)

In 2-D linear fracture mechanics, the closed-form near-tip displacement fields are available for
mode I and mode II [35]. The stress intensity factor K(1)

I for mode I can be obtained by letting state 2 be

the pure mode-I asymptotic field (i.e., K(2)
I = 1 and K(2)

II = 0):

M(1, ModeI) =
2

Etip
K(1)

I (21)

In a similar manner, the stress intensity factor KII for mode-II can be also determined.
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3. Enriched Petrov-Galerkin Natural Element Method

3.1. Enriched NEM Approximation

The boundary value problem expressed by Equations (1)–(3) is converted to the weak form
according to the virtual work principle: Find u(x) such that∫

Ω
ε(v) : σ(u) dΩ =

∫
ΓN

t̂ · v ds (22)

for all the test displacements v(x) in the Cartesian coordinate system
{
x, y

}
. Next, a non-convex NEM

grid =NEM, shown in Figure 3a, is constructed using N nodes and a number of Delaunay triangles.
Then, for a given NEM grid, trial and test displacement fields u(x) and v(x) for PG-NEM approximation
are interpolated as

uh(x) =
N∑

J=1

¯
uJφJ(x) + k1

[
Q11(x)
Q12(x)

]
+ k2

[
Q21(x)
Q22(x)

]
(23)

vh(x) =
N∑

I=1

¯
vIΨI(x) + λ1

[
Q11(x)
Q12(x)

]
+ λ2

[
Q21(x)
Q22(x)

]
(24)

with Laplace interpolation functions φJ(x) represented in Figure 3b. Here, ψI(x) are constant-strain FE
basis functions, which are defined over Delaunay triangles.
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In addition, k1 and k2 are two unknown constants associated with a crack, and Q1α(x) and Q2α(x)
represent the near-tip singular displacement fields given by

Q11(x) =
1

2µ

√
r

2π
cos

(
θ
2

)[
κ− 1 + 2sin2

(
θ
2

)]
(25)

Q12(x) =
1

2µ

√
r

2π
sin

(
θ
2

)[
κ+ 1− 2cos2

(
θ
2

)]
(26)

Q21(x) =
1

2µ

√
r

2π
sin

(
θ
2

)[
κ+ 1 + 2cos2

(
θ
2

)]
(27)

Q22(x) =
−1
2µ

√
r

2π
cos

(
θ
2

)[
κ− 1− 2sin2

(
θ
2

)]
(28)
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Referring to Figure 1, r is the radial distance from the crack tip, while θ is the angle from the
x′−axis. Meanwhile, µ indicates the shear modulus, and κ is the Kolosov constant given by

κ =

3− 4ν for plane strain

(3− ν)/(1 + ν) for plane stress
(29)

with ν being the Poisson’s ratio. From Equation (23), the overall nodal coefficients
¯
uJ are defined by

¯
uJ(x) = uh

(
xJ

)
− k1

 Q11
(
xJ

)
Q12

(
xJ

) − k2

 Q21
(
xJ

)
Q22

(
xJ

)  (30)

and the overall stress and strain fields corresponding to
¯
uJ are recovered by the global recovery

technique. Meanwhile, the original essential boundary condition (2) is modified as

û = û− k1

[
Q11(x̂)
Q12(x̂)

]
− k2

[
Q21(x̂)
Q22(x̂)

]
, x̂ on ΓD (31)

Substituting Equations (23) and (24) into Equation (22), together with Equations (4) and (5), ends
up with 

KIJ KI1 KI2

KT
I1 K11 K12

KT
I2 KT

12 K22




¯
uJ

k1

k2

 =


FI

f1
f2

 (32)

In which the global stiffness matrices KIJ and load vectors FI are defined by

KIJ =

∫
Ω

BT
I DBJdΩ, FI =

∫
ΓN

ΦT
I t̂ ds, I, J = 1, 2, · · ·, N (33)

where

BT
I =

[
φI.x 0 φI,y

0 φI,y φI,x

]
(34)

D =
E

(1 + ν)(1− 2ν)


1− ν ν 0
ν 1− ν 0
0 0 1−2ν

2

 for plane strain (35)

Meanwhile, the enriched stiffness matrices Kαβ, load vectors fα, and the interface matrices KIα are
defined by, respectively

Kαβ =
∫

Ω
B̂T
αDB̂βdΩ, fα =

∫
ΓN

φ̂T
α t̂ds, α, β = 1, 2 (36)

KIα =

∫
Ω

BT
I DB̂αdΩ (37)

with
φ̂T
α = [Qα1(x), Qα2(x)] (38)

B̂α =


Qαα,x(x)
Qαβ,y(x)

Qαα,y(x) + Qαβ,y(x)

, αα = no sum (39)
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3.2. Numerical Implementation of M̃(1,2)

Figure 4 schematically represents the identification of domain of integration A and the definition
of weighting function q(x), which are prerequisite for the numerical implementation of M̃(1,2) in
Eq. (6). For these two things, a circle of the radius rint, which is originated at the crack tip, is first
imaginarily drawn on the NEM grid. Then, the nodal values of q(x) are assigned based on this circle,
such that unity is specified to all the interior nodes while zero to the outer remaining nodes. Then,
referring to Figure 2, the boundary of a square composed of eight darkened Delaunay triangles serves
as an internal path Γ. On the other hand, the grayed region outside the internal path Γ automatically
becomes a domain of integration A. According to the properties of Laplace interpolation functions [29],
the defined weighting function q(x) becomes unity within a set of darkened Delaunay triangles while
it has the values between zero and unity within the grayed domain of integration A.
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Figure 4. A crack tip-originated circle and a graded domain of integration A.

Both the weighting function q(x) and the derivative ∂q/∂x j become zero outside the domain of
integration A. Furthermore, the derivative ∂q/∂x j vanishes within the darkened squares. So, only the
grayed Delaunay triangles are taken for the modified interaction integral M̃(1,2) such that

M̃(1,2) =

MG∑
K=1

M̃(1,2)
K (40)

Here, MG indicates the total number of grayed Delaunay triangles, while M̃(1,2)
K stand for the

triangle-wise modified interaction integrals, which are defined by

M̃(1,2)
K =

INT∑
`=1


[σ(1)i j

∂u(2)i
∂x1

+ σ
(2)
i j

∂u(1)i
∂x1
−W(1,2)δ1 j

]
x`

∂q
∂x j

∣∣∣∣∣∣x`w`|J|x`
+ 1

2

σ(1)i j

∂ε
(2)
i j
∂x1
−
∂σ

(2)
i j

∂x′1
ε
(1)
i j + σ

(2)
i j

∂ε
(1)
i j
∂x1
−
∂σ

(1)
i j

∂x1
ε
(2)
i j

q(x`)w`|J|x`
(41)

with INT, x`, and w` being the total number, co-ordinates, and weights of sampling points for Gauss
numerical integration for triangles. Meanwhile, TK in Figure 4 indicates the geometry transformation
between the master element Ω̂ and the grayed triangle ΩK and the master element Ω̂, which is
defined by

TK: x` =
3∑

i=1

xiψi(ξ, η)`, y` =
3∑

i=1

yiψi(ξ, η)` (42)

where ψi stand for the constant-strain FE basis functions, which are employed for the test displacement
field v(x).
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4. Numerical Experiments

The enriched NEM module was developed in Fortran and combined into the previously developed
PG-NEM code [30] having the stress recovery module [36]. To demonstrate and validate the present
method, the crack problem of an infinite plate with collinear cracks depicted in Figure 5a is considered.
Differing from the cracks in plates of finite size which are of great practical interest, the present infinite
plate with periodic cracks provides the closed form solution. Meanwhile, for the numerical study, one
may take two kinds of periodic finite crack problems. One is obtained when the plate is cut along
EF and GH, while the other is obtained if the plate is cut along AB and CD. Since the first one has
been widely taken for the numerical studies (i.e., Ryicki and Kanninen [37] and Chow and Atluri [38]),
the second periodic analysis model is taken for the current numerical experiments. Figure 5b represents
the detailed second periodic model, as well as a NEM grid having higher grid density toward the crack
tip for an upper left darkened quarter. The SIF for this infinite plate with collinear cracks is expressed
in the following closed form (the correction factor C of 1.02) [39]:

KI = σ∞
√
πa

(
2b
πa

tan
πa
2b

)
·C (43)

with a being the half crack length, where a circular path Γ around the left crack tip has the relative
radius r/a = 0.0139, and the near-tip stress distributions are to be evaluated along this circular path.
The Young’s modulus E is 200 GPa and Poisson’s ratio ν is 0.3.
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functions. The stress distributions were evaluated along the circular path Γ  and are compared in 
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exact ones, but it provides a significantly low stress level. Thus, one can realize that only the fine 
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the enrichment of interpolation functions is effective in enhancing the near-tip stress approximation. 

Figure 5. (a) Infinite plate with collinear cracks in plane strain state [2], (b) periodic model with double
edge cracks and a gradient natural element method (NEM) grid (unit: m, N = 2516).

The problem was solved with 13 Gauss integration points, and the stress field approximated
by PG-NEM was smoothened by the stress recovery technique [36] with the Laplace interpolation
functions. The stress distributions were evaluated along the circular path Γ and are compared in
Figure 6. It can be observed that the case without enrichment shows similar stress distributions to
the exact ones, but it provides a significantly low stress level. Thus, one can realize that only the fine
gradient grid cannot sufficiently capture the near-tip stress distribution. Meanwhile, it is clear that the
case with enrichment remarkably improves the stress level. Therefore, it has been justified that the
enrichment of interpolation functions is effective in enhancing the near-tip stress approximation.
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Figure 6. Comparison of the stress distributions along the path Γ (r/a = 0.0139): (a) σxx, (b) σyy, and (c)
τxy.

Figure 7a shows a rectangular FGM plate with an edge crack which is in the plane strain condition,
where W and H/W are 1.0 and 8.0 units, while a/W is set variable for the parametric investigation as
follows: 0.2, 0.3, 0.4, 0.5, and 0.6. The Young’s modulus E varies along the x−axis in a form of

E(x) = E1exp(βx), 0 ≤ x ≤W (44)

but Poisson’s ratio is uniform as 0.3. When E1 and E2 are specified to the elastic moduli at x = 0 and
x = L, respectively, the parameter β is calculated according to β = ln(E2/E1), with E1 being 1.0 unit.
Two material variation cases of E2/E1 are taken as follows: E2/E1 = 0.1 and 10.0, and two loading cases
of tension in Figure 7b and bending in Figure 7c are considered. This example was initially studied
by Erdogan and Wu [40], who also provided an analytical solution. The external loading is set by as
follows: for tension and σyy(x,±4) = ± 1.0 for tension and σyy(x,±4) = ±(−2x + 1) for bending.
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Figure 7. A cracked rectangular functionally graded material (FGM) plate with a varying Young’s
modulus: (a) Geometry dimensions, (b) tension loading, (c) bending.

An upper grayed half is taken for the crack analysis from the problem symmetry, and the following
symmetric constraint is specified to the symmetric line. The non-cracked symmetric line is subjected
to the vertical displacement constraint of uy = 0, and the right end point is enforced by the lateral
displacement constrain of ux = 0. A 11 × 41 uniform NEM grid is used, and all the NEM analyses,
the stress recovery, and the modified interaction integrals M̃(1,2) were carried out with 13 Gauss points.
The radius rint for determining the domain of integration A was chosen using twice the side length of
a square consisting of two Delaunay triangles [41].

Table 1 comparatively represents the normalized mode-I SIFs for uniform tensile loading and
bending loading, respectively, where the values in parenthesis indicate the relative differences (%).
It is confirmed that the proposed enriched PG-NEM provides the SIFs, which are consistent with
the analytical solutions [40], for all the combinations of E2/E1 and a/W of two types of loading,
except for the relatively remarkable relative difference 6.807% in the tension case with E2/E1 = 10
and a/W = 0.3. For the further comparison, the numerical results by Kim and Paulino [15] and by
Rao and Rahman [34] are also given in Table 1. It is observed that the SIFs of proposed method
are correlated satisfactorily with the FEM results by the J∗k-integral and the EFGM results by the

modified M̃(1,2)-interaction integral. Table 2 represents the comparison with the results obtained
without using the enrichment. In the uniform tensile loading, the case without enrichment provides
the SIFs, which are lower than those with enrichment, such that the range of relative differences is from
27.59% and 51.04%. Meanwhile, in the bending, it is observed that the difference between with and
without enrichment is not significant. Furthermore, the case without using enrichment provides the
SIFs which are higher than those obtained by the enrichment. It is inferred that the near-tip stress field
produced by bending is totally different from that by uniform tensile loading. The relative difference
becomes smaller as the relative crack length a/W increases. It is observed from the detailed numerical
values that the relative difference ranges from 2.41% to 24.68%. Thus, it has been found that the
proposed enrichment method is influenced by the loading type.
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Table 1. Normalized stress intensity factors KI/σyy
√
πa for an edged cracked plate.

Relative Crack Length a/W

Method E2/E1 0.2 0.3 0.4 0.5

Uniform
tension

Proposed Method 0.1 1.302 1.843 2.557 3.504
10 0.960 1.150 1.581 2.176

Erdogan and Wu
[40]

0.1 1.297 (0.386) 1.858
(−0.807)

2.570
(−0.506)

3.570
(−1.849)

10 1.002
(−4.192)

1.229
(−6.428)

1.588
(−0.441) 2.176 (0.000)

Kim and Paulino
[J∗k] [15]

0.1 1.284 (1.402) 1.846
(−0.163) 2.544 (0.118) 3.496 (0.229)

10 1.003
(−4.287)

1.228
(−6.352)

1.588
(−0.441) 2.175 (0.046)

Rao & Rahman
[M̃(1,2)] [34]

0.1 1.337
(−2.618)

1.898
(−2.898)

2.594
(−1.426)

3.547
(−1.212)

10 0.996
(−3.614)

1.234
(−6.807)

1.598
(−1.064)

2.189
(−0.594)

Bending

Proposed Method 0.1 1.885 1.872 1.908 2.141
10 0.583 0.636 0.812 1.069

Erdogan and Wu
[40]

0.1 1.904
(−0.472)

1.886
(−0.742)

1.978
(−3.539)

2.215
(−3.341)

10 0.565 (3.186) 0.659
(−3.490) 0.804(0.995) 1.035 (3.285)

Kim and Paulino
[J∗k] [15]

0.1 1.888
(−0.159) 1.864 (0.429) 1.943

(−0.035)
2.145

(−0.140)

10 0.565 (3.186) 0.659
(−3.490) 0.804 (1.801) 1.035 (3.285)

Rao & Rahman
[M̃(1,2)] [34]

0.1 1.903
(−0.420)

1.875
(−0.160)

1.954
(−2.354)

2.155
(−0.650)

10 0.564 (3.369) 0.664
(−4.217) 0.812 (0.000) 1.045 (2.297)

Table 2. Comparison of KI/σyy
√
πa between with and without enrichment.

Relative Crack Length a/W

Method E2/E1 0.2 0.3 0.4 0.5

Uniform
tension

With enrichment
0.1 1.3023

(46.902)
1.8429

(29.041)
2.5722

(37.785)
3.5643

(27.587)

10 0.9960
(45.050)

1.2225
(47.706)

1.5210
(47.843)

2.1473
(51.041)

Without
enrichment

0.1 0.6915 1.3077 1.6003 2.5810
10 0.5473 0.6393 0.7933 1.0513

Bending

With enrichment
0.1 1.8847

(−24.683)
1.8719

(−12.132)
1.9083

(−4.910)
2.1406

(−2.406)

10 0.5826(18.641) 0.6361(7.436) 0.8122
(9.554)

1.0686
(15.319)

Without
enrichment

0.1 2.3499 2.0990 2.0020 2.1921
10 0.4740 0.5888 0.7346 0.9049

The third example is a slant edge crack in a 2-D FGM plate in plane stress condition with the
height H = 2 units and the width W = 1 unit. Referring to Figure 8a, the crack angle α is 45

◦

and the
relative crack length is a/W is 0.4

√
2, where the enrichment and the crack evaluation are performed

within the inclined Cartesian co-ordinate system
{
x′, y′

}
originated at the crack tip O′. The Poison’s
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ratio is kept uniform as ν = 0.3, but the elastic modulus varies in an exponential function along the
x−direction

E(x) = Eexp[η(x− 0.5)], 0 ≤ x ≤W (45)

Here, E = 1 unit and η is variable for the parametric study such as ηa = 0, 0.1, 0.25, 0.5, 0.75,
and 1.0. As external load, an exponentially varying distributed load is applied to the upper edge with
σyy(x, 1) = εEexp[η(x− 0.5)], with ε being 1. The whole bottom edge is constrained in the vertical
direction (i.e., uy = 0). At the same time, the right end is constrained in the horizontal direction.
A uniform NEM grid, given in Figure 8b, is employed which is discretized by 11× 21, where a darkened
area indicates the domain A for the interaction integral. The total number of grid points is 235 because
four additional grid points are needed along the crack to split a crack line into upper and lower faces.
All the NEM analyses, patch recovery, and the modified interaction integrals were performed with
13 Gauss points.
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Figure 8. (a) An FGM plate with an inclined edge crack under the exponential distribution load,
(b) a uniform NEM grid and the domain of integration (235 nodes).

Table 3 comparatively represents the predicted normalized mixed-mode SIFs KI/εE
√
πa and

KII/εE
√
πa evaluated by three different methods, the present PG-NEM, J∗k−integral using FEM,

and EFGM for seven different ηa values. It is confirmed that the present method is in good agreement
with FEM and EFGM, such that the biggest relative difference is 4.37% at KII/εE

√
πa for ηa = 0.25.

The values in [*] are the normalized mixed-mode SIFs obtained by PG-NEM without using enrichment.
It is observed that the values are significantly smaller than those obtained using enrichment, such that
the relative difference ranges from 23.32% to 65.63%. The relative difference increases in proportional
to the exponential index ηa . Hence, it was confirmed that the enrichment successfully and significantly
improves the prediction accuracy of mixed-mode SIFs of the highly heterogeneous FGM, even for the
coarse NEM grid.
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Table 3. Normalized stress intensity factors (SIFs) for an inclined crack in a functionally graded plate.

ηa Present Method Kim and Paulino [J*
k] [15] Rao and Rahman [M̃

(1,2)
] [34]

KI

εE
√
πa

KII

εE
√
πa

KI

εE
√
πa

KII

εE
√
πa

KI

εE
√
πa

KII

εE
√
πa

0.0 1.449 [0.951] 0.606 [0.354] 1.451
(−0.138) 0.604 (0.331) 1.448 (0.069) 0.610 (−0.656)

0.1 1.377 [0.831] 0.589 [0.335] 1.396
(−1.361) 0.579 (1.727) 1.391

(−1.006) 0.585 (0.684)

0.25 1.277 [0.673] 0.525 [0.266] 1.316
(−2.964)

0.544
(−3.493)

1.312
(−2.667) 0.549 (−4.372)

0.5 1.163 [0.460] 0.488 [0.241] 1.196
(−2.759)

0.491
(−0.611)

1.190
(−2.269) 0.495 (−1.414)

0.75 1.087 [0.357] 0.434 [0.159] 1.089
(−0.184)

0.443
(−2.032) 1.082 (0.462) 0.446 (−2.691)

1.0 1.029 [0.240] 0.411 [0.147] 0.993 (3.625) 0.402 (2.239) 0.986 (4.361) 0.404 (1.733)

[*] indicate the SIFs obtained without using the enrichment, while (*) indicate the relative differences (%).

5. Conclusions

In this paper, an enriched PG-NEM was introduced for the reliable crack analysis of inhomogeneous
functionally graded materials (FGMs). The Laplace interpolation function was enhanced by the
crack-tip singular displacement field and the essential boundary condition was modified accordingly.
The unreached global displacement field was extracted, and its stress field was smoothened by the
stress recovery. The validity and effectiveness of proposed method was illustrated and justified through
three representative examples.

Through the numerical experiments, it was found that enriched PG-NEM is more effective to
represent the near-tip stress singularity. The enrichment provides the stress level, which is more close to
the exact solution when compared to the use of locally refined NEM grid. In addition, it was observed
that enriched PG-NEM accurately predicts the mixed-mode SIFs of inhomogeneous functionally graded
materials with exponentially varying elastic modulus. When compared to the case without using
enrichment, the prediction accuracy was improved up to four times. Meanwhile, with respect to the
analytical solution, the maximum relative difference was found to be less than 6.5%.
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