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Abstract: Lossy image compression can reduce the bandwidth required for image transmission
in a network and the storage space of a device, which is of great value in improving network
efficiency. With the rapid development of deep learning theory, neural networks have achieved
great success in image processing. In this paper, inspired by the diverse extent of attention in
human eyes to each region of the image, we propose an image compression framework based
on semantic analysis, which creatively combines the application of deep learning in the field of
image classification and image compression. We first use a convolutional neural network (CNN) to
semantically analyze the image, obtain the semantic importance map, and propose a compression bit
allocation algorithm to allow the recurrent neural network (RNN)-based compression network to
hierarchically compress the image according to the semantic importance map. Experimental results
validate that the proposed compression framework has better visual quality compared with other
methods at the same compression ratio.
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1. Introduction

The rapid development of the Internet of Things (IoT) has greatly facilitated people’s lives, and
it has also led to an explosive increase in the amount of data transmitted by networks. The types
of network services have developed from the original text and voice signals to image and video
signals, which brings convenience for the transmission of information and also continuously improves
the requirements for data transmission and storage. Therefore, in order to reduce the volume of
images during transmission and storage to improve network transmission efficiency, obtaining a
better recovery quality through a smaller compression size has long been the focus of research in the
image field.

Image compression technology can be generally divided into lossy compression and lossless
compression. Lossless compression compresses images by removing statistical redundancy in the
image [1]. The process is reversible and is usually used in scenes where image sharpness is high, such
as medical images, such as performed in [2], scarce data images and so on. The lossy compression
algorithm performs redundant processing on image information according to the principle that the
human eye is insensitive to certain visual features. Compared with lossless compression technology,
lossy compression is at the expense of removing invisible information from the human eye, in exchange
for the promotion of the compression ratio. Common lossy compression algorithms can be divided
into traditional methods based on mathematical statistics and neural network methods based on deep
learning. Most of the traditional methods are considered from the statistical characteristics of the data
and compress images by various mathematical algorithms; typically, these include predictive coding, as
used in [3]; sub-band coding, as in [4]; JPEG, as in [5], and so on. Deep learning-based methods mostly
use artificial neural networks to design image codecs. Benefitting from the strong learning ability of
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the neural network, these methods can study the characteristics of images through backpropagation
and realize the compression of image information without too much prior knowledge.

Although many methods of deep learning currently perform well in image compression, there are
still several issues to be addressed. In general, the human eye has a different degree of attention to each
area of the image. For example, in a portrait picture, the clarity and texture details of the characters
in the foreground are more eye-catching than the background. With the current IoT multimedia
data compression requirements, most images have an apparent distinction between the foreground
and background. However, the existing compression method performs the same processing for
each pixel of the picture, so in an image with low background importance, it does not make the
best allocation for each compressed bit. Therefore, in this scenario, it is necessary to propose the
corresponding compression technique for the optimal compression bit allocation problem with clear
foreground–background discrimination images. At present, most of the pictures on the Internet will
generate noise during the transmission process, which will have a negative impact on the compression
and recovery of the images. Some excellent denoising methods have been proposed in [6], [7] and [8]. In
the experiments in this paper, we used the Kodak dataset without noise to better verify the performance
of the compression algorithm.

The proposed image compression framework in this paper is shown in Figure 1, including the
semantic analysis network and image compression network. We use the semantic analysis network
to extract the essential semantic regions of the input image and calculate the compression level
corresponding to each area and then use the image compression network to compress and decompress
the image hierarchically.
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The specific contributions are divided into the following three points:
(1) An end-to-end deep learning image compression framework based on semantic analysis is

proposed, containing a semantic analysis network based on a convolutional neural network (CNN)
and an image compression network based on a recurrent neural network (RNN).

(2) We design a compression bit allocation algorithm to calculate the compression iterations of
each image block, skillfully using the results of semantic analysis to compress the image hierarchically.

(3) The performance and feasibility of the proposed compression framework are verified
by comparison with other image compression algorithms in a multi-structure structural similarity
(MS-SSIM) index and proposed semantic–important structural similarity (SI-SSIM) index.

2. Related Works

Recently, benefitting from the generation of large-scale data sets, the development of robust
models, and a large number of available computing resources, deep learning theory has made excellent
progress in the field of image semantic analysis and image compression. The weakly supervised
semantic classification network is booming with the rise of deep learning, allowing computers to
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understand pictures better. As the originator of the CNN network, LeNet [9] is composed of a
convolution layer, pooling layer, full connection layer, and sigmoid as the activation function. For
the first time, the convolution layer is used instead of a manual hand-craft feature, which allows the
computer to understand the picture in its own way. The Imagenet Large-Scale Visual Recognition
(ILSVRC) competition has stimulated the rapid development of semantic analysis networks. In 2012,
AlexNet—proposed by Hinton and Alex Krizhevsky in [10]—exploited Rectified Linear Units (ReLu)
as an activation function replacing sigmoid to solve gradient diffusion and adopted dropout to avoid
overfitting, aiming to focus on the wider meaning of semantic feature representation. In the same year,
Google Inception Net (GoogleNet) in [11] was proposed as the winner of ILSVRC. GoogleNet used a
22-layer deep network to avoid gradient disappearance, subtly adding two loss functions at different
depths network to ensure the return of the gradient. In addition, a 1×1 convolution kernel was adopted
to reduce the thickness of the feature map. Residual Network (ResNet), proposed by Kaiming He
et al. in [12], achieved a colossal breakthrough: the bottleneck residual block and jump connection
deepened the depth of the network without gradient disappearance and network degradation. The
152-layer-deep network made a great leap forward in improving the deeper semantic understanding
of the image.

Deep learning has also made excellent progress in the field of image compression. A super-
resolution convolutional neural network (SRCNN) network for image compression was proposed
in [13] by Chao Dong et.al., first applying deep learning methods in solving pixel-level image problems.
It uses a three-layer convolution structure to sample a low-resolution image by doubling the cubic
difference and reconstructs the image in the pixel domain through the network. Researchers at Google
proposed recurrent neural networks based on convolution and deconvolution long short-term memory
(LSTM) in [14]. Four compression models were designed without retraining when the compression ratio
changed, which were a full connection or convolution/deconvolution residual encoder with and without
LSTM, finally using the SSIM index as the evaluation standard. Further, they published a progressive
method in 2016 [15], a full-resolution image compression method based on a neural network, which
achieved a 4.3–8.8% higher area under the rate-distortion curve (AUC) compared with the existing
compression methods, making it the first neural network image compression framework beyond JPEG.
In 2017, Mu Li et al. at Hong Kong Polytechnic University proposed an image compression method
based on image content weighting in [16]. This method adds the concept of an importance map to
the traditional self-encoder structure. The edge feature map extracted by the three-layer convolution
neural network from the features map was output by the encoder as the importance map of the
original image. However, this method focuses on the edge of objects instead of the whole region, and a
certain compression ratio is maintained for each training of the network. In 2017, a CNN-based image
compression framework was proposed [17] which included two CNN networks, compact convolutional
neural network (ComCNN) and reconstruction convolutional neural network (RecCNN), which are
used to encode and decode the original image, respectively. An innovative algorithm collaborates
two CNN networks, which solves the non-differentiated calculation in the quantization rounding
function to achieve a backward propagation gradient in the standard image algorithm. In 2018, an
image compression scheme incorporating semantics was proposed in [18]; the authors combined
image compression and classification to reconstruct the images and generate corresponding semantic
representations at the same time. In 2019, Ma Siwei et al. summarized and analyzed image and video
compression techniques based on deep learning [19]. In terms of image compression, the authors
introduced image compression methods based on the random neural network, convolutional neural
network, recurrent neural network, and generative adversarial network methods from the perspective
of principle and performance.
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3. Network Structure

3.1. Semantic Analysis Network

To enable the differentiated compression of the image, it is necessary to perform semantic analysis
on the input image to identify an area of interest to the human eye and then allocate it more compressed
bits. Although the existing techniques are able to accurately outline the boundary of the objects in the
picture, this segmentation of the hard boundary of the object is not important for semantic compression,
and it is critical to locate the approximate range of the object. In this paper, we use deep learning
methods for image classification to achieve the annotation of semantic areas. The class activation
mapping (CAM) method is proposed by Zhou in [20] to describe the possibility that each pixel belongs
to a specific category. Based on the CAM method, the probability that each pixel belongs to a specific
class can be converted into the semantic importance of the pixel. The higher the possibility, the higher
the importance of the pixel for the picture content, and the more compression bits need to be allocated.

The semantic analysis network structure used in this paper is shown in Figure 2, using a
classification-based training network architecture similar to Visual Geometry Group 16 (VGG16). The
first five convolutional layers are used to extract the characteristics of the input image, and a global
average pooling (GAP) layer is placed after the last convolution layer instead of the fully connected
layer (FC) to convert the feature map into a feature vector. Compared to FC, GAP reduces a large
number of network parameters, preventing over-fitting, and most importantly, GAP can save spatial
information of images, which is significant to generate the semantic map. Finally, the weighted linear
sum of the feature vector and its corresponding weight are input to the softmax layer to obtain the
class activation map.
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Given an input image I and a set C of categories to be identified, we can extract feature maps fu
by utilizing the CNN network, which obtains the same number as categories in set C. fu is the feature
map of I for the convolutional unit u after the last convolutional layer Conv5, and each fu has the ability
to extract features of a certain category in I. Each fu will be averaged in GAP, and multiplied by the
weight αc

u—the weight of convolution unit u corresponding to the class c—to obtain the possibility Pc

of fu belonging to c.
Pc =

∑
u
αc

uG( fu) (1)

where G( fu) is the GAP operation of fu. We use Pc as the input to softmax layer; then, the final
classification result Rc can be calculated by Formula (2).

Rc =
exp(Pc)∑

c
exp(Pc)

=

exp(
∑
u
αc

uG( fu))∑
c

exp(
∑
u
αc

uG( fu))
(2)
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The class c with the highest probability is chosen as the classification result of the image I, and the
cross-entropy of the result and the label corresponding to I are used as the loss function to train the
network. Finally, we can obtain the trained weight αc

u.
To visualize the effect of the network on image I, for the specific class c, we use the linear weighted

sum Hc of αc
u and fu to represent the probability that each pixel in the image belongs to class c.

Hc =
∑

u
αc

u fu (3)

By up-sampling Hc to the size of picture I and superimposing it with I, we can get the thermal
maps shown in Figure 3 as the result of semantic analysis. The degree of highlighting indicates the
level of semantic importance.
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3.2. Image Compression Network

The image compression part of this paper adopts the network structure in [15]: a recurrent neural
network including an encoder, binarizer, and decoder, which can be end-to-end trained. The system
can perform multiple iterations, and in each iteration, the encoder E encodes the input image to a
representation code; then, the binarizer B transforms the representation code into a binary code. Finally,
the decoder D predicts the output image by the binary code. The residual of the output and input for
each iteration will be used as the input for the next iteration. Each iteration is described as follows:

bk = B(Ek(rk−1)), x̂k = Dk(bk), rk = x− x̂k (4)

where Ek and Dk, respectively, represent the encoder and decoder for the kth iteration. B denotes the
binarizer, bk is the binary code in the kth iteration, xk is the predicted output of the kth iteration, and rk
is the residual of the production and input for the kth iteration. The compression network consists of
multiple iteration units, which are shown in Figure 4.

Each iteration unit contains convolutional units, LSTM units and a sub-pixel structure, which
are used to extract image features, memorize the residuals in the iterative process, and restore the
size of the image, respectively. The entire compression network uses eight recurrent neural networks
composed of LSTM units (from A to H), which use the predicted output of the previous LSTM unit
as inputs in a single iteration and transmit the hidden layer state parameter to the corresponding
LSTM unit in the next iteration. The structure of the LSTM unit is shown in Figure 5, where ck−1 and
hk−1 are the memory state and hidden layer state of the LSTM unit in the previous iteration, and xk is
the input vector of the kth iteration, which is equal to the output of the upper layer network in this
iteration. Each unit contains two convolutional neural networks; conv_in works on the input vector xk,
and conv_hi works on the hidden layer state hk−1 of the LSTM unit in the previous iteration.
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For a given input vector xk, ck−1, and hk−1, the calculation methods of ck and hk in this iteration are
as follows:

[ f , i, C̃, o]
T
= [σ, σ, tanh, σ]T(conv_in(xk) + conv_hi(hk−1)) (5)

ck = f � ck−1 + i� C̃ (6)

hk = o� tanh(ck) (7)

where � denotes element-wise multiplication.
The binarizer first uses a convolutional neural network plus a tanh activation function to map the

representation code obtained by the encoder to the interval of (–1, 1), and then uses the sign function
to binarize the code in the range into a set {–1, 1}. An H ×W × 3 input vector can be compressed into
an (H/16) × (W/16) × 32 binary code, meaning that we can obtain the bits per pixel (bpp) in each
iteration as 1/8, and the compression ratio in the kth iteration is k/192.
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In addition to the CNN and LSTM units, the sub-pixel structure proposed in [21] is used in the
decoder to up-sample the feature vector and revert to the scale of the input image. During training, a
L1 loss is calculated on the residuals generated at each iteration:

L1 =
K∑

k=1

|rk| =
K∑

k=1

∣∣∣x−Dk(B(Ek(rk−1)))
∣∣∣ (8)

3.3. Compressed Image with Semantic Map

In order to perform discriminative compression for images, image blocked processing adopts 8
× 8 blocks, referring to JPEG, so that the corresponding compression ratio of each image block can
be calculated according to its semantic importance, due to the problem that larger blocks will slow
down the computation speed and smaller blocks will affect the information entropy between pixels.
The method described in Section 3.2 is used so that the number of iterations in the image compression
network controls the compression ratio of images. In this section, we propose a compression bit
allocation algorithm according to the semantic importance of image blocks to calculate the number of
iterations of each block given the average compression level of images.

Given the input image size H ×W, the entire picture is divided into N blocks with a size of 8× 8,
with N = H ×W/8 × 8. Let K be the average compression level of the image, and the compression
level of block i be Ki; to ensure the consistency of the compression ratio, the sum of the compression
levels of all image blocks should be defined as

N∑
i=1

Ki = K ×N (9)

We convert the semantic importance map to a grayscale graph to better represent the semantic
importance of each pixel. The higher the gray value of pixel (x, y), the greater the probability that i
belongs to a specific grammatical category of interest to the human eye; that is, the higher the semantic
importance. Let the semantic importance value Vi of the block i be the sum of the gray values g(x,y)
corresponding to each pixel (x, y) which belongs to the block; then, we can get the semantic level Li.

Li =
Vi

N∑
i=1

Vi

=

∑
(x,y)∈i

g(x,y)

N∑
i=1

∑
(x,y)∈i

g(x,y)

(10)

Considering the sum of the compression level of the blocks to be K ×N, the calculated level of
block i can be expressed as Ti.

Ti =
⌊
Li ×K ×N

⌋
(11)

where b·c is the int function used to ensure the average compression level does not exceed K.
However, in our experiment, we found that the calculation method proposed above will result

in an excessive number of iterations of the image block with higher semantic importance when the
whole picture has a high average number of iterations. According to the image compression network
described above, although the increase in the number of iterations can improve the quality of the
restored image, a great deal of calculation time and space are required. Therefore, the allocation method
is not reasonable when the average number of iterations is high, which needs further improvement.

We performed 0–30 iterative compressions on the 24 images in the Kodak dataset and calculated
the corresponding MS-SSIM [22] values to verify the impact of the number of iterations on the quality
of the recovered images. From the experimental results, although the recovered quality gradually
improved with the increasing iterations, we observed that the degree of the improvement gradually
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decreased and tended to be approximate after 24 times. Therefore, we choose 24 to be the threshold for
the iterations of the compression network to balance the computational overhead with the quality of
the compressed image. For image blocks with more than 24 iterations, the excess number is assigned
to the remaining image blocks that do not exceed this, based on the degree of semantic importance. In
light of all derivations above, the complete description of the proposed algorithm is given in Algorithm
1. First, we calculated the iterations Ti of each image block according to Equation (11), in which
more than 24 iterations are processed as 24, and the excess part is added to the summation E. Then,
we calculated the semantic level Ln j of the image block not exceeding 24 times using the method in
Equation (10), and finally updated Ti by prorating E to these image blocks with Ln j.
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4. Experiments

4.1. Traning Set

(1) Semantic analysis network

The purpose of the semantic analysis network is to identify objects that are of interest to the
human eye. There are no specific requirements for the type of object. For example, it is only necessary
to distinguish whether this is a dog, and it does not need to be precise whether it is a German Shepherd
or a Siberian sleigh dog. Therefore, to ensure the quality of training and reduce the time of convergence,
we use the Caltech-256 data set [23] to train our network—a data set specifically for image object
recognition—including 256 image categories and a total of 30,608 images. We initialize the weights of
the semantic analysis network using the method in [24] and using the Adam algorithm used in [25].
The learning rate is decayed from 0.01 to 0.0002 for 100 epochs.

(2) Image compression network

To reduce the training time of the compression network, we use the Cifar-100 data set [26] for
training, which contains 20 significant classes, 100 subclasses, and each subclass contains 600 32 × 32
images. We initialize the weights of the image compression network using the method in [24] and the
Adam algorithm used in [25]. The learning rate is decayed from 0.01 to 0.0005 for 100 epochs.

4.2. Visual Quality Evaluation

To verify the performance of the proposed compression model, we used the Kodak dataset [27] as
a test to compare the results with the JPEG, BPG, and George’s methods. To fairly compare the original
uncompressed images with the compressed images, it is necessary to select an evaluation indicator
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with a specific reference value. The fundamental purpose of the compression model proposed in this
paper is to improve the subjective visual quality of human eyes. Therefore, the image will be verified
using the MS-SSIM indicator, which is excellent at evaluating visual quality, applying MS-SSIM to
each of the RGB channels independently to average the results. MS-SSIM gives a score of 0–1 for the
contrasted picture; the closer the value to 1, the higher the similarity between the restored image and
the original image.

Figure 6 shows the original images and the results produced by the following compression
methods. To ensure the compression ratio of each technique is as equal as possible, we maintain the
bpp of the three compression methods at around 0.75; for an input RGB three-channel image, the
compression ratio is close to 3 × (8/0.75) = 32 times. In the MS-SSIM indicator of the whole picture,
the column of George’s method performed best, the method proposed in this paper performed less
well, and the JPEG performed worst. At the same time, besides the structural similarity comparison of
the whole picture, we also carried out subjective visual and objective numerical comparisons of the
essential semantic areas in each image. As shown in Figure 6, the blue and green boxes are used to
mark the characters and graphics on the plane, the text on the hat, the face, and the accessories on the
body. All the grades of comparison in the MS-SSIM indicators show that our method gets the highest
score. Moreover, in terms of visual quality, compared with the JPEG, with a visible blocking effect and
artifacts through the contrast after magnification, and George’s method, with a noticeable blur in the
details, our approach not only performs well in terms of sharpness and texture details but also avoids
the blocking effect and artifacts that are common to JPEG methods.

The compression bit is unevenly distributed in the entire picture in our method; the higher the
semantic importance, the more compressed bits are allocated in the region. In other words, compared
with the average distribution compression methods, the visual recovery quality of our approach is
higher than the average value in the essential semantic part and lower in the semantic inconsequential
region. Therefore, the core of the compression method proposed in this paper improves the quality of
essential areas by sacrificing the quality of restoration of insignificant regions to obtain better subjective
visual quality. Generally speaking, the scale of the essential semantic region is usually smaller than the
unimportant part of an image, which is the reason why the method in this paper is slightly inferior to
George’s method in the MS-SSIM index of the whole picture.

Moreover, we compared the recovery quality of the three methods at different compression ratios.
The results are shown in Figure 7a. In the case of a large compression ratio, both George’s and the
improved method in this paper can obtain better performance indicators than JPEGA. However,
because the method in this paper sacrifices the clarity of the background region to obtain the clarity
of the essential semantic area, the MS-SSIM is slightly lower than for George’s method. Besides, we
propose an SSIM evaluation index SI-SSIM based on semantic importance to distinctly reveal the
improvement of the proposed method. Based on SSIM calculation, the structural similarity in semantic
degree is obtained by assigning each pixel a weight corresponding to its semantic importance. The
calculation of SSIM is shown in Formula (12):

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ

2
y + c1)(σ2

x + σ
2
y+c2)

(12)

where µx is the average value of x, µy is the average value of y, σ2
x is the variance of x, σ2

y is the
variance of y, σxy is the covariance of x and y, and c1 and c2 are two variables used to maintain stability.
SSIM analyzes the similarity of each pixel in the two compared images, and we average the sum
to get the result. In our proposed SI-SSIM, we use Li in Formula (10) as the weight of each pixel’s
similarity and finally obtain the similarity based on semantic importance by averaging the weighted
summation, which is shown in Formula (13). The reliability of SI-SSIM is guaranteed by verifying
the Spearman rank-order correlation coefficient (SROCC), Kendall rank-order correlation coefficient
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(KROCC), Pearson product-moment correlation coefficient (PLCC) and root mean square error (rMSE)
of SI-SSIM and SSIM.

SI-SSIM(x, y) =
N∑

i=1

Li ×

 ∑
(x,y)∈i

SSIM(x, y)

 (13)
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Similarly, we compared the SI-SSIM index of JPEG, BPG, George’s, and the proposed method on
the Kodak dataset. The results are shown in Figure 7b, in which it can be found that the proposed
methods are superior to the other two methods.

5. Conclusions

In this paper, we combine the application of deep learning in the field of image semantic analysis
and image compression and propose a compression framework based on semantic analysis, consisting
of a semantic analysis network and image compression network. The semantic analysis network is
responsible for extracting the important semantic regions of the image using CNN and calculating the
compression level according to the semantic importance of each image block. Moreover, the image
compression network performs a differentiated, hierarchical compression of the image based on the
calculated compression level. The experimental results demonstrate that the proposed compression
method can improve the visual quality of the human eye’s attention area under the same compression
overhead and has good application value in IoT image processing.
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