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Abstract: In addition to the possible contributions of buildings to mitigating CO2 emissions, increased
attention is being paid to the potential impacts of climate change on urban environments. According
to the United Nations, about 54% of the planet’s population currently lives in cities, but this percentage
is expected to rise to 66% in 2050, which reveals the scale of this issue. This paper develops a reflection
on the possible contributions of water-related building installations to mitigate emissions and increase
urban area adaptation to the effects of climate change. One of the most promising solutions to facing
climate change, which is analysed in detail in this paper, is combining rainwater harvesting systems
with green roofs. However, in view of developing the necessary engineering projects, there are
insufficient existing studies to estimate the parameters to be used in each location given their climate
characteristics, particularly the monthly runoff coefficients, which constitute the key parameter for
designing these installations in some regions. Some recent standards present generic theoretical
values for designing these combined installations, but they are far from reality in some regions, such
as the Mediterranean basin. Therefore, based on the data available in Portugal, this paper reports
some of the results obtained from research on the values of the monthly runoff coefficients.
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1. Introduction

During the 21st century, climate change will continue under a range of possible greenhouse gas
emission scenarios [1] and by the end of this century, the global average temperature will rise 2.6 to
4.8 ◦C from the present value, and sea levels will be 0.45 to 0.82 meters higher [2], significantly affecting
coastal areas. More frequent and intense extreme weather events will result in a higher incidence of
floods and droughts around the planet. Prolonged droughts will also reduce groundwater recharge and
the subsequent impacts on water and sanitation services constitute a clear danger for development and
health [3–5].

According to the United Nations, about 54% of the planet’s population currently lives in cities,
but this percentage is expected to rise to 66% in 2050, given that projections show that urbanization,
combined with the overall growth of the world’s population, could add another 2.5 billion people to
urban populations by 2050 [1]. For this reason, climate change impacts in cities and buildings will be very
significant and urban life will have to adapt and create resilience to more extreme weather conditions.

It is necessary to implement mitigation measures, consisting of interventions to reduce the sources
of or enhance the sinking of greenhouse gases. At the same time, adjustments will be necessary to
prevent or moderate the damage, thus increasing “resilience”, that is, the capacity to manage harmful
events, disturbances, or trends and respond so that buildings maintain their essential function, identity,
and structure [2].
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Water-related installations in buildings include water supply and drainage for rainwater and
wastewater. They should contribute to adaptation to climatic changes and to adding more resilience to
buildings [6], in addition to a possible contribution to mitigating the problem since an increase in water
efficiency results in reduced energy consumption as a consequence of the water-energy nexus. It is very
important to know what can be done to improve the traditional water-related systems and solutions or
what needs to be done differently to ensure that buildings can handle the impacts of climate change in
the future.

2. Climate Change Impacts and Response Strategies in the Urban Environment

2.1. Impacts on Temperature and Precipitation

An important impact of climate change that is expected to intensify in the next few decades
is the increased intensity and frequency of heavy rainfall and other extreme weather events, such
as heat waves [7]. Changes in precipitation are expected to differ from region to region, with some
areas becoming more humid and others drier, increasing precipitation in high-latitude regions and
decreasing it in most subtropical areas [8,9].

Regarding the European continent, southern and central Europe face increasingly more frequent
heat waves, forest fires, and droughts. The Mediterranean area is also gradually becoming dry and, thus,
even more vulnerable to droughts [10,11]. In fact, the Mediterranean basin is expected to be one of the
regions most affected by climate change on the planet. Northern Europe is becoming increasingly wet
and winter floods are likely to become more common. Being exposed to heat waves, floods, or a rising
sea level, in the case of coastal cities, urban areas are often ill-equipped to adapt to climate change [12].

Changes in mean precipitation will impact groundwater recharge rates, which may affect the
water supply [13,14], and, in semi-arid and arid areas, the salinization of shallow groundwater will
intensify due to increased evaporation and water uptake by vegetation. With higher temperatures,
there will be an increased demand for cooling (and hence power) in the summer and a decreased
demand for heating in the winter. On the other hand, more frequent and intense winter rains lead to
flooding in riverine areas and overloading public drainage systems [15–18].

According to online bulletins of the Copernicus Climate Change Service (C3S), implemented by the
European Centre for Medium-Range Weather Forecasts on behalf of the European Union, in 2019, Europe
was hit by two very intense heatwaves. Unprecedented temperatures broke records in many countries.
When compared to the 2010–2018 median, large parts of Europe exceeded normal temperatures by over
20 ◦C in 2019. The effects were particularly strong on 25th July; however, temperatures of more than
15 ◦C above normal were felt throughout the whole period from 22nd July to 26th July.

The scientific community already envisages that similar events will be among the most significant
threats that Europe will face in the foreseeable future. An increase in both the number and intensity of
heatwaves is among the greatest threats facing Europe in the near future.

2.2. Mitigation Strategies

The primary mitigation strategies comprise carbon efficiency, technology energy efficiency, system
and infrastructure efficiency, and service demand reduction through behavioral changes. Around
the world, it is estimated that the building sector contributes as much as a fifth of the total global
annual greenhouse gas emissions, making buildings the largest contributor to global greenhouse gas
emissions, and this sector also consumes more than 32% of global final energy [2]. The major causes of
this contribution are the extensive use of fossil fuel-based energy for thermal comfort, lighting, water
heating, water supply and drainage, electrical equipment and appliances, and producing construction
materials [19,20].

Given the massive growth in new construction, if nothing is done, greenhouse gas emissions from
buildings will more than double in the next 20 years [20]. Considering a building’s complete life cycle
(construction, operation or use, and demolition), obtaining a significant reduction in greenhouse gases
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emissions (GHG), mainly CO2, will require effective measures to be taken during its use or operation
phase, because this represents 80%–90% of the total energy consumed throughout its entire life cycle.

The use of green roofs on buildings, for example, can bring great advantages, not only in terms of
mitigating energy requirements for thermal comfort, but also in terms of increased resilience, since they
reduce the peak flow of surface water and increase the associated benefits of green infrastructure in
urban areas. Hard engineering solutions will continue to play a role in adapting to climate change, and
will also improve forecasting and preparedness, along with risk avoidance through planning controls.

Considering the water-energy nexus, reducing water consumption in the building cycle also
produces significant energy efficiency. This is a result of reducing the energy needs for domestic hot
water, to pressurize water in buildings, and also in public systems, such as pumping and the treatment
of water and wastewater. Therefore, the nexus between water efficiency and energy efficiency should
be one of the most important aspects when considering the contribution of buildings to mitigation
strategies [21–23].

A study developed in a medium-sized city in Portugal (Aveiro) by ANQIP—a Portuguese association
that works on water efficiency in buildings—found that energy savings due to using efficient products
(classified as ANQIP labeling category “A” for product water efficiency) [24–26] lead to a reduction in
emissions higher than 100 kg of CO2 per capita, per year, compared to the present scenario. That value
was obtained considering only heating domestic hot water in buildings and energy consumption in
public networks. It should be noted that in Portugal, energy consumption for heating domestic hot
water represents over 30% of the total housing energy consumption [26].

Taking as a reference the results of the study carried out in Aveiro, in Table 1, we summarize the
savings obtained per component of the urban water cycle, per person and per household, considering
an average value in Portugal of 2.3 persons per house and CO2 current emissions of 269 g/kWh
(according to online information of the main Portuguese energy market operator—EDP). It is thought
that these results can be extrapolated to other urban contexts and may even be more relevant in cities
with high-rise buildings since, in these cases, the pressurization needs are significant.

Table 1. Estimated energy savings and CO2 reductions with the use of water-efficient products in buildings.

Component of the Urban
Water Cycle

Annual Energy Savings and CO2 Reductions with the Use of Water-Efficient Products

Per Person
(kWh)

Per Person
(kg of CO2)

Per Family
(kWh)

Per Family
(kg of CO2)

Percentage of
the Total (%)

Building system (only
sanitary hot water heating) 368 99.0 846 228.4 87.0

Public system of
water supply 32 8.6 74 19.9

13.0

Public system of drainage
and treatment
of wastewater

23 6.2 53 14.3

TOTAL 423 113.8 973 262.6 100.0

This study shows the great importance of water efficiency measures in buildings as a contribution
to reducing energy consumption in urban areas and mitigating GHG emissions. Naturally, these results
may vary significantly with the characteristics of the water supply and drainage systems, especially
with regard to public systems, but it should be noted that the system in the Aveiro region presents one
of the lowest public water system energy consumptions in Portugal, due to its characteristics (flat city,
superficial abstractions, etc.).

There are other studies that have been carried out about the relationship between water efficiency
and energy efficiency in buildings [27–29] which reinforce the results of the above-mentioned study.
However, it should be noted that the contribution of water efficiency in buildings to the reduction
of energy consumption in public systems is generally neglected, but the study carried out in Aveiro
showed that it can have a non-negligible value (around 13% in the case study).
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In Aveiro, energy consumption in the public networks was 1.98 kWh/m3 (1.16 kWh/m3 in the
public water supply system, and 0.82 kWh/m3 in the public system of drainage and treatment of
wastewater) [26]. Based on these values, it is possible to draw some conclusions about the energy
consumed by some water uses in buildings, even in situations where only cold water is used, and
which are not obvious to consumers. For example, it allowed us to determine that the discharge of a
6-litre flushing cistern implied an energy consumption close to 12 Wh in the public water supply and
drainage networks, equivalent to a common 3W LED lamp connected for 4 h.

In general, the reuse of greywater and rainwater harvesting systems can also contribute to reducing
the energy consumption. Indeed, as these systems reduce drinking water consumption in houses, they
also reduce water flows and energy consumption in public networks.

For example, based on the value of 1.16 kWh/m3 and on an estimate of the daily consumption in
flushing cisterns of 145.8 liters per house in Aveiro, we can conclude that the use of rainwater in toilets,
as an alternative to the use of drinking water from the main water system, would allow for an energy
saving in the public water supply network of about 62 kWh per house and per year. Although rainwater
harvesting systems may demand a pressurization system in the building, the corresponding energy
consumption is equal to or less than that which occurs when the supply derives from the public network.

Compact installations for the direct reuse of greywater (toilet and washbasin combined, for
example), reduce water consumption in buildings and also lead to saving water and energy. With regard
to large installations for greywater reuse, when a centralized “conventional” treatment is employed
to regenerate these effluents, we find that the energy consumed in the treatment makes the system
“neutral” from an energy standpoint, i.e., the energy expended in treating greywater, about 1.8 kWh/m3,
is close to the energy saved in the urban water cycle. However, since the temperature of greywater
from showers, for example, is generally above 30 ◦C, utilizing this thermal energy for pre-heating hot
water will allow a saving of about 3 kWh/m3, making these installations advantageous not only from
the point of view of saving drinking water, but also from an energy standpoint.

In urban areas, reducing leaks in public water supply networks is also a well-known method to
increase the water efficiency, which has additional economic advantages evident to water authorities.
However, this measure is considered outside the scope of this paper, which focuses on buildings.

2.3. Processes of Adaptation and Increased Resilience

Buildings face a great risk of damage from the projected impacts of climate change and have
already experienced a substantial increase in extreme weather damage in recent decades. More than
half the urban areas projected for developing countries by 2030 have yet to be built, offering great
potential for integrated adaptation planning, but special attention should also be paid to existing
buildings. Furthermore, it would be of great interest to encourage good practice by incorporating
climate change responses within engineering standards.

It is extremely important to develop suitable construction and weather-sensitive planning projects
to promote the design of buildings and public spaces that are capable of dealing with the effects of
climate change without significant damage. Using green roofs on buildings, for example, can bring
great advantages, since they reduce the flow of surface water and increase green infrastructure and all
of its associated benefits.

In addition to the contribution that buildings can make to mitigate the impacts of climate change
on urban areas, for example, reducing flood peaks through green roofs and gardens [27] or reducing
energy needs through water efficiency, it is important to specify the role of the water supply and
drainage systems in buildings in relation to the resilience and adaptation of the building itself.

Constructing green roofs combined with rainwater harvesting systems in buildings can boost
the advantages of each of these technologies [28,29]; their combination should also be considered
a very promising solution to face climate change and increase sustainability in cities [30,31]. When
designing a rainwater harvesting system combined with a green roof structure, several factors should
be considered, such as the roof runoff coefficient [32].



Appl. Sci. 2019, 9, 3575 5 of 12

3. Methodology

The runoff coefficient is a dimensionless parameter that represents the relationship between the
total runoff volume from the roof and the total amount of precipitation in a certain time period [33].
In impervious roofs, where there is no loss of water by absorption and where water trapped or
evaporated is not significant, it has a value near one. For a given reference period (usually day, month,
or year), the multiplication of the runoff coefficient by the amount of precipitation in that period
corresponds to the volume of water that can be used by the rainwater harvesting system.

In the case of green roofs, average annual values between 0.4 and 0.6 for extensive green roofs
(green roofs with a maximum soil depth of about 150 mm), or between 0.1 and 0.4 for intensive green
roofs (green roofs with a soil depth of 150 mm or more), are generally adopted in central Europe and the
UK, according to the FLL (Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau) guidelines [33].

In fact, these values depend on the characteristics of the roof, such as the type of plants used
and the characteristics of the substrate, and are very dependent on the climatic conditions in the
region, especially temperature and precipitation diagrams. In Mediterranean climates, monthly runoff

coefficients are particularly important for sizing the storage tanks of rainwater harvesting systems [34]
considering the existence of long dry periods, extending, in general, throughout the summer period.
The monthly runoff coefficient represents the relationship between the total runoff volume from the
green roof during a given month and the total amount of precipitation on the roof in that month added
to the volume of possible watering done in that period.

From the perspective of integrating green roofs with rainwater harvesting systems, previous
research has been conducted by the authors and other researchers on a conventional extensive green
roof system in Oporto city (Portugal) [35]. This study revealed low runoff coefficient values, but allowed
the development of an expression to predict the monthly runoff coefficients for this type of conventional
green roof. The extensive pilot system adopted (Figures 1 and 2) followed the typical extensive green
roof structure: geotextile membranes, a water holding capacity layer using expanded clay, and a 10 cm
growing substrate composed of a mixture of expanded clay and organic matter. The pilot green roof was
established with three different common aromatic plant species: Satureja montana, Thymus caespititius,
and Thymus pseudolanuginosus.
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Although the pilot system was relatively small (0.70× 0.70 m2) and could lead to scale distortions in
the results, it was thought that these errors would not be significant and that the results met the objective
of obtaining a practical mathematical expression that would allow, with acceptable approximation, the
determination of average values of the monthly runoff coefficient for a typical extensive green roof [35].

Measurements of the pilot green roof allowed the development of the following expression for
monthly runoff coefficient prediction [35]:

CM = K
(PM + RM)

(2TM − TM−1)
1.2

(1)

where K = 0.016 (◦C1.2 mm−1), CM is the runoff coefficient of month M, PM is the precipitation of month
M (mm), RM is the watering in month M (mm), TM is the mean air temperature during month M (◦C),
and TM−1 is the mean air temperature during month M−1 (◦C).

The expression obtained, which significantly depends on the temperature in previous periods
and precipitation, has similarities with the well-known Turc formula [36] that has been widely
used in hydrological studies to determine flow deficit, which can be considered an indicator of its
consistency [35]. It should be noted that, where the application of the formula leads to a CM value
greater than 0.50, it is recommended that this value is adopted as a maximum, taking into account
indications of the European Standard EN 16941-1 [37].

Assuming its validity in Portugal, Formula (1) was applied to 12 weather stations (Figures 3 and 4),
where it is possible to obtain temperature and precipitation values, to calculate theoretical values for the
monthly runoff coefficients for green roofs with characteristics similar to those of the pilot system [32–38]
and find patterns related to the climatic nuances in the country. For these weather stations, the historical
record of monthly rainfall and temperatures is available on the Portuguese government’s SNIRH –
Sistema Nacional de Informação de Recursos Hídricos website (https://snirh.apambiente.pt/).

Most of Portugal has a Mediterranean climate, but northern Portugal has a significant Atlantic
influence, where the Mediterranean climate is less dominant. This is the case for stations 2, 7, and 10.
Station 5, although also located in the north of Portugal, is situated in the Douro valley, which has a
very specific local climate. The long mountain range on the west rim of this region protects the valley
from the cold and humid winds that sweep in from the Atlantic, creating drier conditions than along
the coast, but also colder winters and warmer summers. It is due to its special climatic conditions that
this valley has become the birth of one of the world’s most well-known drinks, Port Wine.Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 12 
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4. Results and Discussion

In general, there are two climate change impacts that are directly linked to water-related building
installations: the increased intensity of heavy rainfall and extreme heat waves. Table 2 summarizes the
main measures to be adopted in buildings with a view to promoting the adaptation and resilience of
buildings against these impacts.

Table 2. Measures to be adopted for promoting the adaptation and resilience of buildings against
climate change impacts.

Type of Climate
Change Impact.

Measures to be Adopted in Water-Related Installations to Promote an Increased Resilience of the Building

New Buildings Existing Buildings

Increased heavy
rainfall intensity

- Review design standards by integrating new weather
data or higher safety coefficients;
- Construct green roofs (preferably mandatory);
- Install rainwater harvesting systems (preferably
mandatory).

- Review rainwater drainage pipe sizing, especially stacks
and drains (in gravity systems), and analyse the need for
new emergency overflow outlets (specifically in
siphon systems);
- Install rainwater harvesting systems (if possible).

Extreme heat waves
(water scarcity)

- Review design standards considering greater capacity in
water tanks (when they exist in the building);
- Install rainwater harvesting systems and/or greywater
reuse systems;
- Apply water-efficient products (preferably mandatory).

- Conduct water efficiency audits;
- Install rainwater harvesting systems and/or greywater
reuse systems (if possible);
- Exchange installed devices for more efficient ones or
apply flow or volume reducers.

In the case of increased heavy rainfall intensity, it is necessary to adjust the design standards for
new buildings and review the design of rainwater drainage in existing buildings. The latter aspect is
more delicate with regard to rainwater siphonic systems [39], whose capacity to respond to unforeseen
flow increases is smaller since it is known that, in these systems, a flow slightly above the design flow is
sufficient to cause a rapid increase in the depth of water on the roof. Placing more emergency overflow
outlets could be the solution. Reviewing the design standards should include new weather data and/or
higher safety coefficients.

Regarding extreme heat waves and the inherent risk of water scarcity, adjusting standards is again
necessary, especially with regard to reviewing water tank sizing and increasing the efficiency of water
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use in buildings. Rainwater harvesting and greywater reuse should be promoted, with this being the
first solution particularly suited to answer the many impacts of climate change because it simultaneously
reduces the flood peaks in urban areas and promotes additional water storage in buildings.

The combination of green roofs and rainwater harvesting systems in buildings seems to be a very
promising constructive solution, but this technology requires a refined knowledge of runoff coefficients,
which show great variability due to roof characteristics and local climatic conditions. It is therefore
important to determine reference values in each specific climate region for the design of these combined
solutions, improving knowledge in this field that currently boils down to indicative values in some
standards, and which research has shown to be non-generalizable.

Following on from previous research, which led to a formula for determining monthly runoff

coefficients (CM) in Portugal, applicable to extensive green roofs, we sought to analyse the variability
of their values across the territory. Given that Portugal, despite its small size, is a country with two
very characteristic types of climate (Mediterranean in the south and Atlantic in the north), we also
sought to find characteristic patterns in the CM values for these two types of climate.

The results obtained with the application of the formula to the average values calculated from
the records available for hydrological years 1980/1981 through 2017/2018, are shown in Figure 5.
The monthly runoff coefficient values correspond to a minimum of zero and a maximum of 0.46.
It should be noted that these values are clearly lower than the average annual runoff coefficients
proposed in the literature for green roofs in central/northern European countries (0.5 for extensive
green roofs and 0.3 for intensive green roofs) [37,40].
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Interestingly, in the three weather stations with an Atlantic climatic influence, the observed results
are significantly different from the others, following standards close to those recommended by FLL. On
the other hand, it is notable that the results follow a very different, but internally consistent, pattern in
the weather stations with dominant Mediterranean climates.

An obvious conclusion is that the green roofs combined with rainwater harvesting systems in
Mediterranean climates will require larger catchment areas and mainly higher volumes in the storage
tanks for technical feasibility. This requirement will, of course, result in higher costs for these combined
solutions precisely in the regions where they will be most interesting or even necessary.

5. Conclusions

Dealing with climate change is one of the major challenges facing mankind in the 21st century. It
is necessary to simultaneously implement mitigation measures consisting of interventions to reduce
the sources or enhance the sinking of greenhouse gases and adjustments to the “new” climate and its
effects. This intervention essentially seeks to prevent or moderate the damage, which are known as
processes of adaptation and increasing resilience.

Buildings play an essential role in these processes, not only in relation to mitigation measures,
but also in the need to be adapted and acquire a higher resilience. Building installations for water
supply and drainage make specific contributions in all these processes and can significantly contribute
to mitigation; they are also essential to adaptation and increasing resilience in the face of some of the
projected impacts of climate change.

Increasing the water efficiency in buildings should be considered a priority measure, but some
solutions—such as green roofs or rainwater harvesting systems in buildings—can also greatly contribute
to a very appropriate response to the impacts of climate change. These solutions should be widely
generalized, possibly through a mandate in some regions. However, the design of these systems
greatly depends on the green roof characteristics and the particularities of local or regional climates, so
further research in this field is needed.

In Mediterranean countries, which are among those most affected by climate change, the cost
of these solutions may be significantly higher, although their technical and economic viability may
also remain interesting given the growing scarcity of the resource and the need for adaptation and
increased resilience to climate change effects and mitigation measures.

Previous studies carried out for a conventional extensive green roof pilot system in Oporto city,
Portugal, allowed the development of a practical expression to predict a ‘monthly runoff coefficient’
for a typical extensive green roof, which is the parameter usually used for sizing storage tanks in
Mediterranean countries in engineering projects. It should be noted that, in terms of future work, this
study will need to be continued with more extensive models or even in real cases, as the small size of
the pilot used may imply distortions by a scale effect, which should be evaluated in order to perfect the
mathematical expression obtained.

To evaluate the effect of local climatic conditions on the monthly runoff coefficients, this expression
was applied in different regions of Portugal, a country that has a Mediterranean climate in the centre
and south, but a temperate Atlantic climate in the north, similar to the central European climate. The
theoretical results, not considering changes in the characteristics of green roofs, show wide variations
in monthly runoff coefficients, with a minimum of zero and a maximum of 0.44. The results show that
these coefficients significantly depend on the climatic characteristics of the site, indicating very relevant
differences between the areas of Portugal where an Atlantic climate is dominant and the predominantly
Mediterranean climate zones, but also that they are consistent within each of these specific local areas.

The consistency of the expression (1) and results support the conclusion that it can be used in
other countries or regions with similar climatic characteristics (southern Europe with a Mediterranean
climate and central Europe with an Atlantic climate), providing much stricter calculation values than
those indicated in the current standards. However, in view of a broader generalization of the study and
the application of the present methodology to other countries or regions with different climate patterns,
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it will be necessary to carry out an initial assessment of the value of the coefficient K of the mathematical
expression and the value of the exponent of the denominator, via a local experimental study.
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