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Abstract: For a class of single-degree-of-freedom non-linear passive vibration isolators with unknown
excitation and unmodelled dynamics, two sliding mode control methods—a conventional one
and the other using a super-twisting algorithm—were proposed to complement and improve the
performances and the robustness of the passive isolators. The proposed control methods only require
the estimation of the loading and measured velocities of the isolators. Numerical simulations for a
non-linear isolator with quasi-zero stiffness demonstrated that both methods were effective and easy
to implement, and the one using a super-twisting algorithm was more promising from the perspective
of practical application.

Keywords: non-linear vibration isolator; unmodelled dynamics; sliding mode control;
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1. Introduction

Non-linear passive vibration isolators have been proven to be advantageous to overcome the
inherent drawback of linear isolators in different applications [1]. Thus, the effects of non-linear stiffness
or/and damping on an isolator’s performance have drawn a lot of attention; see, for example, [2–6].
It is known that a non-linear isolator performs well over larger frequency ranges compared to a
corresponding linear isolator. The soft non-linearity of its stiffness reduces the vibration transmissibility
in the resonant frequency [7] and the influence of non-linearity on the characteristics of an isolator may
also include shifts in resonance frequency, internal resonance, and chaotic response [1,7–11].

Recently, a type of non-linear passive vibration isolator with quasi-zero stiffness (QZS)
at the equilibrium position has received increasing attention [10–18]. This isolator possesses
high-static–low-dynamic stiffness so that it can maintain the load-bearing capacity with a small
static displacement and achieve a lower natural frequency to enlarge frequency ranges of vibration
isolation. But, it should be noted that isolators with QZS are very sensitive facilities and if something
occurs to cause deviation of its characteristic parameters (e.g., mismatch of the load and negative
stiffness parameters) and/or change in the non-linearity properties of its forces (e.g., destruction of
the symmetry), then the isolation performance will change dramatically [19–22]. This situation is
particularly true when the amplitude of excitation is not relatively small, and the isolator is exposed to
a sustained excitation. Therefore, they need careful tuning and fine precision during manufacturing.

Besides, a non-linear passive isolator cannot perform well over all the frequencies that a system
may be confronted with, because it is designed and fabricated with predetermined system parameters.
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A better scheme to overcome these shortcomings is to introduce semi-active or active devices which
cooperate with the passive isolators. Such an isolator is referred to as a hybrid isolator. Due to the
limitations of the scope of the discussion in this article, we only focused our attention on an active type
of hybrid isolator with QZS.

A simple linear time-delayed displacement feedback control strategy was introduced to improve
the robustness and transmissibility performance of an isolator with QZS under both force and base
excitation in Reference [23]. This control strategy can be used to gain better isolation performance in a
resonant region. It was also shown that undesirable bifurcation and chaotic behaviors can be avoided
or greatly suppressed when the controlled stiffness and especially the introduced time delay are
appropriately chosen. But the performance gets worse in the high-frequency band. In Reference [24],
the cubic displacement feedback with time delay was proposed, which can effectively suppress
the transmissibility in resonant region and reduce the resonant frequency with the performance in
higher frequency range unaffected with appropriate feedback parameters. In Reference [25], the
time-delayed cubic velocity feedback control strategy was investigated. It turned out that a better
isolation performance in the high-frequency band where isolation is required can also be achieved, but
the 1/3 subharmonic resonance can occur for a smaller excitation amplitude and increasing the feedback
gain cannot eliminate the 1/3 subharmonic resonance. In these studies, a single-degree-of-freedom
(SDOF) oscillator with cubic non-linearity was analyzed by using some approximate analytical methods,
e.g., the multiple scales method and the harmonic balance method, and the amplitude–frequency
responses were obtained.

These control analyses of hybrid isolators with QZS were conducted based upon good knowledge of
mathematical representations of the systems. However, in many practical situations, their mathematical
models undoubtedly involve errors in relation to practical systems and quite often are not exactly
available. Therefore, advanced control techniques have been required to deal with these situations,
such as robust control (including sliding mode control (SMC)), adaptive control, fuzzy logic control,
neural-network control, learning control, etc.

This paper proposes two SMC-based active force controllers to complement a class of SDOF
non-linear vibration isolators. The targeted isolators can usually be characterized as a class of non-linear
systems that contain unknown, bounded uncertainties/disturbances, and unmodelled dynamics. These
characteristics are the main reasons for choosing SMC to cope with this class of isolator [26–31]. The
SMC methods also have other advantages: computational simplicity and easy implementation with
respect to other robust control approaches. The main disadvantage of the conventional SMC is the
chattering phenomena of the system output and control input, which can induce damages to control
systems. Nowadays, the super-twisting SMC algorithm has become preferable over the conventional
SMC, since it greatly alleviates the chattering phenomena [30,32,33].

The rest of this paper is organized as follows. The description of the non-linear vibration isolators
and the proposed SMC methods are presented in Section 2. Section 3 gives a specific non-linear isolator
with QZS and numerical simulations and result analyses of the proposed SMC methods for this isolator
are provided. Finally, the concluding remarks are drawn in Section 4.

2. Force Controller Design

Consider an SDOF non-linear vibration isolator with the governing equation of motion
represented by:

m
..
x +ψ1

(
x,

.
x, fe

)
= fc (1)

where m is the isolated mass,
..
x,

.
x, and x are the acceleration, velocity, and displacement of the mass,

respectively. ψ1(·) represents the total effect of the linear/non-linear stiffness restoring forces, damping
forces, and the external disturbing forces fe that exert on the mass. fc is an active control force that
is used to further suppress vibrations of the mass. In this article, it is assumed in Equation (1) that
ψ1(·) is difficult to be modeled exactly or not easily identifiable and, thus, is deemed to be unknown.



Appl. Sci. 2019, 9, 3567 3 of 11

Situations where ψ1(·) cannot be exactly determined occurs in many practical applications, such as
when models are not well developed and where there exist seldom-known system parameters or
unpredictable parameter variations, etc. Additionally, the mass m in Equation (1) is considered to be
uncertain or has its value in a certain interval. Let m̂ be an estimated or nominal value of the mass m,
Equation (1) is rearranged as follows:

m̂
..
x + (m− m̂)

..
x +ψ1

(
x,

.
x, fe

)
= fc (2)

Let ψ
(
x,

.
x,

..
x, fe

)
= −(m− m̂)

..
x − ψ1

(
x,

.
x, fe

)
, which includes all the system non-linearities and

uncertainties and is supposed to be bounded. Then Equation (1) has:

m̂
..
x = ψ

(
x,

.
x,

..
x, fe

)
+ fc (3)

In this study, only measurements of the velocity
.
x were required.

In order to make the non-linear vibration isolator more robust and improve its dynamics behavior,
we proposed two SMCs to supplement the isolation performance. In what follows, the SMC methods
were implemented, respectively, in this paper: a conventional SMC [29,31] and a SMC based on a
super-twisting algorithm [30,32,33]. For the vibration suppression problems discussed here, the desired
displacement, velocity, and acceleration trajectory of the isolated mass can be predefined as zeros.
Subsequently, a sliding surface (s) for the conventional SMC design was adopted as:

s(t) =
.
x(t) + λx(t) (4)

where λ > 0. Therefore, its first-time derivative is given, together with Equation (3), by:

.
s(t) =

..
x(t) + λ

.
x(t) = λ

.
x(t) + m̂−1ψ+ m̂−1 fc(t) (5)

First, a conventional SMC is introduced to be directly as [34]:

fc(t) = −m̂
(
λ

.
x(t) + µs

)
−Dtanh

( s
ε

)
(6)

where the constant design parameters are ε > 0, µ > 0, and D ≥
∣∣∣ψ∣∣∣. In Equation (6), the continuous

tanh function is used to replace the discontinuous signum function in order to alleviate the chattering
phenomenon of the SMC [29]. The value ε of tanh(·) determines how the tanh can approximate the
signum function. A smaller ε, a closer approximation to the signum function was obtained, as shown
in Figure 1. The estimation of D can be determined by the estimation of

∣∣∣m̂ ..
x
∣∣∣ from Equation (3). If a

large µ is selected, the isolation performances will get better, but the closed-loop stability will be lost
when the value of µ is large enough. Additionally, for the stability analysis of the closed-loop control
system, it has been proven with a Lyapunov function V = 1

2 s2 that [31]:

lim
t→∞

V(t) ≤
0.2785Dε

2µm̂
(7)

So, the trajectory of the system (3) is asymptotically convergent to a vicinity of zero under the
control input (6), and the convergent precision is determined by D, µ, and ε.

Second, for the super-twisting control, a proportional-integral-derivative (PID)-type sliding
surface is adopted as:

s(t) =
.
x(t) + λx(t) + b

∫ t

0
x(τ)dτ (8)
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where the feedback gains are λ > 0 and b > 0. Its first-time derivative of sliding surface (s) (8) is
given by:

.
s(t) =

..
x(t) + λ

.
x(t) + bx(t) (9)

The proposed control input ordinarily consists of two parts [27,32], i.e., the equivalent control
feqc(t) and the correction control fcorrc(t). The equivalent control feqc(t) is obtained from Equation
(9) with Equation (3) when

.
s(t) = 0, which is provided not to account for the presence of unknown

disturbances and unmodeled dynamics (i.e., ψ = 0 in Equation (3)). So, one has:

feqc(t) = −m̂
(
λ

.
x(t) + bx(t)

)
(10)Appl. Sci. 2019, 9, 3567 4 of 11 
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Then, fcorrc(t), using a super-twisting control input, is given by:

fcorrc(t) = −Dsign(s(t)) − α
√∣∣∣s(t)∣∣∣ sign(s(t)) − β

∫
sign(s(τ))dτ (11)

with α, β > 0 and D ≥
∣∣∣ψ∣∣∣. This super-twisting control is a variant of the original one [33] as an

additional switching item, −Dsign(s(t)) is added to match the presence of unknown disturbances and
unmodeled dynamics, ψ. To sum up, the active control force fc is given by:

fc(t) = −m̂
(
λ

.
x(t) + bx(t)

)
−

(
D + α

√∣∣∣s(t)∣∣∣) sign(s(t)) − β
∫

sign(s(τ))dτ (12)

In the sequel, the stability analysis of the proposed controller is investigated with a candidate
Lyapunov function V(t) = 1

2 s2(t). One has from Equations (9) and (3):

.
V(t) = s

.
s = s

( ..
x + λ

.
x + bx

)
= s

(
m̂−1ψ+ m̂−1 fc + λ

.
x + bx

)
(13)

Substituting Equation (12) into Equation (13), one has:

.
V(t) = s

(
m̂−1ψ−Dsign(s) − α

√
|s| sign(s) − β

∫
sign(s(τ))dτ

)

= s
(
m̂−1ψ− m̂−1

(
Dsign(s) − α

√
|s| sign(s) − β

∫
sign(s)dτ

))
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= m̂−1(ψs−D|s|) − α|s|
√
|s| − βs

∫
sign(s)dτ < 0 (for s , 0) (14)

So, the reaching condition is guaranteed. Additionally, in practice, let α = 1.5
√

U and β = 1.1U
in Equation (12), where U is a positive constant that needs to be progressively tuned [33]. This
single-parameter “trial and error” tuning is used to obtain desired performances of the closed-loop
system in practical implementation.

3. Active Control of a Quasi-Zero-Stiffness Isolator

3.1. Description of a Quasi-Zero-Stiffness Isolator

The active force controller described above was applied to a non-linear stiffness vibration isolator
with the quasi-zero-stiffness (QZS) mechanism. Such a simple hybrid isolator that combines the
passive and active components consisted of some linear springs with one vertical spring connected
with several inclined springs, and a linear viscous damper, as shown in Figure 2. This isolator was
used to isolate the base excitation xb with the auxiliary control force fc. The isolated body with the
mass m was supported above the base by the vertical spring with stiffness kv and its static equilibrium
position was set-up while the oblique springs with stiffness kn were compressed in the horizontal
position. The damper with linear damping coefficient c was placed in parallel with the vertical spring.
The force–deflection relationship of the stiffness elements for the isolator is given by [12,13]:

f = kv(x− xb) + nkn

1−
a0

(x2 + a2)1/2

(x− xb) (15)

where a is the free length of the oblique springs and a0 is their length when they are in the horizontal
position. The equation of motion of the hybrid isolator can be described by:

m
..
x + c

( .
x−

.
xb

)
+ kv(x− xb) + nkn

1−
a0

(x2 + a2)1/2

(x− xb) = fc (16)

where n is the number of oblique springs.
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It is the usual case in general that the base excitation xb and
.
xb are unable to be known accurately

beforehand and there are some uncertainties for the physical parameters of the passive isolation
components. Now let ψ1(·) in Equation (1) be:

ψ1 = c
( .
x−

.
xb

)
+ kv(x− xb) + nkn

1−
a0

(x2 + a2)1/2

(x− xb) (17)

and ψ(·) = −(m− m̂)
..
x−ψ1, then Equation (16) is rewritten as the same formulation as Equation (3),

where ψ is also considered to be unknown here. The mass estimation m̂ is supposed to be known
beforehand, and its velocity

.
x is the measured variable required only for the design of the active control

force fc. The displacement x can be obtained from the numerical integration of the velocity
.
x.
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For the purpose of numerical simulation, an example of the isolator was utilized to validate the
control design proposed in the preceding section. The nominal values of physical parameters of the
isolator were m = 300 kg, kv = 15000 N m−1, kn = kv/2.5, c = 85 N s m−1, a = 0.6 m, a0 = 1.0 m, and n =

4. The base excitation xb was a zero-mean Gaussian white noise of standard deviation 0.01 m, which
was filtered using a low-pass filter with 15 Hz cut-off frequency. This setup was used to produce state
variables of the mass. The simulation was conducted using the ode45 function of MATLAB with a time
step of 0.01 s.

3.2. Simulation Results and Analyses

Two kinds of control forces fc(t) from Equations (6) and (12) were used for numerical verification
of the control schemes on the isolator. They were applied to five cases involving the set-up of a
controller’s parameter m̂ and an isolator’s parameter kn: (i) m̂ = 300 kg and kn was the nominal value
(kn = kv/2.5); (ii) m̂ = 360 kg and kn = kv/2.5; (iii) m̂ = 240 kg and kn = kv/2.5; (iv) m̂ = 300 kg and kn had
an approximately 17% decrease, i.e., kn = kv/3; (v) m̂ = 240 kg and kn = kv/3. Other parameters of
the isolator retained their nominal values. The algorithm parameters of the control forces fc(t) were
chosen to be µ = 160, D = 5.0, λ = 10, and ε = 0.5 for Equation (6) and U = 4.0, D = 5.0, λ = 1.0, and
b = 16 for Equation (12) throughout all cases.

In case (i), Figures 3a–c and 4a–c show responses of displacement and acceleration of the mass
under the base excitation of the white noise and the active control forces applied, respectively, for the
control algorithms (6) and (12). Figure 5a,b presents responses of displacement and acceleration of the
passive isolator with nominal parameter values. Their root mean square (RMS) values of the responses
are presented in Table 1 for comparison. Two statements could be presented from the numerical
experiments: (I) The conventional SMC provided the best vibration isolation performance at the cost
of moderate magnitudes of control forces. But it led to higher frequency oscillations of the responses
for displacements on a microscale and the intense chattering for control inputs on a macroscale, which
is unacceptable in practical implementation. (II) The super-twisting control gave the second-best
results with small magnitudes of control forces. Although only achieving a displacement reduction by
46.15% in the RMS values and 8.65% in the acceleration reduction compared with the corresponding
passive isolator with QZS, it produced moderate oscillating responses and fewer chattering occurrences,
which is also important and preferable in practical applications, compared with those given by the
conventional SMC.Appl. Sci. 2019, 9, 3567 7 of 11 
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Table 1. RMS comparison of responses with the nominal parameters of the isolator.

Active Hybrid Isolator
and Passive Isolator

Response and Control Force (RMS)

Acceleration (ms−2) Displacement (m) Control Force (N)

With control force (6) 0.0431 1.1326×10−5 30.02
With control force (12) 0.0845 0.0014 4.03

Passive isolator 0.0924 0.0026 null

For cases (ii) to (v), numerical experiments were conducted to investigate the robustness of the
control schemes for the hybrid isolator. The RMS values of the responses are presented in Figure 6.
Although the RMS values of the displacement responses with the super-twisting control showed some
variations, as shown in Figure 6a, they were all smaller than that of the corresponding passive isolator
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with QZS. It was demonstrated that the hybrid isolator with the proposed control methods had robust
vibration isolation performances with respect to the estimation error of m̂ and the system parametric
variations, and could overcome the essential defect of the non-linear passive isolators with QZS, i.e.,
their performances were very sensitive to the deviations in system parameters.
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3.3. Additional Comments

The hybrid isolator with QZS can have less control forces compared with those without QZS.
In Reference [34], a sliding mode controller was developed by considering loading uncertainty to
a suspension system. The semi-active control forces were provided by a magnetorheological fluid
damper. In its simulation results for an isolator with the same mass and the vertical spring with
stiffness kv as those of the isolator described in Section 3.1, the large control forces were presented under
random base excitation with standard deviation 0.01 m and within the 0.5–10 Hz frequency range, as
shown in Figure 7. Their RMS values for acceleration and displacement were 0.48 ms−2 and 6.70 ×
10−3 m (see Table 3 in Reference [34]), respectively. Clearly, the control methods proposed in this paper
for the hybrid isolator with QZS offers a number of advantages over those given in Reference [34].
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4. Conclusions

This paper proposed two SMC methods for the non-linear vibration isolator with QZS. The
control schemes weredesigned without the need forany knowledge onanalytic models of the isolator
andwas only based on the estimation of the loading and measured velocities of the isolator. The hybrid
isolator using the conventional SMC and the super-twisting SMC proposed in this paper can acquire
better vibration isolation performances, and has specific advantages, i.e., robustness against parameter
variations and unmodelled dynamics. The super-twisting SMC is a promising technique for non-linear
hybrid isolators from the perspective of practical application. Future research will be focused on
further improvement of isolation performances using, e.g., a second-order sliding mode control based
on adaptive and time-varying gains.
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