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Abstract: In an optical measurement system using an interferometer, a phase extracting technique
from interferogram is the key issue. When the object is varying in time, the Fourier-transform
method is commonly used since this method can extract a phase image from a single interferogram.
However, there is a limitation, that an interferogram including closed-fringes cannot be applied.
The closed-fringes appear when intervals of the background fringes are long. In some experimental
setups, which need to change the alignments of optical components such as a 3-D optical tomographic
system, the interval of the fringes cannot be controlled. To extract the phase from the interferogram
including the closed-fringes we propose the use of deep learning. A large amount of the pairs of
the interferograms and phase-shift images are prepared, and the trained network, the input for
which is an interferogram and the output a corresponding phase-shift image, is obtained using
supervised learning. From comparisons of the extracted phase, we can demonstrate that the accuracy
of the trained network is superior to that of the Fourier-transform method. Furthermore, the trained
network can be applicable to the interferogram including the closed-fringes, which is impossible with
the Fourier transform method.

Keywords: deep learning; convolutional network; U-net; phase extraction; fringe analysis;
closed-fringe; interferometer

1. Introduction

In the last two decades, deep learning gone through a remarkable evolution, especially in image
processing; for example, the classification of objects included in the image [1], noise reduction [2],
pan-sharpening [3], caption generation [4] and image style transfer [5].

In this paper, we propose the method using deep learning to extract phase-shift images from a
fringe patterns which is obtained from an interferometer. The extraction of the phase-shift is necessary
to evaluate a refractive index of a matter of interest.

According to classical electromagnetism, the refractive indices of matters can be represented by
the Drude-Lorentz model which is a spring model with dumping caused by electric dipoles and free
electrons. In this model, the refractive index depends on a density of the dipoles and the free electrons.
In the case of air, the density of molecules with the electric dipoles depends on temperature of the
air. These relations show that a three-dimensional (3-D) temperature distribution of gas around hot
matter, such as a flame, can be indirectly evaluated through a 3-D measurement of a distribution of the
refractive index. As the other medium than gas, 3-D distributions of electron density in plasma and
concentration of solute in solution for liquid-state media could be evaluated.

To determine the 3-D quantity, the technique of computed tomography (CT) is commonly used in
medical diagnostics. In the medical CT, 2-D projection images of probe beams with different incident
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directions passing through a human body are measured; then, the 3-D distribution of an attenuation
coefficient is reconstructed from these images. The key to the reconstruction is that the projection
images include integrals of the attenuation coefficient distributed in the body along the directions of the
probe beam. Upon replacing the projection from the absorption with phase-shift which is an integral of
the refractive index along a path of optical beams, the 3-D refractive index can be reconstructed by the
same way to the medical CT. To obtain the phase-shift caused by an object of interest, interferometer is
commonly used. The authors developed a 3-D gas temperature measurement system [6,7] which uses
mechanical stages to change the directions of the incident beams of the interferometer.

The first observed image by the interferometer—called an interferogram or a fringe pattern—is
represented by a sinusoidal function in 2-D space of the phase-shift. To obtain the phase-shift image
from the interferogram, there are two commonly used methods; the phase-shift method [8–10] and
the Fourier-transform method [8,11,12]. The mathematical operation in the phase-shift method is
simple; however, it requires the three or four interferograms for the same object with different reference
phase-shift which applied one of two optical paths in the interferometer. Since the incident direction
varies in the 3-D measurement system which means the object is always rotating, it is difficult to
apply the phase-shift method. In contrast, the Fourier-transform method can be applied for a single
interferogram. However, it requires several steps of mathematical operations: a 2-D Fourier transform,
filtering in 2-D spectral domain [13,14], an inverse Fourier transform, removing background carrier
pattern, and phase unwrapping [15–20], which detail processes will be shown in Section 2.

The mechanical system to control the incident direction induces vibrations of optical elements
used in the system. To reduce the effect of the vibration exposure time of the camera to obtain the
interferogram must be shortened. However, it causes a new problem; the obtained interferograms
have much noise, which increases error to the phase-shift image at the phase unwrapping process.
There is another problem in the system. The background fringe pattern cannot be controlled with high
precision because the precision of the mechanical stages is dozens of times larger than the wavelength.
To apply the Fourier-transform method, there is a limitation regarding the intervals of the background
fringes. If the interval is too long, the fringe pattern caused by the object includes a closed-fringe
pattern and the filtering process cannot be applied except in a special case [21]. In the case where the
background fringe cannot be controlled, some interferograms may have closed-fringes and a complete
set of the phase-shift images for CT cannot be obtained. As a result, the quality of the 3-D reconstructed
distribution is reduced.

In this study, we will demonstrate the applicability of deep learning to extracting the phase-shift
image from the fringe pattern even when the closed-fringe is included through a comparison to the
Fourier-transform method.

The outline of this paper is as follows. In Section 2, the Fourier-transform method to extract the
phase-shift image is reviewed. In Section 3, we show the phase extraction by the deep learning. The
comparison of the numerical results and discussions is presented in Section 4. Finally, the summary is
presented in Section 5.

2. Fourier-Transform Method

The Fourier-transform method is commonly used to obtain a phase-shift image from a single
interferogram including background fringes. In this section, taking the phase extraction from the
interferogram shown in Figure 1a as an example, the procedure of the Fourier-transform method is
shown and the advantages and disadvantages are shown.

In the interferometer, a single optical wave is split into two waves that pass along different optical
paths; one is called a reference wave which does not pass the object and the other called an object wave
passing through the object with an additional phase-shift, φ. When their wave vectors are different but
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their amplitudes are provided by the same function, electric fields of both waves are expressed with
the complex unit j as

Er(r) = E0(r) exp [−j kr · r] , (1)

Eo(r) = E0(r) exp [−j ((kr + δk) · r + φ(r))] , (2)

where superscripts ‘r’ and ‘o’ denotes the quantities related to the reference wave and those to the object
wave, respectively, and the difference of the wave vector is denoted by δk. These waves are superposed
on a screen and the interferogram, i(r), is observed as a power of the superposed electric field:

i(r) = |Er(r) + Eo(r)|2 = 2|E0(r)|2 (1 + cos(φ(r) + δk · r))
= 2i0(r) + iφ(r) exp (+j δk · r) + i∗φ(r) exp (−j δk · r) (3)

i0(r) = |E0(r)|2, iφ(r) = i0(r) exp (j φ(r)),

where the symbol ‘*’ denotes a complex conjugate. To obtain the phase-shift φ(r) from this equation,
the first and the last term on the right-hand side in Equation (3) can be removed by using a 2-D Fourier
transform. Applying the Fourier transform to Equation (3) and using a convolutional theorem, we
obtain the following equation.

I(k) = F {i(r)} = 2I0(k) + Iφ(k− δk) + I∗φ(−k− δk), (4)

I0(k) = F {i0(r)} , Iφ(k) = F
{

iφ(r)
}

,

where F {} represents a 2-D Fourier transform operator. Figure 1b shows the Fourier transform of
i(r) shown in Figure 1a. We can find three peaks in the Fourier transformed signal, I(k). These peaks
correspond to three terms in the right-hand side of Equation (4); the peak appearing at the center in the
frequency space, k, is a DC component the distribution of which is related to the profile of the waves
i0(r), and the other two peaks spreading around k = ±δk include the information of φ(r) related to
the object. The two peaks appear point-symmetrically with respect to the origin of the frequency space.
The distance between one of the two peaks and the origin represents the phase of the background
fringes in the real space. This value, δk, will be needed in subsequent procedures, and it is determined
as the maximum point around peak in k-space. Next, as shown in Figure 1c, the DC component
and one of the two peaks (this is referred to as a conjugate light component) is removed by filtering.
To remove the DC component, we employed a method using a carrier peak isolation method [14],
and to remove the conjugate component a half-plane filter [13] was employed. Thereafter, an inverse
Fourier transform is applied to the filtrated image. The value of each pixel of the image obtained by
this processing is represented by a complex number, which corresponds to the second term on the
right-hand side in Equation (3). By taking the principal value of the logarithm of the complex number,
we can obtain the following wrapped phase including the background phase, shown in Figure 1d.

W {δk · r + φ(r)} = Log {exp [+j (δk · r + φ(r))]} , (5)

whereW {} denotes the phase wrapping operator which returns the principal value in range [−π,+π).
By subtracting the phase rotation caused by the background fringes, δk · r, from the wrapped phase,
the wrapped phase-shift, φ(r), is obtained as shown in Figure 1f.

W {φ(r)} =W {W {δk · r + φ(r)} − δk · r} . (6)

This sequence of the procedures is called the Fourier-transform method. The result of the
Fourier-transform method is the wrapped phase and includes the arbitrariness of an integral multiple
of 2π. To resolve the phase discontinuity, a phase unwrapping process should be applied. We employed
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a phase unwrapping method using localized rotational compensator [14] which is robust to the noisy
wrapped phase [22].

As introduced in Section 1, there is a limitation regarding the interval of the background fringe.
Since the interval in r-space is proportional to the reciprocal of |δk| in k-space, a longer interval
corresponds to a shorter |δk|. If a width of Iφ(k) is larger than the |δk|, since Iφ(k− δk) spreads to the
origin, Iφ(k− δk) is distorted in the filtering process of the DC peak or the conjugated peak. The carrier
peak isolation method [14] can reduce the distortion; however, it cannot perfectly solve the filtering
problem. The condition that Iφ(k− δk) does not spread to the origin equivalent to that i(r) is monotonic
function [21]. Otherwise, φ(r) has extrema; that is, the interferogram has closed-fringes, Iφ(k− δk)
spreads to the origin. Figure 2a shows examples of an interferogram including closed-fringe, and its
Fourier transform is shown in Figure 2b. We can avoid this problem [21] using a coordinate-transform
from the Cartesian coordinate to a polar coordinate where the origin is the extremum. However, it can
only be applied in the case of a single extremum.

(a) i(r) (b) |I(k)| (c) |Iφ(k− δk)|

(d)W {φ(r) + δk · r} (e)W {φ(r)} (f) φ(r)

Figure 1. An example of processing of Fourier-transform method: (a) interferogram, i(r). (b) |I(k)|:
absolute value of Fourier transform of (a) where the origin in k-space is located at the center of the image
and the brightness of the image is shown with logarithm scale. The distribution I(k) is superposed
results of three peaks; one is a DC-peak at the origin, the other two are the spreading distribution
around the carrier peak and its complex conjugate. (c) |Iφ(k− δk)|: filtered Fourier spectrum around
the carrier peak, δk. (d)W {φ(r) + δk · r}: wrapped phase with carrier-shift obtained by evaluation of
an angle of complex value at each point on inverse Fourier transformed image of (d). (e)W {φ(r)}:
wrapped phase-shift after cancellation of carrier frequency. (f) φ(r): unwrapped phase-shift.

(a) i(r) (b) |I(k)|

Figure 2. Interferogram including closed-fringe and overlapping of Fourier transformed peak.
The meanings of (a,b) are the same as those in Figure 1. It is difficult to filter the carrier peak, since the
boundaries of the three peaks are not clear.
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3. Deep Learning

In this study, we tried to introduce deep learning to phase extraction. Deep learning is the method
of learning by multi-layering neural networks and has been successful in many fields, especially in the
field of image processing [1]. This study uses supervised learning. Supervised learning is one of the
machine learning methods and is a method for obtaining an optimal functional relation y = f (x) by
learning a model using a large number of input data, x, and output data, y. In this study, the input,
x, and the output, y, correspond to the interferograms and the phase-shift images, respectively. It
should be noticed that the relations of the interferogram and the phase-shift is inverted in the physical
process as an inverse problem; that is, the interferogram is the function of the phase-shift as shown in
Equation (3). Since the phase-shift images have real values for each pixel, the model to be acquired is a
regression model. Various models including fully convolutional networks [23] have been considered
for network models in which both the input and output are an image. U-net [24] is a network originally
designed for segmentation of cell images. The feature of U-net is that there are paths connecting the
upstream and the downstream, and by the presence of these paths, it is possible to integrate and to
learn the local features of the object and the general position information. The U-net is also used for
the regression problems as a classification problem [25]. Since the extraction of the phase-shift images
of the interferograms requires both local features and global position information, we adopted the
same network model as U-net in this study. However, the detailed structure of each layer is different
as shown in Figure 3. Specifically, the size of filters of each convolutional layer is 3× 3, the stride of
filter applications is 1 and the spatial padding width for input arrays is 2. The size of the window of
each pooling layer is 2× 2. Also, the size of filters of each up-convolution layer is 4× 4, the stride of
filter applications is 1 and the spatial padding width for input arrays is 2. However, those in the final
convolutional layer are 1× 1, 1 and 0, respectively.

It is difficult to use the measured data as the training dataset. This is because the phase-shift
distribution from all measured interferograms, including those with unfavorable conditions cannot be
extracted by the Fourier transform method, and in addition, it is impossible to prepare a large amount
of measured data. Therefore, the pairs of the phase-shift images generated by simulation and the
interferograms evaluated by them are prepared as training data.

Since the problem is the inverse problem, the output of the deep learning system, y, which is the
phase-shift image, φ(r), is defined first; then the input of the learning, x, which is the interferogram,
i(r), is evaluated by the simulation of interference according to Equation (3).

As a physical model, we considered a model that a probe beam with non-uniform amplitude is
incident to an object which is a hot gas around candle flames. The amplitude, i0(r), is defined by a 2-D
Gaussian function and the phase-shift image, φ(r), is also expressed by a linear combination of the 2-D
Gaussian functions.

i0(r) = gauss(r ; ri0 , 0, ai0 , bi0), (7)

φ(r) = ∑
n

φn gauss(r ; rn, θn, an, bn), (8)

where gauss() is the 2-D Gaussian function of which contour is an ellipse:

gauss(r ; r′, θ, a, b) = e−(r−r′)TRT
(θ)W−2

(a,b)R(θ)(r−r′) (9)

R(θ) =

(
cos θ sin θ

− sin θ cos θ

)
, W−2(a, b) =

(
1/a2 0

0 1/b2

)
,

where r′, θ, a, and b are the center of the Gaussian function, an angle of rotation, a width in
x-direction before the rotation, and that in y-direction, respectively; and the superscript T denotes a
transposed matrix.
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Figure 3. Architecture of U-net used in this study. Each blue box represents a multi-channel feature
map. The number of channels is shown at the top of the box. The size of the image is described at the
lower left of the box. The white right pointing arrow indicates copy of the box on the left-hand side to
that on the right-hand side. The other four colored arrows mean different operations.

In the simulation of the interferogram, a white noise with normal distribution, inoise(r), was
also superposed:

i(r) = i0(r)(1 + cos(φ(r) + δk · r)) + inoise(r), (10)

inoise(r) ∼ N[0, σn] (White, Normal). (11)

In this study, 90,000 pairs of interferograms and corresponding phase-shift images were generated,
of which 80,000 pairs were used as learning data and 10,000 pairs as test data.

As a learning method of the network, the back-propagation method was used.
The loss function during the training step was defined by the average of the root mean squared

error of the estimated output image, φDL(r), from the ground truth, φGT(r):

E =

〈√〈
(φDL(r)− φGT(r))

2
〉

pixels

〉
images

, (12)

whereas the network during and after the training was evaluated by the average of the relative root
mean squared error

Ê =

〈√〈
(φDL(r)− φGT(r))

2
〉

pixels

/〈
(φGT(r))

2
〉

pixels

〉
images

, (13)



Appl. Sci. 2019, 9, 3529 7 of 13

where 〈 〉 with a subscript denotes the average over the samples written in the subscript. The training
means the iteration of updating the network parameters so that the value of the loss function E becomes
smaller.

4. Results and Discussion

Figure 4 shows the evolution of the evaluation function Ê during the learning process in the deep
learning method. The vertical axis shows the evaluation function Ê and the horizontal axis shows
the epoch number. One epoch means that all training data were used once for training. The broken
line shows the training data and the solid line shows the test data. We can understand that Ê for both
the training data and the test data had been decreasing monotonically during the training. In this
study, batch learning was performed with a batch size of 20. Since there are 80,000 training data,
4000 relative RMSE calculations and network updates were performed for each epoch. On the other
hand, in the case of the test data, 500 t of the relative RMSE calculations are performed per epoch,
since the number of test data is 10,000. The dotted and solid lines of the graph indicate the average of
4000 or 500 samples calculated during the epoch, respectively. Therefore, the Ê of the training data
has a larger value than that of the test data because it contains larger error by the untrained network.
Also, since we used the dropout only for the training but not for the testing, the Ê of the training data
is larger than the Ê of the test data. Since the increase of Ê is not found in Figure 4, the learning system
is not over-learning and we can say that appropriate network models and parameters were selected.
The implementation was done using Chainer, which is one of the frameworks for neural networks. A
GPU was used for learning and it took about 3 h to finish 20 epochs learning.

 0

 0.2

 0.4

 0.6

 0.8

 0  2  4  6  8  10  12  14  16  18  20

E

Epochs

Training data
Test data

Figure 4. Evolution of the evaluation function Ê. The horizontal axis indicates the epoch number, and
the vertical axis indicates the evaluation function Ê. Training data represents the data used for the
training and test data represent the data not used for the training.

4.1. Extracted Phase-Shift from Simulated Interferogram

We evaluated the errors of two methods; one is the trained network and the other is the rule-based
method which consists of the procedures of the Fourier-transform method and the phase unwrapping
shown in Section 2. Figure 5 presents the distribution of error. The error for each image is evaluated by
a relative root mean squared error defined as

ê =

√〈
(φ(r)− φGT(r))

2
〉

pixels

/〈
(φGT(r))

2
〉

pixels
. (14)
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The most frequent error of the deep learning method is around 2% and most of the samples are
distributed less than 10% error. In contrast, in case of the rule-based method, the peak is found almost
20%; furthermore, the decrease of the error is slow. In the figure, the samples with ê > 1.0 (100%)
are omitted and they are excluded in the evaluation of the error average, which will be shown below,
the number of those samples reaches almost 2000 among 10,000 test data. The average of ê using the
trained network is 0.027, meanwhile that using the rule-based algorithms is 0.455. The error of the
rule-based algorithm is almost twenty times larger than that of the deep learning, despite excluding
the samples with enormous errors by the rule-based algorithm. From this comparison it is evident
that phase extraction from interferograms by using the deep learning is superior to that using the
rule-based algorithms.

Figure 5. Distribution of the root mean squared error, Ê, by the deep learning and the rule-based
algorithms for 10,000 test data. The data which have the relative root mean squared error of more than
1.0 are not shown.

The correlation of the extraction error between the two methods is shown in Figure 6. We can
understand that there are no correlations between the rule-based algorithm and the deep learning.
It means that the reasons of the error are different, and the interferogram which causes large error to
the phase are different.

Figure 6. Correlation of errors between the deep learning and the rule-based method. Both the axes
represent the relative error defined in Equation (14).
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Figure 7 presents comparisons between the extracted phases by the deep learning and that by the
Fourier-transform methods for typical interferograms;

(a): the estimation errors, Ê, by both the deep learning and the Fourier-transform method from
the interferogram, i(r), belong to the maximum of the histogram shown in Figure 5; which are
called a mode,

(b): Ê of the Fourier-transform method is smaller than the mode, Ê by both the deep learning and
the rule-based algorithm are the mode of the histogram shown in Figure 5,

(c): and (d): the interferograms include closed-fringes.

The interferograms, i(r), shown in the figure are some of the test data, which were not used for
training in the deep learning method. In the case of results from the deep learning, φDL, we cannot
find the significant difference of i(r) from the images, since their errors are sufficiently small.

i(r) φGT(r) φDL(r) φRB(r)

(a)

ê = 0.025 0.907

(b)

ê = 0.024 0.193

(c)

ê = 0.016 0.611

(d)

ê = 0.022 1.102

Figure 7. Examples of extracted phase-shift and relative error. Four different sample data are shown as
(a–d). The images in the first column, i(r), are interferograms which are input to the phase extraction
methods. The images in the second column, φGT is the grand true phase which is used to prepare i(r)
as a forward simulation. The remained two columns are of the phase-shift images estimated by the
deep learning, φDL, and that by the rule-based algorithm, φRB.

For the case of the rule-based algorithm, we can find that the interferograms, i(r), shown in (c)
and (d) includes closed-fringe, and their results, φRB, include large error as predicted in Section 2.
Between these two, the error of (d) is larger than (c), and the number of closed-fringes has the same
relation. Therefore, the closed-fringe strongly reduces the accuracy. Both i(r) in (a) and (b) do not
include the closed-fringes; however, there is a difference between the error of them. The reason for the
difference is caused by the size of area with small phase value, of which pixels are depicted by dark
pixels in φGT. The area with small phase in (a) is smaller than (c). In the Fourier-transform method
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the carrier frequency, δk, is important, if it has error, ∆δk, the error of the phase, ∆φ, spread to whole
image as a planar (linear in 2-D space) function with a constant gradient as

∆φ(r) = ∆δk · r, (15)

As mentioned in Section 2, δk is determined from the peak position in k-space. When the non-zero
phase area spread to whole image, an intensity of the peak caused by δk becomes smaller and δk
may not be detected. From φRB in (a), a leftward phase gradient is observed on both sides of the
image. Similar to (a), φRB in (b) a rightward smaller gradient is also observed. These errors can be
compensated after the phase extraction. However, the case of the closed-fringe cannot be compensated
the error.

As discussed in this section, the rule-based algorithm has many factors to induce the phase error.
In contrast, once the trained network with appropriate parameters is acquired, the phase is extracted
accurately. Deep learning is especially applicable to the interferogram including the closed-fringe,
which cannot be solved by the Fourier-transform method.

These results show that the phase extraction from the simulated interferograms using deep
learning was successful and better than the rule-based algorithms.

As some comparisons, the results of U-nets with different parameters and an FCN are shown. The
Figure 8 shows the histograms similar to the Figure 4, and they represent the extraction accuracy from
each network. The U-net of (a) is the same as that of the Figure 3. The U-nets from (b) to (d) are the ones
with the following parameters changed from (a). The parameter c is the number of output channels
in the first convolutional layer, g is the number of groups that make up U-net when two consecutive
convolutional layers are regarded as one group, and k is the kernel size of each convolutional layer.
The parameters of (a) are c = 32, g = 9, and k = 5, whereas (b) is g = 7, (c) is c = 16, and (d) is k = 3.
In addition to these, (e) FCN was prepared, which has almost the same learning time as (c) U-net. From
the results of Figure 8, it can be said that U-net is suitable for the phase extraction problem. Further, it
can be expected that the extraction accuracy will be further improved by increasing the parameters c, g
and k but the learning cost will be increased accordingly. Since the average of relative RMSE when
using (a) is about 0.027 and the accuracy is sufficient, the U-net used in this paper is optimal for the
phase extraction problem.

 0

 500

 1000

F
re

q
.

(a)U-net (c=32, g=9, k=5)

 0

 500

 1000

F
re

q
.

(b)U-net (c=32, g=7, k=5)

 0

 500

 1000

F
re

q
.

(c)U-net (c=16, g=9, k=5)

 0

 500

 1000

F
re

q
.

(d)U-net (c=32, g=9, k=3)

 0

 500

 1000

 0  0.05  0.1  0.15  0.2
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q
.

Relative RMSE

(e)FCN

Figure 8. Distributions of the relative root mean squared error, by the various U-nets and an FCN for
10,000 test data. The parameter c is the number of output channels in the first convolutional layer, g is
the number of groups that make up U-net when two consecutive convolutional layers are regarded as
one group, and k is the kernel size of each convolutional layer.
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4.2. Extracted Phase-Shift from Interferogram Obtained by an Experiment

In order to demonstrate the validity of the deep learning method in the phase extraction estimation
from the interferograms, we applied the algorithms to interferograms which are obtained by an
experiment to measure a 3D refractive index distribution in which the object is three candle flames [7].
Figure 9 shows triplets of an interferogram, i(r), and the extracted phase-shifts by two methods; one
is the deep learning, φDL(r), and the other is the rule-based method, φRB(r), where the rule-based
method is a set of sequential procedures of the Fourier-transform method and the phase unwrapping
process of which detail is shown in Section 2. The extracted phase obtained by the rule-based method
can be the true solution, if condition of the interferogram is good. However, the interferograms shown
in Figure 9 have high density of the fringes and include much noise. In this condition, the results
include much error. To evaluate the accuracy we roughly estimated the phase-shift at a sampling point
by counting the number of fringes across a reference line which is parallel to the background fringe.
The reference lines are drawn with red color in i(r) in Figure 9 and the estimated number of fringes
are shown as N below i(r). Since the interval between fringes in the interferogram is 2π, the number
of fringes crossing the reference line is equal to the phase-shift divided by 2π. By counting the number
of contour lines from background to the point of interest, φDL(r) and φRB(r) in (a)–(d) are almost equal
to N. However, the distorted phase distributions are found φRB(r) in (b) and (c) where the fringes are
not found in i(r). In the deep learning method, we can assume that there no phase-shift at both sides
by the learning data. In contrast, the rule-based cannot generally impose this condition. In (d), φRB(r)
show unnatural distribution caused by the dense fringes. From these results, the phase-shift estimated
by the deep learning seems to good performance similar to the previous subsection. However, the deep
learning method sometimes returns incorrect estimation which are shown in (e) and (f). In both cases
the phase-shifts are underestimated in φDL(r). In i(r) in (e) and (f) includes dense and unclear fringes.

i(r)

φDL(r)

φRB(r)

(a)

(N ' 6)

(b)

(N ' 5)

(c)

(N ' 5)

(d)

(N ' 5)

(e)

(N ' 7)

(f)

(N ' 9)

Figure 9. Examples of extracted phase-shift from experimental interferograms. Six different sample
data are shown as (a–f). The images in the first row, i(r), are interferograms which are input to the
phase extraction methods. The red line segment in each i(r) indicates a reference line to count the
number of fringes from background area manually. The counted number of fringes along the line
segment, N, is shown below i(r). The second and third rows are the phase-shift images estimated by the
deep learning, φDL, and that by the rule-based algorithm, φRB, respectively. In each figure, the curved
lines depict contour lines of the phase-shift with intervals 2π. The size of images is 128 × 128 pixels.
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5. Conclusions

In this study, we have introduced deep learning to extract phase-shift images from single-shot
interferograms. A large amount of interferograms and their corresponding phase-shift images were
prepared by simulation, and deep neural networks with them as input and output, respectively,
were trained by supervised learning. The learned network showed higher performance in phase
extraction from unknown interferograms than the Fourier-transform method which is conventional
phase extraction method. In addition, even when the interferogram includes closed ring-shaped
fringes, the deep learning can extract the phase-shift without decreasing accuracy; in contrast, the
Fourier-transform method includes much error. From these results, we can conclude that deep learning
is useful for phase extraction from interferograms than the Fourier-transform method. However,
we cannot determine the accuracy for arbitrary interferograms, since the performance is evaluated
for the cases where the true solutions are known. If the actual experimental data is far from the
data used in the supervised learning, the accuracy might be worse. In such cases, we should tune
the algorithm to generate the output of supervised learning. Therefore, we leave to be considered
about the interferogram generation model that more closely reflects the measurement conditions such
as distortion due to the aberration of the interferometer lens, or the phase-shift generation model
using some distribution other than Gaussian distribution; however, we cannot determine whether the
experimental data is far from the supervised learning data set or not. The next task with high priority
will be development of scheme to evaluate the accuracy of the output from the trained network for
arbitrary input.
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