iriried applied
L sciences

Article

A Bounded Scheduling Method for Adaptive
Gradient Methods

Mingxing Tang 1, Zhen Huang '*, Yuan Yuan 2, Changjian Wang ? and Yuxing Peng !

1 Science and Technology on Parallel and Distributed Laboratory, National University of Defense Technology,

Changsha 410073, China
College of Computer, National University of Defense Technology, Changsha 410073, China
* Correspondence: huangzhen@nudt.edu.cn

check for

Received: 22 July 2019; Accepted: 28 August 2019; Published: 1 September 2019 updates

Abstract: Many adaptive gradient methods have been successfully applied to train deep neural
networks, such as Adagrad, Adadelta, RMSprop and Adam. These methods perform local
optimization with an element-wise scaling learning rate based on past gradients. Although these
methods can achieve an advantageous training loss, some researchers have pointed out that their
generalization capability tends to be poor as compared to stochastic gradient descent (SGD) in many
applications. These methods obtain a rapid initial training process but fail to converge to an optimal
solution due to the unstable and extreme learning rates. In this paper, we investigate the adaptive
gradient methods and get the insights on various factors that may lead to poor performance of
Adam. To overcome that, we propose a bounded scheduling algorithm for Adam, which can not
only improve the generalization capability but also ensure the convergence. To validate our claims,
we carry out a series of experiments on the image classification and the language modeling tasks
on several standard benchmarks such as ResNet, DenseNet, SENet and LSTM on typical data sets
such as CIFAR-10, CIFAR-100 and Penn Treebank. Experimental results show that our method can
eliminate the generalization gap between Adam and SGD, meanwhile maintaining a relative high
convergence rate during training.

Keywords: deep neural networks; adaptive gradient methods; stochastic gradient descent;
bounded scheduling method; image classification; language modeling

1. Introduction

Deep neural networks (DNNs) [1] have achieved great successes in many applications, such as
image recognition [2], object detection [3], speech recognition [4,5], face recognition [6] and
machine translation [7]. How to train DNNs quickly and accurately has attracted the attention
of many researchers. Training neural networks is equivalent to solving the following non-convex
optimization problems:

min F(w) = 1) fi(w), 0
where w is the parameter to train, 7 is the number of instances, f;(-) : RY — R is a loss function defined
on the instance with d dimensions and indexed i. Training algorithms need to search parameters to
minimize the loss function.

Stochastic gradient descent (SGD) [8] has become the dominant training algorithm for DNNS.
Simple as it is, SGD performs well in many applications. SGD obtains a smaller loss by moving the
parameters of the model in the negative direction of gradient evaluated on a minibatch. The iteration
of SGD can be described as follows:

Appl. Sci. 2019, 9, 3569; d0i:10.3390/app9173569 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-2966-6028
http://www.mdpi.com/2076-3417/9/17/3569?type=check_update&version=1
http://dx.doi.org/10.3390/app9173569
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 3569 20f16

Wy = w1 — 7V fi (Wr_1), 2

where 7 is learning rate, iy is the instance index at the k-th iteration, V f; (wy_;) denotes the stochastic
gradient computed at wy_4.

There are two main drawbacks of SGD. The first one is SGD needs to find an appropriate learning
rate, which means that excessive learning rate will cause the loss function unable to converge to the
optimal value and exceptionally small learning rate will slow down the convergence speed of loss
function. The other one is SGD scales the gradient uniformly in all directions, which leads that the
ill-scaled or sparse problems cannot be solved well [9].

To train DNNSs, SGD uses a standard decreasing learning rate scheme, where the learning rate
is initialized as a large value at the beginning and decreases gradually with iteration. However,
a suitable initial learning rate is difficult to tune. Linear search [10] and grid search are often used
to find the optimal learning rate, but the computational overhead is high. Cyclical learning rates
method [11] changes the learning rate periodically within a fixed bound, which can practically eliminate
the need to experimentally find the best values and schedule for the global learning rates. Then a
super-convergence method [12] is proposed to train networks with one learning rate cycle and a
large maximum learning rate, which can achieve an increase in performance compared with standard
methods. However, the uniformly scaled gradient still makes these methods perform poorly when the
data set is sparse or ill-scaled.

In recent years, a series of adaptive gradient methods have been proposed. These methods scale
the gradient by some form of squared past gradients, which can achieve a rapid training speed with an
element-wise scaling term on learning rates [13]. Adagrad [9] is the first popular algorithm to use an
adaptive gradient, which has obviously better performance than SGD when the gradients are sparse.
However, the learning rate of Adagrad will drop rapidly because of its accumulation of the squared
gradients in the denominator, which may lead to deterioration in the case that the loss functions are
non-convex or gradients are dense. Then Adadelta [14], RMSprop [15], Adam [16], Nadam [17] are
proposed to fix this issue, which use the exponential moving averages of squared past gradients to
avoid the rapid drop of learning rate. These algorithms have been successfully applied to a variety of
practical problems, especially Adam has become the default algorithm for training neural networks.

When training DNNs with adaptive gradient methods, the loss function decreases rapidly in the
early stage of training, but the final training loss and test loss are worse than that of SGD in many
applications. Moreover, since the learning rate of Adam does not decrease monotonously, the training
process will diverge in some applications [18]. Some work has proposed a hybrid scheme of Adam
and SGD to solve these problems. SWATS [19] proposes a strategy that Adam can be switched to
SGD when a triggering condition is satisfied, which can close the generalization gap between Adam
and SGD. ADABOUND [13] can achieve a gradual and smooth transition from adaptive methods to
SGD by employing dynamic bounds on learning rates. For these hybrid algorithms, the switching
time of Adam and SGD and the learning rate of SGD after switching still have a great impact on the
performance of the algorithm, which should be tuned elaborately.

In this paper, we study the adaptive gradient algorithms and propose a bounded scheduling
method for Adam, called Bsadam, to improve the performance when training neural networks.
The major contributions of this paper include:

1. We investigate the factors that lead to the poor performance of Adam while training complex
neural networks.

2. We set effective bounds for the learning rate of Adam without manual tuning, which can improve
the generation capability.

3. We schedule the bounds of learning rate to improve the performance of Adam. Firstly we fix
the upper bound and increase the lower bound gradually to find wide, flat minima. Then we fix
the lower bound and decrease the upper bound gradually to ensure the convergence of training.
At last, a fixed learning rate is used to make the algorithm converge to the optimal solution.

Appl. Sci. 2019, 9, 3569 30f16

4. We train multiple tasks on several models to evaluate the algorithm. MNIST [20] is trained
on simple neural networks, CIFAR-10 [21] and CIFAR-100 [21] are trained on ResNet [22],
DenseNet [23] and SENet [24], Penn Treebank [25] is trained on LSTM [26]. All these experiments
show that our method is capable of eliminating the generalization gap between Adam and SGD
and maintaining a higher convergence speed in training.

The rest of our paper is organized as follows. In Section 2, the background of this paper is
reviewed, where the traditional learning rate methods and adaptive gradient methods are described.
In Section 3, we introduce the bounded scheduling scheme for Adam. In Section 4, we present a series
of experiments to verify the effectiveness of our method. In Section 5, we summarize the paper.

2. Background

2.1. Traditional Learning Rate Methods

Learning rate is one of the most important hyper-parameters of gradient-based optimization
methods, there have been many related works on it. Line search [10] is often used to find the learning
rate of the full gradient. The line search method will set a large initial learning rate and try a learning
rate at each iteration, if the loss function does not fall a certain distance than the current value,
the learning rate will decrease proportionally and iterate again, until the learning rate satisfying the
fall condition is found. Line search needs a large amount of computation and is often used when
the data set is small. A line search method for SGD is also proposed [27]. This method uses random
samples to do basic line search and estimates the Lipschitz constant L, then deduces the theoretical
optimal learning rate based on L. However, the optimal learning rate, in theory, is different from that
in practice and this method can not guarantee convergence.

Barzilai-Borwen method [28,29] is also often used to estimate the learning rate. The Barzilai-
Borwen method is based on the quasi-Newton method and uses second-order derivative information
to evaluate the learning rate, which requires little extra computational overhead. However, the learning
rate estimated by the Barzilai-Borwen method may lead to the divergence of the training process.
Yann Ollivier et al. proposed a method to view the whole performance of the learning trajectory
as a function of the learning rate, then adapt the learning rate by performing a gradient descent on
the learning rate itself [30]. Although these methods do not need to search the learning rate, their
performance is not good enough compared with the manually tuned optimal learning rate. Cyclical
learning rate method [11] does not need to use a certain learning rate, but makes the learning rate vary
periodically in a certain range. Then super-convergence [12] is proposed to train DNNs with one cycle
and a large maximum learning rate, which provides a boost in performance. Traditional learning rate
methods scale the gradient uniformly in all directions, the performance of which will decrease when
data sets are sparse or ill-scaled.

2.2. Adaptive Gradient Methods

The recently proposed adaptive gradient methods can provide an element-wise scaling term
on learning rates without the need to tune the learning rate manually. These methods use historical
information to estimate the curvature of the loss function and adopt different learning rates for each
parameter, so the learning rate is a vector and each element for a parameter, which is different from
the traditional learning rate methods. The representative adaptive gradient methods are Adagrad [9],
RMSprop [15], Adam [16], AMSgrad [18], etc.

Adagrad [9] is the first proposed adaptive gradient method. Its main idea is to adopt a smaller
learning rate for the parameters corresponding to frequent features and a larger learning rate for the
parameters corresponding to infrequent features. Therefore, Adagrad is very suitable for training
sparse data, which can improve the robustness of SGD. The update of Adagrad can be shown as follows:

Appl. Sci. 2019, 9, 3569 40f16

Vf(wr_1)

Wy = Wy — WW, 3)
where
v = ZiV f(w))?, @)

€ is a smoothing term that avoids division by zero, # is general learning rate.

Adagrad uses the accumulation of the squared gradients and the squared gradients are positive,
which will lead to a rapid decline in learning rate to infinite small and the standstill of loss function.
RMSprop [15] was proposed to solve the problem of the rapid disappearance of the gradient for
Adagrad. The update rule of RMSprop is the same as (3), but the updating of vy adopts exponential
decaying average of square gradients, which can be shown as follows:

vk = Pog_1 + (1= B)Vf(we_1)?, %)

where B € [0,1) is the hyper-parameter that controls the exponential decay rate of average. The use of
the exponential moving averages of squared past gradients can prevent the rapid rise of vy and the
learning rate will not decline rapidly.

Adam [16] can also calculate adaptive learning rate for each parameter. As a complement to
RMSprop, Adam preserves the exponential moving averages of squared past gradients, as well as the
exponential moving averages of past gradients, which gives the gradient momentum. The update

formula of Adam is shown as follows:
\V 1- AB]ﬁ My

Wi = W1 — 1+ 1—pt 'm+€/ (6)
where
my = Bymg_q + (1= 1)V f(wp_1), @)

ok = Bovk_1 + (1= B2) Vf(wi_1)%

where B1, B2 € [0,1) are hyper-parameters that control the exponential decay rate of moving average.

Reddi et al. pinpoint that the use of exponential moving averages of squared past gradients
may make Adam fail to converge to the optimal solution. As a result, AMSGrad was proposed [18].
Unlike Adam, AMSGrad uses the maximum of exponential moving averages of squared past gradients,
the update rule of vy is show as follows:

Ok = Balk—1 + (1 = B2) Vf(we_1)?,
O = max(z?k, Uk*l)'

®)

The adaptive gradient methods has low generalization ability in training complex models and its
performance is worse than the optimal learning rate tuned manually.

3. Bsadam: Bounded Scheduling Method for Adam

3.1. Preliminaries

Firstly, we use an empirical study to illustrate the existence of the generalization gap in Adam.
We use SGD and Adam to do image classification for CIFAR-10 data set on ResNet-34 architecture and
present training accuracy and test accuracy in Figure 1. As can be seen from Figure 1, the training and
test accuracy of Adam both increased faster than that of SGD in the early stage. However, when the
learning rate is reduced by 10 after 100 epochs, the training and test accuracy of Adam are lower than
that of SGD. Although the final training accuracy of Adam reaches the level of SGD, its test accuracy is
still 1% to 2% lower than that of SGD, which means that its generalization gap is larger than SGD.

Appl. Sci. 2019, 9, 3569 50f16

There may be various factors that may lead to the weakly empirical generalization capability of
Adam. Based on previous researches [13,19,31-33], we summarize these factors and work to eliminate
them. The main factors can be listed as follows.

Train Accuracy %

Train Accuracy for ResNet on CIFAR-10

100.0 4

—— SGDM

Adam ///"_\"

[

o 20 40 60 80 100 120
Epoch

Test Accuracy %

@
&

@
kS

80

Test Accuracy for ResNet on CIFAR-10

—— SGDM

Adam (/\ﬁPVJ\LV

il

o 20 40 60 80 100 120
Epoch

(a) train (b) test

Figure 1. Training the ResNet-34 architecture on the CIFAR-10 data set with stochastic gradient descent
(SGD) and Adam. Adam has a faster initial convergence speed, but the final test accuracy is lower than
that of SGD.

e The non-uniform scaling of the gradients will lead to the poor generalization performance of
adaptive gradients methods. SGD is uniformly scaled and low training error will generalize
well [19,31].

o Theexponential moving average used in Adam can’t make the learning rate monotonously decline,
which will cause it to fail to converge to an optimal solution and arise the poor generalization
performance [32,33].

o The learning rate learned by Adam may circumstantially be too small for effective convergence,
which will make it fail to find a right path and converge to a suboptimal point [13].

e Adam may aggressively increase the learning rate, which is detrimental to the overall performance
of the algorithm [13,18].

Taking all these factors into account, some improvements needs to be considered for Adam.
Upper and lower bounds should be specified to avoid the side effect caused by extreme large and
small learning rate. At the later stage of training, learning rate should be monotonous decreased to
ensure the convergence and be uniformly scaled to improve generalization performance.

3.2. Specify Bounds for Adam

In this paper, we use the curve of loss function obtained by learning rate range test (LR range
test) [11] to determine the upper and lower bounds of the learning rate for Adam. When training a
new model or data set, the LR range test is a very effective way to find a reasonable learning rate range
for SGD, although it can not find a specific learning rate. LR range test uses SGD to train the model for
several epochs and makes the learning rate increase linearly from small to large, then the approximate
range of reasonable learning rate can be estimated by the curve of the loss function. Specifically, when
the loss decreases, it means that the current learning rate is reasonable when the loss rises, it means
that the current learning rate is inappropriate.

However, as a result that Adam itself has the function of adjusting the learning rate, the standard
of specifying the bounds for Adam is different from the classical LR range test, we need a wider range
of bounds. Specifically, the lower bound can be set to the point where the loss function begins to
decline and the upper bound can be set to the point where the loss function begins to rise. What is
more, in order to get better generalization ability, the upper bound can be enlarged within five times.

Appl. Sci. 2019, 9, 3569 60f 16

For example, we use Resnet-34 architecture to perform the LR range test on CIFAR-10 and obtain
the curve of loss function along with the learning rate. The result is shown in Figure 2. As can be seen
from Figure 2, the loss begins to decline obviously when the learning rate is 0.001, so 0.001 can be used as
the lower bound of the learning rate for Adam. When the learning rate is 0.1, the loss starts to rise and the
training process starts to diverge, so 0.1 can be used as the upper bound of the learning rate for Adam.
However, through experiments, we find that the algorithm can get better minima by increasing the upper
bound appropriately, so the upper bound can be set to 0.5. The upper and lower bounds of learning rate
are limited, the negative effects of too large or too small learning rate on Adam can be eliminated.

240

235

230

225

220

B 5 4 5 0

Figure 2. Learning rate range test. The x-axis is learning rate (log scale), the y-axis is training loss.

3.3. Schedule Bounds for Adam

We improve the empirical generalization capability of Adam by scheduling its lower and upper
bounds, which can reduce the adverse effects of the non-uniform scaling of the gradients and the
non-monotonically decreasing learning rate. According to the updated formula of Adam, we can

Jiogs . o
regard F VA as the learning rate of Adam and m; as gradients with momentum of Adam.
Gradient clipping can constrain the learning rate to a certain range, which is an effective method to
solve the problem of gradient disappearance or gradient explosion. We use gradient clipping to clip

the learning rate of Adam which exceeds the threshold. Consider applying the following operations

to Adam
\1- B
Clip(2.
1-p7 Vukte
which can clip the learning rate of Adam element-wisely such that each element of the learning rate is
limited in the range of [min_Ir, max_Ir|, where min_Ir and max_Ir are lower bound and upper bound
found in Section 3.2 respectively.
Then we will schedule the bounds of learning rate. The scheduling process is divided into three

phases, which are finding minima, converging and uniform scaling. The scheduling details for each
phase are described in detail below.

,min_lr,max_lr),)

3.3.1. Finding Minima

In this phase, we use the concept of super-convergence, which implies that a large maximum
learning rate can achieve better generalization capability. Using a relatively large learning rate in the
early stage of training can make the loss function skip the suboptimal solution more easily and find
wide, flat minima. Therefore, we fix the upper bound of learning rate and gradually increase the lower
bound of learning rate, so that each element of learning rate can gradually rise to the upper bound.
In this phase, gradient clipping can be expressed as follows:

_ pk
cmﬁvl i

L
1-p5 Vorte

,ascending(t), max_Ir), (10)

Appl. Sci. 2019, 9, 3569 70f 16

where ascending(t) is a function that lower bound increases gradually from min_Ir to max_Ir with
iteration and f means the progress of epoch in this phase. ascending(t) can be linear, exponential and
trigonometric, which can be formulated as follows:

° linear rise: .
max_lr — min_lr

ascending(t) = min_lr + t - T , (11)
e exponential rise:
.) max_lr | ¢
= . — T
ascending(t) = min_lr (min_lr) , (12)
e trigonometric rise:
. . . . b
ascending(t) = min_lr + (max_lr — min_Ir) sm(? : E)' (13)

where T is the total epochs in this phase.

3.3.2. Converging

In this phase, to avoid the divergence or poor generalization performance caused by the
non-monotonic decline of learning rate, we need to make sure that the learning rate of Adam is
decreasing. Therefore, we fix the lower bound of learning rate and gradually decrease the upper bound
of learning rate, so that each element of learning rate can gradually decrease to the lower bound. In this
phase, gradient clipping can be expressed as follows:

czi(Vl_ﬁg- 1
PUTo Ve

where descending(t) is a function that upper bound decreases gradually from max_Ir to min_Ir with
iteration and ¢ means the progress of epoch in this phase. descending(t) can be linear, exponential and
trigonometric, which can be formulated as follows:

,min_lr,descending(t)), (14)

° linear decrease: .
max_lr — min_lr

descending(t) = max_lr —t - T , (15)
e exponential decrease:
min_lr :
d ding(t) = Ir-(———)T 1
escending(t) = max_lr <max_lr)T' (16)
e trigonometric decrease:
descending(t) = max_lr — (max_lr — min_Ir) sin(% : g), (17)

where T is the total epochs in this phase.

3.3.3. Uniform Scaling

There is a conventional phase for training neural networks, which is reducing the learning rate
by 10 in the final stage of training, so that the algorithm will converge to the near minimum. In our
algorithm, at the end of the converging phase, upper bound are reduced to min_Ir, so the gradients are
uniformly scaled. We use min_Ir as a learning rate continuing training model. The training accuracy
and test accuracy will be further improved and stabilized and the algorithm will eventually converge.
In this phase, the gradients are uniformly scaled, which will help improve generalization performance.

Appl. Sci. 2019, 9, 3569 80f 16

3.4. Algorithm Overview

Based on the above analysis, in this subsection, we propose a new variant of the optimization
methods, named Bsadam, which can maintain the fast convergence of the algorithm in the early stage
and obtain a good finally generalization capacity.

Empirically, the number of epoch in the first phase is the same as that in the second phase and
the number of epoch in the third phase should be less than that in the former two phases. Specifically,
if the total number of training epochs is T, the allocation of the number of epochs for three phases are
%, % and %, respectively. The details of Bsadam are illustrated in Algorithm 1, where max_Ir and
min_lr can be found by the method mentioned in Section 3.2, 81, B2 and 7 is the hyper-parameters
of Adam itself, data_loader() is a function that combines a data set and a sampler and provides an
iterable process over the given data set.

Algorithm 1 Bsadam.

Parameters : total epochs T, max_Ir, min_Ir
Initialize : wy, B1, B2, 1

1: setvg=0,my=0,k=0

2: fort={1,2,.., E} do

3: ascending_lr = ascending(t)

4 for data in data_loader() do

5 k=k+1

6: compute gradient gx=V f(wy_1) on data

7 my = Brmy_1 + (1 — B1)gk

8 ok = Bovg—1 + (1 — B2)gt

/1_ gk
9: Ir = Clip(R

1-pf Vacke

ascending_lr, max_Ir)

10: Wy = Wy_q — Ir-my

11: end for

12: end for

13: fort={1,2,.., %} do

14: ascending lr = descending(t)

15: for data in data_loader() do

16: k=k+1

17: compute gradient ¢, = V f(wy_1) on data
18: my = Brmyg_1 + (1 — B1)gk

19: 0p = Bovr1 + (1 — B2)gk

_nk
2. Ir = Clip(V"F2 . 1

e

min_lr, descending lr)

21: Wy = Wy—1 — Ir - my,

22: end for

23: end for

24: fort={1,2,.., %} do

25: Ir =min_lIr

26: for data in data_loader() do

27: k=k+1

28: compute gradient g;=V f(wy_1) on data
29: Wy =Wy_1 — 17 Qg

30: end for
31: end for

Appl. Sci. 2019, 9, 3569 90f16

4. Experiments

To illustrate the effectiveness of our algorithm, we experimented with different models on
different data sets to compare the new variant with other popular optimization methods, such as
SGD with momentum (SGDM), Adagrad and Adam. We mainly consider two problems that are
often solved by deep neural networks: image classification and language modeling. The models
used in the experiment include feedforward neural network, convolutional neural network [34],
deep convolutional neural network and recurrent neural network, The data sets used in the experiment
are MNIST [20], CIFAR-10 [21], CIFAR-100 [21], Penn Treebank [25]. All these models or data sets are
often encountered in deep learning.

4.1. Experimental Setup

We implemented these experiments on a server configured as 2 NVIDIA TITAN XP GPUs,
1 Intel I7-6800K CPU, 16G*8 DDR4, 240G SSD and 1T SATA. These experiments were coded in PyTorch,
each experiment was run three times and we chose the best one.

The algorithms under consideration have many hyper-parameters and the setting of hyper-
parameters has a great influence on the performance of the optimization algorithm. Here we will
describe how we adjust hyper-parameters. We use a logarithmical grid search on a large space of
learning rate and then fine-tune it, the results are shown in Table 1. Specifically, the learning rate of
each algorithm is adjusted as follows:

e SGD(M) We used SGDM for image classification tasks and SGD for language modeling tasks.
When using SGDM, we set the momentum parameter to the default value 0.9. we roughly tuned
the learning rate for SGD(M) on a logarithmic scale from 1073 to 10? first and then fine-tune the
learning rate.

e Adagrad The general learning rates used for Adagrad are chosen from {0.0005, 0.001, 0.005, 0.01, 0.1}.

o Adam The general learning rates used for Adam were chosen from {0.0005, 0.001, 0.005, 0.01, 0.05}.
We set {1, B2} as the recommended default value {0.9, 0.999}. The perturbation value € is
set to 1078,

o Bsadam We used the same hyper-parameter settings for Adam. The upper and lower bounds
were determined by learning rate range test and the rise and decrease of bounds are linear.

Other hyper-parameters such as batch size and weight decay use the default values recommended
by the model.

Table 1. Summarizing the models and the data sets utilized for our experiments. The optimal
hyperparameters for stochastic gradient descent (SGD) with momentum (M), Adagrad, Adam and
Bsadam for all experiments are also listed.

Data Set Model Network Type SGD(M) Adagrad Adam Bsadam
MNIST 1-Layer Perceptron Feedforward 0.1 0.001 0.001 (0.01,0.5)
MNIST 1-Layer Convolutional Convolutional 0.1 0.001 0.001 (0.01,0.5)

CIFAR-10 ResNet Deep Convolutional 0.1 0.001 0.001 (0.01,0.5)
CIFAR-10 DenseNet Deep Convolutional 0.1 0.001 0.001 (0.01,0.5)
CIFAR-10 SENet Deep Convolutional 0.1 0.001 0.001 (0.01,0.5)
CIFAR-100 ResNet Deep Convolutional 0.3 0.001 0.001 (0.05,1)
CIFAR-100 DenseNet Deep Convolutional 0.1 0.001 0.001 (0.05,1)
CIFAR-100 SENet Deep Convolutional 0.1 0.001 0.001 (0.01,0.5)
Penn Treebank 1-Layer LSTM Recurrent 50 0.001 0.001 (5,100)
Penn Treebank 2-Layer LSTM Recurrent 50 0.001 0.001 (5,100)

Appl. Sci. 2019, 9, 3569 10 of 16

4.2. Image Classfication

4.2.1. Simple Neural Network

The MNIST database of handwritten digits has a training set of 60,000 images, and a test set of
10,000 images, which can be divided into 10 classes. We train a simple fully connected neural network
with one hidden layer and a one-layer convolutional network with one convolutional layer and one
fully connected layer for the image classification problem on the MNIST dataset. We run 100 epochs
and decay the learning rate by 10 at 80th epoch for fully connected neural network, then we run
75 epochs and decay the learning rate by 10 at 60th epoch for convolutional network.

Figure 3 shows the learning curve of each optimization method, which includes training accuracy
and test accuracy. We find that all the optimization algorithms can achieve nearly 100% accuracy on
the training set. However, the accuracy of each algorithm will be different on the test set. Among these
algorithms, Adagrad converges fastest on the training set, but achieves lower accuracy on the test
set and SGDM has a slightly better accuracy on the test set than Adam and Adagrad. Our proposed
Bsadam has better convergence speed than SGDM in the early stage. Especially in the converging
phase, the convergence speed of Bsadam is faster than all the compared algorithms on both training
and test set. Moreover, the final test accuracy of Bsadam is as good as fine-tuned SGDM, which means
that our algorithm can get faster training speed without sacrificing accuracy when training simple
neural networks. We also run RMSProp and Nesterov with default setting on MNIST. We find that
RMSProp has worst convergence speed and test accuracy, Nesterov has similar performance with SGD
with momentum. So our method still has advantages over these methods.

101 99.0
98.5
100 -
98.0
99 4
& B
< £ o975
g g
s] 5
E %8 g 97.0
£ 5
E 4 96.5
= o7 =
Adagrad Adagrad
—— Adam 9607 —— Adam
96 —=-- Bsadam —--- Bsadam
—— Nesterov 95.5 9 ﬂ (\ —— Nesterov
—— RMSprop I | A —— RMSprop
95 1 ‘ : : ; ‘ 95.0 1— .l' lh“ ! 5 :
0 20 40 60 80 100 0 20 40 60 80 100
Epoch Epoch
(@) Training accuracy for fully connected neural network (b) Test accuracy for fully connected neural network
101.0 100.00
—— 5GDM
100.5 %.75 | Adagrad
—— Adam
—=- Bsadam
100.0 99.50 -
—— Nesterov
—— RMSprop
£ 995 £ 99254
& >
g g
S 9.0 3 99.00
g
< <
£ =
g s B o875
98.0 98.50 -
——- Bsadam
97.5 1 —— Nesterov 98.25
—— RMSprop
97.0

T T T T T T T T 98.00 T T T T T T T T
o] 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Epoch Epoch
(¢) Training accuracy for one-layer convolutional neural (d) Testaccuracy for one-Layer convolutional neural network

Network

Figure 3. Training and test accuracy for fully connected neural network and one-layer convolutional
neural network on MNIST.

Appl. Sci. 2019, 9, 3569 110f 16

4.2.2. Deep Convolutional Network

We evaluate our algorithm on a more complex deep convolutional network. Specifically,
we perform experiments with three architectures: ResNet-34 [22], DenseNet-121 [23] and SENet-34 [24]
on CIFAR-10 and CIFAR-100 data sets for image classification tasks. These data sets have a training set
of 50,000 32 x 32 RGB images, and a test set of 10,000 images, which can be divided into 10 classes
for CIFAR-10 and 100 classes for CIFAR-100. We ran 125 epochs for all the compared algorithms and
decay the learning rate by 10 at 100th epoch.

Figure 4 shows the learning curve of each optimization method running on CIFAR-10,
which includes training accuracy and test accuracy. As we can see, Adagrad had faster convergence
speed and higher accuracy on training set, its accuracy is the lowest on test set, which indicates that its
generalization gap is relatively large. Adam converges faster than SGDM in the early training, but the
final test accuracy is lower than SGDM. SGDM has the slowest convergence speed on training set and
test set, but its final test accuracy is higher than Adam and Adgrad, which means that its generalization
capability is better than adaptive gradient methods. Our proposed Bsadam converges faster than
fine-tuned SGDM in the early training. Especially in the converging phase, the convergence speed
of Bsadam is faster than all the compared algorithms on both training and test set. The final training
and test accuracy of Bsadam are the highest among all the compared algorithms, which indicates
that our algorithm can accelerate the training process and improve the accuracy for complex deep
neural networks.

Figure 5 shows the learning curve of each optimization method running on CIFAR-100, which includes
training accuracy and test accuracy. The experimental results shown in Figure 5 are similar to Figure 4.
The adaptive gradient methods often exhibit a relatively large generalization gap. Bsadam can achieve
faster convergence speed and higher convergence accuracy on both training and test set.

Train Accuracy %
Test Accuracy %

0 20 40 60 80 100 120
Epoch

(@) Training accuracy for ResNet-34

100.0 4 — SGDM e —— SGDM Kan
Adagrad ‘_J/ 94 4 Adagrad A
97.54 — Adam o~ — Adam o~
--- Bsadam pree --- Bsadam i

Train Accuracy %
Test Accuracy %
@

&

0 20 a0 50 80 00 120 0 20 10 60 80 00 120
Epoch Epoch
() Training accuracy for SENet-34 (d) Test accuracy for SENet-34

Figure 4. Cont.

Appl. Sci. 2019, 9, 3569 12 0of 16

96
100.0 1 —— SGDM J\—\'pf- """
g4 1 — Adagrad A
97.5 4 —— Adam Y
- N
. Bsadam ;l’ﬂ’n, i
95.0 1
£ 2
90
g‘ 92.5 4 §
5 S g8
$ 900 g 88
< %
E 751 £ 86+
85.0 — SGDM 841
—— Adagrad
82.5 ER——— 82 4
—-- Bsadam
80.0 T T T T T T T 80 T T T T T
o] 20 40 60 80 100 120 0 60 80 100 120
Epoch Epoch
(e) Training accuracy for DenseNet-121 (£) Test accuracy for DenseNet-121

Figure 4. Training and test accuracy for ResNet-34, SENet-34 and DenseNet-121 on CIFAR-10.

100 A
— SGDM
w0l Adagrad
—— Adam
—=- Bsadam
80
2 0 ==k £
2 s Z
4 g
5 5
g 60 §
E 50 8
40
304
20 T T T T T T T 20 7 T T T T T T
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Epoch Epoch
(g) Training accuracy for ResNet-34 (h) Test accuracy for ResNet-34
100
904
80 1
3: 70 4 i
Z o
8 g
o =
;:’ 60 E
c p
g 501 £
40 — sGDM
—— Adagrad
301 —— Adam
——- Bsadam
20— . y . . r . 20— . y . . r .
0 20 0 60 80 100 120 0 20 0 60 80 100 120
Epoch Epoch
(i) Training accuracy for SENet-34 (]) Test accuracy for SENet-34
100 § 80
904
70
80
60
2 70 £
g Z
g g
5 3 504
;: 60 g 50
£ 50 g
= Ll
40 —— SGDM —— SGDM
—— Adagrad 30 4 —— Adagrad
301 —— Adam —— Adam
—-- Bsadam ——- Bsadam
20— : T : ; T ; 20— ; T ; ; T ;
0 20 0 60 80 100 120 0 20 a0 60 80 100 120
Epoch Epoch
(k) Training accuracy for DenseNet-121 (1) Test accuracy for DenseNet-121

Figure 5. Training and test accuracy for ResNet-34, SENet-34 and DenseNet-121 on CIFAR-100.

Appl. Sci. 2019, 9, 3569 13 of 16

4.3. Language Modeling

To illustrate the wide applicability of our algorithm, we also conduct experiments with the
recurrent network. Specifically, we perform experiments with long short-term memory (LSTM)
network [26] on Penn Treebank data set for word-level language modeling tasks. We compare our
algorithm with Adam and SGD without the moment. We ran 125 epochs for all the compared
algorithms and decay the learning rate by 10 at 100th epoch.

Figure 6 shows the learning curve of each optimization method running on Penn Treebank,
which includes training accuracy and test accuracy. We find that the training perplexity of a two-layer
LSTM is lower than a one-layer LSTM, but the valid perplexity is almost the same, which indicates that
the complexity of the network may weaken the generalization capability of the algorithm. Although
Adam achieves a lower perplexity on the training set, the final perplexity on a valid set is relatively
high. SGD converges slowly in the early stage on a valid set, but the final perplexity is lower than
Adam. Bsadam converges slowly in finding minima phase, but in converging phase, training and
valid perplexity both decrease rapidly and the overall convergence speed is faster than SGD. What is
more, Bsadam can get a similar or better final perplexity compared to fine-tuned SGD.

100 100
\ — 5GD

\ Adam
907 \! --- Bsadam

— 5GD
Adam
951 —-- Bsadam

80+ 90 1

70 1 85

60 4 80 4

Train Perplexity
Valid Perplexity

50 4 75 4

\
hY
707 s Lh‘,

30 T T T T T T T 65 T T T T T T T
4] 20 40 60 80 100 120 0 20 40 60 80 100 120

40

Epoch Epoch
(@) Training perplexity for one-layer LSTM (b) Test Perplexity for one-layer LSTM
100 . 100
\ — sGD — sGD
\ Adam Adam
90) 954

A —=-- Bsadam —=-- Bsadam

80+ 90 1

70 1 85

60 4 80 4

Train Perplexity
Valid Perplexity

50 4 75 4

40 1 70 4

30 T T T T T T T 65 T T T T T T T
4] 20 40 60 80 100 120 0 20 40 60 80 100 120

Epoch Epoch
(c) Training Perplexity for two-layer LSTM (d) Test Perplexity for two-layer LSTM

Figure 6. Training and valid perplexity for long short-term memory (LSTM) with different layers on
Penn Treebank.

4.4. Comparison of Different Scheduling Methods

In this paper, we propose three bounded scheduling methods: linear scheduling, exponential
scheduling and trigonometric scheduling. We use these three bounded scheduling methods to
train SENet-34 on CIFAR-10 and the learning curve is shown in Figure 7. As we can see, these
scheduling methods have similar performance, but the details of the learning curve are slightly

Appl. Sci. 2019, 9, 3569 140f 16

different. Exponential scheduling method has the fastest convergence speed among three scheduling
methods, but the final test accuracy is lowest. Linear scheduling method has the highest final test
accuracy, but the convergence speed is slowest among three scheduling methods.

96

100.0

Train Accuracy %
Test Accuracy %
o]
©

T T T T T T T T T T T T T
0 20 40 60 80 100 120 0 20 40 60 80 100 120

Epoch Epoch
(@) Training Accuracy for SENet-34 (b) Test Accuracy for SENet-34

Figure 7. Training and test accuracy of different scheduling methods for SENet-34 on CIFAR-10.
5. Conclusions

Towards the poor generalization capability of adaptive gradient methods in training deep neural
networks, a bounded scheduling method, called Bsadam, is proposed in this paper. We first find the
upper and lower bound for Adam, then divide the training process into three phases: finding minima
phase allows the algorithm to overcome the suboptimal solutions by raising the lower bound of Adam,
converging phase ensures the convergence of the algorithm by decreasing the upper bound of Adam
and uniform scaling phase allows the algorithm converge to the minimum. We evaluate our algorithm
by using simple neural networks, deep convolution networks and recurrent network to perform
image classification and language modeling tasks. The experimental results show that our algorithm
outperforms SGD(M) and the adaptive gradient methods in convergence speed and accuracy.

Author Contributions: Conceptualization, M.T.; methodology, M.T.; software, M.T.; validation, Z.H., Y.Y. and
C.W.; formal analysis, M.T. and Z.H.; investigation, M.T.; resources, Y.P; data curation, M.T.

Funding: This research was funded by The National Key Research and Development Program of China grant
number 2016YFB1000100.

Acknowledgments: All authors thank the referees for their valuable suggestions and help.

Conlflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85-117. [CrossRef] [PubMed]
Seo, S.; Kim,]. Efficient Weights Quantization of Convolutional Neural Networks Using Kernel Density
Estimation based Non-uniform Quantizer. Appl. Sci. 2019, 9, 2559. [CrossRef]

3. Song, K.; Yang, H.; Yin, Z. Multi-Scale Attention Deep Neural Network for Fast Accurate Object Detection.
IEEE Trans. Circuits Syst. Video Technol. 2018, 1. [CrossRef]

4. Maas, A.L; Qi, P; Xie, Z,; Hannun, A.Y.; Lengerich, C.T,; Jurafsky, D.; Ng, A.Y. Building DNN acoustic
models for large vocabulary speech recognition. Comput. Speech Lang. 2017, 41, 195-213. [CrossRef]

5. Hinton, G.; Deng, L.; Yu, D.; Dahl, G.; Mohamed, AR ; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P;
Kingsbury, B.; et al. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views
of Four Research Groups. IEEE Signal Process. Mag. 2012, 29, 82-97. [CrossRef]

http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://www.ncbi.nlm.nih.gov/pubmed/25462637
http://dx.doi.org/10.3390/app9122559
http://dx.doi.org/10.1109/TCSVT.2018.2875449
http://dx.doi.org/10.1016/j.csl.2016.06.007
http://dx.doi.org/10.1109/MSP.2012.2205597

Appl. Sci. 2019, 9, 3569 150f 16

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.
31.

32.

Violante, M.G.; Marcolin, F.; Vezzetti, E.; Ulrich, L.; Billia, G.; Di Grazia, L. 3D Facial Expression Recognition
for Defining Users’ Inner Requirements—An Emotional Design Case Study. Appl. Sci. 2019, 9, 2218. [CrossRef]
Zhang, J.; Zong, C. Deep Neural Networks in Machine Translation: An Overview. IEEE Intell. Syst. 2015, 30,
16-25. [CrossRef]

Robbins, H.; Monro, S. A Stochastic Approximation Method. Ann. Math. Stat. 1951, 22, 400-407. [CrossRef]
Duchi, J.; Hazan, E.; Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization.
J. Mach. Learn. Res. 2001, 12, 2121-2159.

Nocedal, J.; Wright, S. Numerical Optimization; Springer Science & Business Media: Berlin, Germany, 2006.
Smith, L.N. Cyclical learning rates for training neural networks. In Proceedings of the 2017 IEEE Winter
Conference on Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 24-31 March 2017;
pp. 464-472.

Smith, L.N.; Topin, N. Super-convergence: Very fast training of neural networks using large learning rates.
Artif. Intell. Mach. Learn. Multi-Domain Oper. Appl. 2019, 11006, 1100612.

Luo, L.; Xiong, Y.; Liu, Y.; Sun, X. Adaptive gradient methods with dynamic bound of learning rate. arXiv
2019, arXiv:1902.09843.

Zeiler, M.D. ADADELTA: An adaptive learning rate method. arXiv 2012, arXiv:1212.5701.

Tieleman, T.; Geoffrey, H. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent
magnitude. COURSERA Neural Netw. Mach. Learn. 2012, 4, 26-31.

Kingma, D.P; Ba, J.L. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7-9 May 2015.

Dozat, T. Incorporating Nesterov Momentum into Adam. ICLR Workshop 2016, 1, 2013-2016.

Reddi, S.J.; Kale, S.; Kumar, S. On the Convergence of Adam and Beyond. arXiv 2019, arXiv:1904.09237.
Nitish, S.K.; Richard, S. Improving generalization performance by switching from Adam to SGD. arXiv 2017,
arXiv:1712.07628.

LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.
Proc. IEEE 1998, 86, 2278-2324. [CrossRef]

Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images; Technical Report; University
of Toronto: Toronto, ON, Canada, 2009.

He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June-1 July 2016;
pp. 770-778.

Iandola, F; Moskewicz, M.; Karayev, S.; Girshick, R.; Darrell, T.; Keutzer, K. Densenet: Implementing efficient
convnet descriptor pyramids. arXiv 2014, arXiv:1404.1869.

Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18-22 June 2018; pp. 7132-7141.
Mitchell, PM.; Mary, A.M.; Beatrice, S. Building a large annotated corpus of english: The penn treebank.
Comput. Linguist. 1993, 19, 313-330.

Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735-1780. [CrossRef]
Roux, N.L.; Schmidt, M.; Bach, E. A Stochastic Gradient Method with an Exponential Convergence Rate for
Finite Training Sets. Adv. Neural Inf. Process. Syst. 2012, 4, 2663-2671.

Fletcher, R. On the barzilai-borwein method. In Optimization and Control with Applications; Springer: Boston,
MA, USA, 2005; pp. 235-256.

Raydan, M. On the barzilai and borwein choice of steplength for the gradient method. IMA]. Numer. Anal.
1993, 13, 321-326. [CrossRef]

Massé, P.-Y.; Ollivier, Y. Speed learning on the fly. arXiv 2015, arXiv:1511.02540.

Xiangyi, C.; Sijia, L.; Ruoyu, S.; Mingyi, H. On the convergence of a class of Adam-type algorithms for
non-convex optimization. arXiv 2018, arXiv:1808.02941.

Ashia, C.W,; Rebecca, R.; Mitchell, S.; Nati, S.; Benjamin, R. The marginal value of adaptive gradient methods
in machine learning. Adv. Neural Inf. Process. Syst. 2017, 30, 4148—4158.

http://dx.doi.org/10.3390/app9112218
http://dx.doi.org/10.1109/MIS.2015.69
http://dx.doi.org/10.1214/aoms/1177729586
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1093/imanum/13.3.321

Appl. Sci. 2019, 9, 3569 16 of 16

33. Hardt, M.; Recht, B.; Singer, Y. Train faster, generalize better: Stability of stochastic gradient descent. arXiv
2015, arXiv:1509.01240.

34. Zhang, R. Making convolutional networks shift-invariant again. arXiv 2019, arXiv:1904.11486.

@ (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Traditional Learning Rate Methods
	Adaptive Gradient Methods

	Bsadam: Bounded Scheduling Method for Adam
	Preliminaries
	Specify Bounds for Adam
	Schedule Bounds for Adam
	Finding Minima
	Converging
	Uniform Scaling

	Algorithm Overview

	Experiments
	Experimental Setup
	Image Classfication
	Simple Neural Network
	Deep Convolutional Network

	Language Modeling
	Comparison of Different Scheduling Methods

	Conclusions
	References

