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Abstract: Language plays a prominent role in the activities of human beings and other intelligent
creatures. One of the most important functions of languages is communication. Inspired by this,
we attempt to develop a novel language for cooperation between artificial agents. The language
generation problem has been studied earlier in the context of evolutionary games in computational
linguistics. In this paper, we take a different approach by formulating it in the computational model of
rationality in a multi-agent planning setting. This paper includes three main parts: First, we present
a language generation problem that is connected to state abstraction and introduce a few of the
languages’ properties. Second, we give the sufficient and necessary conditions of a valid abstraction
with proofs and develop an efficient algorithm to construct the languages where several words
are generated naturally. The sentences composed of words can be used by agents to regulate their
behaviors during task planning. Finally, we conduct several experiments to evaluate the benefits of
the languages in a variety of scenarios of a path-planning domain. The empirical results demonstrate
that our languages lead to reduction in communication cost and behavior restriction.

Keywords: multi-agent systems; task planning; communication; language generation; autonomous
agents; coordination; state abstraction

1. Introduction

Compared with single-agent systems, multi-agent systems have the distribution properties of time,
space, and function, and have several advantages in task applicability, execution efficiency, and system
robustness [1]. Real-world applications of multi-agent systems include logistics [2], construction [3],
search and rescue [4], warehouse automation [5], infrastructure placement [6], computer animation [7],
etc. Due to the lack of complete knowledge, agents usually need to exchange their states, actions, or
goals to collectively carry out system tasks. Consequently, a communication language or protocol
should be predefined to inform cooperative strategies when designing multi-agent systems.

Two methods are commonly used to construct languages for agent communication. One is to
design a certain artificial language for agents [8,9]. The other is to let agents communicate in natural
languages [10,11]. Most of the studies on multi-agent planning and distributed control use the former
method to exchange messages. The latter approach is helpful for human partners to understand the
behavior of agents. However, agents must learn two different internal representations of themselves
and humans, which can be counterproductive. In fact, it is not necessary for agents to use human
languages in a situation where only artificial agents exist. In this paper, we try to create the agents’
own languages that can be used to coordinate them. The languages are not predefined case-by-case
and are naturally generated based on the abstraction of agents’ states in the environment.

Our work is motivated by a fundamental question from agent coordination: what kind of
information do agents need to communicate? We set out to answer the question by considering
a particular situation in which communication is only available in task planning phase. In this case, the
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common way for agents is to send a feasible plan to their teammates to be followed when cooperation
is needed. The objective of this work is to construct a kind of language that can be used to specify
plans, while not bringing many constraints for agents and reducing the cost of communication as
much as possible.

The contributions of this work have three aspects: First, we formulate a language generation
problem for multi-agent systems and introduce some fundamental features of the language that appear
in agent coordination; Second, we give sufficient and necessary conditions of valid abstraction, based
on which an efficient algorithm is developed to generate languages that are complete and optimal.
Third, we apply the algorithm to dozens of environments and compare the advantages of languages
generated by our algorithm with other similar languages in a path-planning domain.

The rest of the paper is organized as follows. We review the related work in Section 2. Section 3
introduces the background of multi-agent planning and presents the problem formulation of language
generation. Section 4 provides the conditions of valid abstraction and describes a language generation
algorithm. Section 5 implements the algorithm and evaluates the languages. Conclusions and future
work are given in Section 6.

2. Related Work

Communication is one of the most basic and important issues in multi-agent coordination.
Depending on how information is obtained, communication can be divided into implicit mechanisms,
for example, pheromone [12], in which agents acquire information about their teammates through the
world, and explicit mechanisms, in which agents directly transmit information through media, such as
spoken languages. Explicit communication is often used in intentionally multi-agent systems, since
it is efficient to share knowledge between agents [13]. In addition, a taxonomy of coordination
models for mobile agent is proposed for internet applications. Based on the degrees of spatial
and temporal coupling, coordination-mode is categorized into four kinds: direct, meeting-oriented,
blackboard-based, and Linda-like [14].

For the multi-agent planning problem, there is work on learning communication policies, where
information exchange is treated as an explicit choice that may be unreliable and incur a cost, and several
approximation techniques are developed to solve the optimization problem [15,16]. To overcome the
high computational complexity of solving the decentralized multi-agent decision-making problem
under uncertainty, there also exists work on developing efficient online planning with selective
communication algorithms [17,18]. Furthermore, a neural model trained via backpropagation is
proposed to enable cooperating agents to learn to represent the information they observed and
communicate it with other agents [19].

ACL (Agent communication language) is an important standard language for the communication
of agents and has been well-studied in software-agent systems [20]. FIPA [21] and KQML [22] are the
most popular languages, and both are constructed based on speech act theory. ACLs are composed of
shared communication syntax and lexicon that are defined by a human group for different purposes.
In the multi-agent cooperative control problem, information exchange between agents is often required
to achieve expected goals, such as consensus [23], formation control [8], and flocking [24]. Generally,
communication languages used in these methods are given in advance, and no attention is paid to the
generation of the languages.

Communication in natural languages is the most obvious manner when multi-agent systems
include human partners. A representative approach is the inverse semantics model [10], by which
the agent with a breakdown can ask humans for help using natural languages. Recent work has
explored the interactive task learning in which humans teach robots to perform tasks through natural
languages [25,26]. Normally, the human-robot/agent interaction requires the agents to be able to
understand natural language sentences [27], and to generate sentences representing their internal
information [28]. This process requires a lot of effort and is error-prone.
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Our language generation problem has a connection with the work on the origin and evolution of
natural languages, which has been studied earlier in evolutionary and computational linguistics [29,30].
Most of the prior works studied language evolution in the context of evolutionary games[31], for
example, the talking heads experiment [32]. In particular, a study [33] suggests a relation between
natural languages and a hidden planning language that preexists in the mind. While our work
addresses a similar problem, we take a step further by formulating the language generation problem in
the computational model of rationality. It is worth noting that language evolution is quite a complicated
problem, and many researchers from different disciplines continue to develop it. In this work, we
study the language generation problem in a limiting cooperative multi-agent planning setting and
hope that our work could shed some light on it.

We studied the language generation problem for planning agents from different perspectives. The
general idea and framework for language construction based on state abstraction are introduced in
work [34]. In this paper, we extend the formulation to a multi-agent setting and present a different
kind of language. Additionally, the work [35] studies the minimal language generation problem
for optimal planning. However, the language is constructed and abstracted based on predefined
perception symbols. The language in this work is naturally generated and only depends on planning
domains.

3. Problem Formulation

3.1. Multi-Agent Planning Model

For simplicity, we consider a planning setting including multiple agents which act with complete
information and deterministic actions. The multi-agent planning problem can be modeled as M =

(O, A, I, G), which is an extension of the STRIPS model [36], where O is a finite set of propositional
variables and A is the set of joint actions of agents. Each action a ∈ A is given by preconditions,
Pre(a) ⊆ O, add effects, Add(a) ⊆ O, and delete effects, Del(a) ⊆ O. The task of a planning domain is
specified by (I, G), where I ⊆ O and G ⊆ O denote the set of initial states and goal states, respectively.

Given a planning problem, a solution or plan is to find a sequence of states connected by agents’
actions that lead the initial state to a goal state. Generally, the cost of actions is measured by a cost
function. A solution is optimal if it takes the lowest action cost.

3.2. Assumptions

In this work, we make several assumptions that are shown as follows:

• Agents are cooperative so that they could carry out a task that cannot be done by a single agent,
and they are rational and perform the task at the least cost;

• Observation and communication are only available before task execution, and agents perform the
task synchronously at each step. All agents understand the constructed language.

3.3. Language Construction

Definition 1. (Required Coordination, RC): For a multi-agent planning problem, RC is present in a situation
when there are several feasible plans that incur a conflict.

For example, two agents, agent1 and agent2, are assigned to do a task for which there are only two
optimal plans, pA and pB. Without communication, agent1 may act following plan pA, while agent2

acts according to plan pB. As a result, they execute the task sub-optimally or in failure.

Definition 2. (Language): Given the state set S of a multi-agent planning domain M, where s ∈ S is the joint
state of agents, a language for the domain is a tuple L = (W, R), where W represents a set of words, and R is
the concatenation operator, denoted as “#”, which can be used to combine words. Each word w ∈W denotes an
abstraction of joint states and is a subset of S.



Appl. Sci. 2019, 9, 3571 4 of 14

A sentence is defined as a sequence of words combined by operators. In this paper, we only
consider the concatenation operator, so the sentence including n words has the following form:

Word1#Word2#...#Wordn

For planning agents, to avoid potential conflicts or improve team performance, the sentence
as a communicative message is considered to be a constraint on agents’ actions. Since agents are
rational, the receiver agents choose an optimal plan that is consistent with the communicated sentence.
Please note that in this work, plans specified by a sentence refer to the optimal plans which satisfy the
constraint of the sentence, and we mean a joint optimal plan when mentioning a plan.

We give an intuitive example to explain the language defined above. For a multi-agent task
instance (Si, Sg), there are three optimal plans, shown as follows:

P1 : Si, S11, S12, S13, S14, Sg

P2 : Si, S21, S22, S23, S24, Sg

P3 : Si, S31, S32, S33, S34, Sg

where there is RC between P1 and P2 or P3, and no RC between P2 and P3. One of the valid languages is
L = {W1 = (S14, S22, S31), W2 = (S11, S23, S33)}. For instance, sentence W2#W1 means that agents must
be in a grounding state of W2 at some moment and be in a grounding state of W1 at a later moment in
task execution. Thus, the state sequence of plans specified by W2#W1 has the following form:

Si, ..., S11 or S23 or S33, ..., S14 or S22 or S31, ..., Sg

Symbol “...” denotes an omitted state sequence that can be void. Here, only P1 is consistent
with the state sequence, i.e., W2#W1 can specify P1. Similarly, sentence W1#W2 can specify a plan set
including P2 and P3.

Definition 3. (Language Generation Problem, LGP): Given a multi-agent planning model M, we must find a
language L that can be used to resolve the RC for any given task.

Definition 4. (Sentence Generation Problem, SGP): Given a multi-agent planning model M, a language L,
and a task, we must find a sentence that can specify a plan set without RC.

Specifically, the LGP is about how to construct a language, and the SGP is about how to use the
language to remove RC. As shown in Figure 1, words are constructed based on the states and tasks of
the environment where agents act. This optimization process is operated offline. After that, given the
words and tasks, sentences are generated online by agents to communicate with their teammates.

Figure 1. Problem formulation diagram. Blue segments: language generation process; Red segments:
sentence generation process.
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Next, we look at a few language properties that may be required.
Optimality: A language is optimal if plans specified by it are also optimal.
Completeness: A language is complete if it can specify a plan set that includes any plan.
Minimality: A language is minimal if the number of words is the smallest.
Globality: A language is global if it can describe the whole plan sequence.
Locality: A language is local if it only expresses partial specification of plan sequences.
In our prior work, the generation problem of complete global languages [34], and minimal

optimal languages [35] are studied. In this work, we generate languages that are complete and local.
In Section 5, we compare the performances of the languages.

The goal of this paper is to construct languages that could help agents to optimally accomplish
tasks. In detail, we try to design an efficient algorithm to obtain valid state abstractions for multi-agent
planning domains.

4. Approach

We know that a language is related to an abstraction of states. A language is useful only when it
can distinguish the plans for which RC exists. In this section, we introduce the language generation
and communication processes. First, the sufficient and necessary conditions for valid abstraction
are provided with the proofs. Second, we propose an efficient algorithm to obtain such abstractions.
Finally, we introduce the coordination process of languages.

4.1. Conditions

Theorem 1. The state abstraction for a given domain is valid if and only if it satisfies that: For any task where
RC is presented between plans p1 and p2, b1 and b2, separately, is the abstracted plan sequence of p1 and p2.
Then, the following four conditions must be true: (1) b1 and b2 are not void; (2) b1 is not equal to b2; (3) b1 is
not the partial sequence of b2; (4) b2 is not the partial sequence of b1.

Proof of Theorem 1. Sufficient condition: By the definition of sentences, we can see that the two plans
set specified by sentence b1 and b2 have no elements in common when the four above conditions are
true, i.e., b1 and b2 can specify the plans that do not introduce RC. Necessary condition: If b1 and
b2 can separately specify p1 and p2, we have that b1 and b2 are two different sentences and do not
separately express p2 and p1. By using reduction to absurdity, if b1(b2) can express p2(p1), b1(b2) must
be equal or a partial specification of the sentence sequence b2(b1) of p2(p1). Therefore, we can reduce
the conclusions.

From the theorem, if we want to construct a useful language, we must ensure that the above
conditions are satisfied during the language generation.

4.2. General Idea

Since the language is used to specify all optimal plans for RC tasks, it should be able to describe
every plan sequence. Therefore, we first seek a smaller state set that could distinguish all plan pairs in
which RC is present. Then, we generate a language by abstracting the states of the set while ensuring
the conditions in Theorem 1 are true.

4.3. Algorithm

The language generation process includes four procedures: finding plan pairs; finding state set;
finding state pairs; word generation.

Finding plan pairs: For each task t, we find the optimal plans by a modified A∗ algorithm. The
standard A∗ algorithm [37] stops to search nodes when the minimum estimate of the cost value of
explored nodes is equal to or greater than the value of the goal. The modified A∗ algorithm continues
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the search process until the value of nodes is greater than the value of the goal. For any two plans, we
put them into plan pairs set Ps if RC is present.

Finding state set: With Ps, we need to find a state set Sm that could specify any plan pair of Ps. To
make it true, a different state should at least appear in the two plan sequences. Here, we do not intend
to find the minimal language, so we only need to get a state set that is approximately the smallest.
First, we set state set Sm as void. Then, for each plan pair (x, y) in Ps, we remove their common states.
For each plan, if no state in its sequence is the element of Sm, we add the first state of the plan into Sm.
Otherwise, we address the next plan pair.

Finding state pairs: State pairs denote that the two states cannot be abstracted as the same word.
First, we set state pairs set Cs as void. For each plan pairs (x, y) in Ps, we remove the states that do not
appear in Sm and obtain the reduced plan sequences. If the two plan sequences have different lengths,
we cut the longer plan into several subsequences, the length of which equals that of the shorter plan.
Then, we check to see whether there are two states that are in the same place of plan sequences and
appear in Cs. If they do not, we add the first state pair into Cs.

Word generation: Under the restriction of the state pairs of Cs, a greedy CSP (Constraint Satisfaction
Problem) solver is used to assign the states of Sm to several state sets in which any pair of states does
not appear in Cs. We define each state set as a word, and a language is then constructed.

The pseudo-code of the algorithm is presented in Algorithm 1.

Algorithm 1 Language Generation Process

1: Input: Domain M; Tasks {I, G}.
2: Output: Word set W.
3: Initialization: Plan pairs set Ps ← {}; State set Sm ← {}; Equal sequence pairs set Es; State pairs

set Cs ← {}; Conflicting state set of words F ← {}; Word set W ← {}.
4: procedure FINDING PLAN PAIRS
5: for task t ∈ {I, G}
6: Get optimal plans P of t
7: if P(i) and P(j) introduce RC then Put (P(i), P(j)) in Ps
8: procedure FINDING STATE SET
9: for plan pairs (x, y) ∈ Ps

10: Remove common states of plan x and y
11: if not all states of x or y appear in Sm then Put a state of x or y in Sm
12: Get reduced sequence R(x), R(y) of x, y
13: if R(x) equals R(y) then Put (R(x), R(y)) in Es
14: elseif R(x) is longer than R(y) then
15: Get the subsequence SR(x) whose length equals R(y); Put (SR(x), R(y)) in Es
16: procedure FINDING STATE PAIRS
17: for sequence pairs (e1, e2) ∈ Es
18: for each step i ∈ |e1|
19: if state pairs (e1(i), e2(i)) ∈ Cs then break
20: elseif i = |e1| then Put (e1(i), e2(i)) in Cs
21: procedure WORD GENERATION
22: for state s ∈ Sm
23: for word w ∈W
24: if s is not a member of F(w) then Abstract s as w; Add sc into F(w), (s, sc) ∈ Cs
25: elseif w = W(|W|) then Abstract s as wn, put wn in W

Theorem 2. Given a multi-agent planning domain, the languages generated by the algorithm are optimal
and complete.

Proof of Theorem 2. For any RC plan pair, p1 and p2, we assume that the two abstracted sentence
sequences are b1 and b2, respectively. From the language generation process, b1 and b2 are obviously
not void. If the length of b1 equals the length of b2, we know that the two first words of the sentences are
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different, so b1 does not equal b2. If they do not, the shorter sentence does not equal any subsequence
of the longer sentence, so b1 does not contain or is involved in b2. Therefore, the four conditions are
always satisfied. More specifically, the plan set specified by b1 must include p1 and not include p2, and
vice versa, i.e., the languages are complete and, since the languages are generated upon optimal plans,
the languages are also optimal.

Please note that we do not consider the semantics of words in this work. However, some features
representing the relationship between agents and environment can be defined in accordance with the
application requirement of languages, such as the distance between the agents, and whether agents
are close to the goals or not. Thus, the word function that describes the mapping from states to words,
can be achieved by classical clustering methods (e.g., CLARANS algorithm [38]).

4.4. Language Communication

The coordination process between agents using our language can be described as follows:
First, an optimal plan is found by a coordinator for current task. Depending on the framework of

the multi-agent system, the coordinator could be an agent or a control station.
Second, the sentence of the plan can be generated based on the language, and is then sent to other

agents as coordination information. In the sentence generation, the states are abstracted as the words
that they belong to. It can be seen that there always exists a sentence that could express the plan.

Third, receiver agents choose their actions under the constraints of the sentence. Consequently,
the task is finished without conflicts between the agents. Communication is not required when no
sentence is generated, and agents can act freely.

Please note that this work mainly focuses on generating coordination messages rather than
obtaining task solutions. The automated planning methods [39] can be applied to find agents’ plan
based on the sentences.

5. Experiments and Results

In this section, we make several simulation experiments to verify the performance of the algorithm
and the advantages of the languages in a grid-world domain. First, a simple navigation example
is provided to illustrate the language generation and coordination. Furthermore, we compare our
languages with the languages in [34,35] from several aspects. In the end, we implement the algorithm
to more scenarios with different settings.

5.1. Coordination Example

A path-planning problem in a grid-world domain involving two agents, agentb and agentr, is
shown in Figure 2. The numbered white cells are reachable for the agents and the black cells are the
obstacles. In each step, the agent can move to an adjacent cell or remain where it is. Agents are not
allowed to stay in the same cell or move to each other’s place at the same step. Given target points, the
goal of the agents is to arrive at the points with the least time and energy cost. As mentioned before,
we assume that observation and communication are only available during the planning phase.

Figure 2. Navigation example. A Required Coordination (RC) task is that agentb moves from point 1
to 3, and agentr moves from point 9 to 4.
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We apply the algorithm to the environment with different RC tasks. The size of the language and
the computation time of the algorithm, along with the increase of the number of RC tasks, are denoted
by the blue and red curves in Figure 3, respectively.

Figure 3. Language size and algorithm computation time in different task settings.

We observe that the number of language words does not always increase as more RC tasks are
included, since the generated language could apply to other RC tasks. The language of the environment
involving all RC tasks is L = {W1, W2, W3, W4, W5, W6}. The states of each word are shown in Table 1.

Table 1. Generated language for the example.

The Words in L The States in W

W1 S4,1, S7,8
W2 S4,5, S7,6
W3 S4,10, S7,11
W4 S6,5, S9,12
W5 S6,2, S9,3
W6 S6,7, S9,8

Where state Sx,y indicates that agentb is at point x and agentr is at point y. For a planning instance,
the task of agentb and agentr is moving from 1 and 9 to 3 and 4. Assume that every time step and
movement take a cost of 1, respectively. Thus, there are seven optimal plans for the two agents, which
are shown as follows:

P1 : S1,9, S1,8, S4,7, S5,6, S6,2, S7,6, S8,5, S9,4, S3,4; B1 : W5#W2

P2 : S1,9, S4,8, S4,7, S5,6, S6,2, S7,6, S8,5, S9,4, S3,4; B2 : W5#W2

P3 : S1,9, S4,8, S5,7, S5,6, S6,2, S7,6, S8,5, S9,4, S3,4; B3 : W5#W2

P4 : S1,9, S4,9, S5,8, S6,7, S7,11, S8,7, S9,6, S3,5, S3,4; B4 : W6#W3

P5 : S1,9, S4,8, S5,8, S6,7, S7,11, S8,7, S9,6, S3,5, S3,4; B5 : W6#W3

P6 : S1,9, S4,8, S5,7, S6,7, S7,11, S8,7, S9,6, S3,5, S3,4; B6 : W6#W3

P7 : S1,9, S4,8, S5,7, S6,11, S7,11, S8,7, S9,6, S3,5, S3,4; B7 : W3

In this case, the agents may choose any plan to follow if they do not communicate. However, they
conflict with each other in task execution if an agent chooses anyone from the first three plans and
its partner chooses another plan from the last four plans. In other words, RC is present for the task.
Based on the language L, we generate the sentences of the seven plans, which are shown following
the plans. Sentence W5#W2 can express agents’ preference for plan, which specifies a no RC plan set
including P1, P2, and P3. Similarly, sentence W6#W3 can specify a plan set that includes P4, P5, and P6,
and sentence W3 can specify P4, P5, P6, and P7. Thus, the potential conflicts between the agents can be
solved by communicating one of the sentences.
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5.2. Languages Comparison

To measure the performance of the languages constructed in this work, we compare our languages
with languages generated by the method in [24], denoted as CGL (complete global language), and the
method in [25], denoted as MOL (minimal optimal language), in terms of message lengths, specified
plans, and computation time. Figure 4 is the test example in which there are 10 task points, marked as
blue stars, which need to be continually visited by two agents.

Figure 4. Test example.

For this environment, there are a total of 8100 tasks (a task is specified by a pair of agents’ states
<initial, goal>, 8100 = 10 ∗ 9 ∗ 10 ∗ 9), of which 350 tasks introduce RC. We obtain that the number of
language words generated by our approach, CGL, and MOL are 6, 7, and 2, respectively. For the sake of
contrast, we conduct 100 RC tasks at random and record the relevant data. Figures 5–7 separately show
the length of the communicative messages, the number of specified optimal plans, and the time cost of
sentence generation, respectively. The red, purple, and green curves represent the results achieved by
our method, CGL, and MOL, respectively. In Figure 5, the blue curve denotes the number of states in
the plans. As we can see, coordination messages generated by our algorithm are quietly shorter than
those of other communication methods, which greatly reduces the burden of communication of agents.
Figure 6 shows that our sentences could specify many available plans for agents to follow, which gives
them more flexibility to execute tasks. Although the constructed language in this work is not minimal,
our approach has nearly comparable benefits to those of MOL in this respect. Furthermore, as can be
seen in Figure 7, the computation costs of language planning using our method are much less than
the costs of MOL. As with CGL, the complexity of the SGP in our method is almost equivalent to the
task planning problem. In general, the results show that our languages offer considerable advantages
compared to CGL and MOL in these criteria.

Figure 5. Length of plans and sentences.
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Figure 6. Number of plans specified by sentences.

Figure 7. Computation cost of sentences generation.

5.3. Different Scenarios

We also implement our algorithm to the path-planning problem in 30 grid-world scenarios. For
each scenario, we separately run 500 RC tasks in the setting of two, three, and four agents. Figures 8
and 9 demonstrate the number of agents’ joint states and our language words used in these tasks,
respectively. The number of words is far smaller than the states, which means that agents require less
effort to understand the messages by our approach. To assess the benefits of the languages in terms of
communication cost and behavioral flexibility of agents, we compute their coordination sentences and
specified plans for all task plans. Bars in Figure 10 represent the average decrement of the length of
sentences compared with plan sequences. The communication costs decline by 60% on average using
the languages. Bars in Figure 11 indicate the average amount of plans specified by the sentences. From
these results, we can learn that the constructed languages are quite useful for multi-agent coordination.

Figure 8. Number of states involved in each scenario.
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Figure 9. Number of generated words for each scenario.

Figure 10. Average decrement of communication costs.

Figure 11. Average number of plans specified by sentences.

It should be noted that the classical planning problem is known to be PSPACE-complete [40].
The LGP is considered to be more difficult, and finding a minimal language is PSPACE-hard [34].
It is challenging to solve the LGP involving more agents. In this work, we only apply our method to
the path-planning problem with a small number of agents, and a more efficient method remains to
be further exploited when the problem increases. Fortunately, the LGP can be addressed offline in a
centralized manner. Generating a communication sentence for agents’ coordination is rather simpler
than language generation, which is not harder than finding an optimal plan.

6. Conclusions

In this paper, we provided a new coordination approach using simple languages for multi-agent
systems. The languages are not manually defined and are naturally generated via state abstraction.
The benefits of the languages include specifying optimal plans, empowering agents more flexibility
in behaviors, and reducing communication costs. The experiment results confirmed that efficient
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languages for task execution can be constructed based on agents’ own internal representation in the
computational model of rationality. They also suggest that the LGP in multi-agent planning domains
may provide a perspective for creating a “natural language” for autonomous agents.

In future work, we intend to investigate the LGP involving more agents. There are multiple ways
in which scalability can be improved. A method is to introduce communication between the agents
during plan execution, which breaks plans into plan segments, essentially reducing the number of
planning problems. A second method is to study the strategy for pairwise coordination between the
agents using the language constructed for two agents. Another interesting direction is to construct
languages that work in varying environments. A possible solution is dividing a new environment into
subspaces that are isomorphic to the original environment where the language is constructed, and
augmenting it when this cannot be done.
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Abbreviations

The following abbreviations are used in this paper:

RC Required Coordination
LGP Language Generation Problem
SGP Sentence Generation Problem
A Actions
S States
P Plans
L Languages
W Words
B Sentences
CGL Complete Global Language
MOL Minimal Optimal Language
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