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Abstract: In this work, the nonlocal strain gradient theory is applied to study the free vibration
response of a Timoshenko beam made of triclinic material. The governing equations of the problem
and the associated boundary conditions are obtained by means of the Hamiltonian principle, whereby
the generalized differential quadrature (GDQ) method is implemented as numerical tool to solve
the eigenvalue problem in a discrete form. Different combinations of boundary conditions are also
considered, which include simply-supports, clamped supports and free edges. Starting with some
pioneering works from the literature about isotropic nanobeams, a convergence analysis is first
performed, and the accuracy of the proposed size-dependent anisotropic beam model is checked.
A large parametric investigation studies the effect of the nonlocal, geometry, and strain gradient
parameters, together with the boundary conditions, on the vibration response of the anisotropic
nanobeams, as useful for practical engineering applications.

Keywords: anisotropic materials; differential quadrature method; free vibration; nonlocal strain
gradient theory; variable thickness

1. Introduction

In the past decades, different analytical and numerical approaches have been applied in literature
to study the structural response of even more complicated structures [1–6]. Based on the literature,
it is well known that many analytical solutions based on the Navier approximations cannot satisfy
the governing equations of the problem, such that numerical approaches are usually required. In this
context, the differential quadrature method (DQM) has been increasingly applied in several works
and demanding applications as a powerful and efficient numerical method [7–12], due to its beneficial
properties. This method, indeed, is user-friendly for different engineering problems and it features
a high accuracy even with few grid points and a reduced computational effort, (see [7–11]). In most cases,
the DQM has been used to study the dynamic, static or stability response of structures such as beams,
plates, and shells, whereas any application of the DQM in literature has focused to nanostructures made
of anisotropic materials, as typically occurs in the actual nature of materials due to their mechanical
properties, with different elastic components in each direction. If an isotropic behavior is related
to a certain uniformity along all the orientations, on the other hand, anisotropy refers to situations
where properties vary systematically. For example, a triclinic material features different properties
in different directions, with 21 elastic constants and three components of the propagation vector [13].
Due to the complexity of anisotropic material models, a large amount of simplification in most works
in the literature is generally based on isotropic material assumptions. To date, only a few studies have
focused on the mechanical response of anisotropic structures. More specifically, in [14–16] the authors
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analyzed the vibration response of square plates made of orthotropic, monoclinic and hexagonal
materials for different boundary conditions, whereby the recent works [17–20] have focused on the
wave propagation and buckling response of anisotropic materials at the nanoscale.

The development of nanotechnology has led to significant contributions in the scientific community,
due to its advantages for many practical applications, i.e., water purification, medical applications,
electronic and mechanical systems, among many. Therefore, the research and development of these
novel materials has received special attention in the last decades, especially at a nanoscale level,
where classical theories are inapplicable and can fail. Hence, different methods, i.e., experimental
tests, molecular dynamics (MD) simulations and non-classical mathematical formulations, have been
proposed as alternative ways to predict the behavior of nanomaterials [21–35]. In work by Aifantis and
Askes [36], a nonlocal strain gradient theory was proposed as an alternative non-classical method to
capture both the hardening and softening stiffness mechanisms of nanostructured systems. Moreover,
Challamel and Wang [37] proposed the application of a nonlocal strain gradient model to overcome
the reported paradox in nonlocal cantilever beams subjected to a point load, whereby in [38] the
authors accounted for the effect of three small-scale parameters within the model, while checking for its
accuracy with respect to some MD-based results for carbon nanotubes. Further numerical predictions
about the size-dependent behavior of functionally graded materials and structures can be found
in [39–46], in the presence or not of porosities, in accordance to the nonlocal strain gradient model of
elasticity. Based on limitations from the literature, in the current work the free vibrations of triclinic
nanobeams with varying thickness along the length are studied for the first time, while applying the
Timoshenko beam theory in conjunction with the nonlocal strain gradient model. The Hamiltonian
principle is here adopted to drive the governing equations and boundary conditions of the problem,
and the DQM is proposed as an efficient numerical tool to discretize and solve the vibrational problem.
The influence of some important parameters, e.g., small-scale parameters, geometry and thickness
variation, is investigated and discussed in detail. These results could represent some useful benchmark
predictions for possible further works on anisotropic nanostructures. The paper is arranged as follows.
After this Introduction, in Section 2 the basics of the proposed formulation assumed for the triclinic
nanobeam are presented. The problem is solved numerically according to the DQM in Section 3,
its efficiency is checked and discussed comparatively in Section 4, together with a large parametric
investigation. Finally, the conclusions are drawn in Section 5.

2. Theory and Formulation

In what follows, the nonlocal strain gradient theory [36] is applied to account for both the nonlocal
stress field and the strain gradient effects, by means of two small-scale parameters. This theory defines
the stress field as

σi j − l21σi j,mm = Ci jkl(εkl − l22εkl,mm) (1)

where σij and εij are the stress and strain tensors; Cijkl refers to the elastic properties’ matrix, while l1
and l2 denote the internal length scales to be determined experimentally or numerically by means of
microscopic models, e.g., the MD simulations.

A triclinic nanobeam of length L, width b, thickness h is shown in Figure 1. In the current study, it is
assumed that the stress components depend on both the longitudinal and transverse shear strains, i.e.,{

σxx

τxz

}
=

[
c11 c15

c51 c55

]{
εxx

γxz

}
(2)

where εxx, γxz denote the longitudinal and transverse shear strains, respectively, whereas σxx, τxz stand
for the axial and shear stress, respectively.
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Figure 1. Geometry of the nanobeam.

In a context where the Timoshenko beam theory has been largely applied to model isotropic
structures, herein the theory is extended to handle triclinic beams. According to the proposed continuum
model, the displacement field takes the following form

ux(x, z, t) = zψ(x, t) (3)

uy(x, z, t) = 0 (4)

uz(x, z, t) = w(x, t) (5)

where w refers to the transverse displacements; ψ stands for the rotation of the cross-section and t
denotes the time. According to the small deformations assumption, the constitutive relations for the
anisotropic nanobeam are defined as follows

εxx = z
∂ψ(x, t)
∂x

(6)

γxz =
∂w(x, t)
∂x

+ψ(x, t) (7)

σxx = c11(z
∂ψ(x, t)
∂x

) + c15(
∂w(x, t)
∂x

+ψ(x, t)) (8)

τxz = c51(z
∂ψ(x, t)
∂x

) + c55(
∂w(x, t)
∂x

+ψ(x, t)) (9)

cij being the elastic components of the triclinic material, defined as [13]

c11 = 98.84× 109 Pa
c15 = c51 = 1.05× 109 Pa
c55 = 21.10× 109 Pa

(10)

The governing Equations of the problem are determined through the Hamiltonian principle
as follows ∫ t

0
δ(U − T)dt = 0 (11)

U and T being the strain and kinetic energy, respectively. More specifically, the strain energy has
the following form

δU =
∫

V σi jδεi jdV =
∫

V σxxδεxx + τxzδγxz =
∫ L

0 M∂δψ
∂x + Q(δψ+ ∂δw

∂x )dx

=
∫ L

0

[
(−∂M

∂x + Q)δψ− ∂Q
∂x δw

]
dx + [Mδψ]L0 + [Qδw]L0

(12)

where

M =

∫
A

zσxxdA (13)

Q = κ

∫
A
τxzdA (14)



Appl. Sci. 2019, 9, 3517 4 of 17

And κ is the shear correction factor which depends on the material properties. By using the
nonlocal strain gradient theory relations (Equation (1)) and by mathematical manipulation with
Equations (13) and (14), the following relations can be obtained

M− l21
∂2M
∂x2 = c11I(1− l22

∂2

∂x2 )
∂ψ

∂x
+ c15T(1− l22

∂2

∂x2 )(
∂w
∂x

+ψ) (15)

Q− l21
∂2Q
∂x2 = κc51T(1− l22

∂2

∂x2 )
∂ψ

∂x
+ κc55A(1− l22

∂2

∂x2 )(ψ+
∂w
∂x

) (16)

where

A =

∫
A

dA (17)

T =

∫
A

zdA (18)

I =
∫

A
z2dA (19)

In addition, the kinetic energy is expressed as follows

δT =

∫
V

.
uiδ

.
uidV (20)

By substituting Equations (12) and (20) into Equation (11), the following equations are obtained,
when the coefficients of dw and dψ are assumed to be null, i.e.,

ρA
∂2w
∂t2 =

∂Q
∂x

(21)

ρI
∂2ψ

∂t2 =
∂M
∂x
−Q (22)

Thus, the introduction of Equations (15) and (16) into Equations (21) and (22), respectively, yields
to the following expressions

M = l21(ρI
∂3ψ

∂x∂t2 + ρA
∂2w
∂t2 ) + c11I(1− l22

∂2

∂x2 )
∂ψ

∂x
+ c15T(1− l22

∂2

∂x2 )(
∂w
∂x

+ψ) (23)

Q = l21(ρA
∂3w
∂x∂t2 ) + κc51T(1− l22

∂2

∂x2 )
∂ψ

∂x
+ κc55A(1− l22

∂2

∂x2 )(ψ+
∂w
∂x

) (24)

The governing equations of a nonlocal strain gradient triclinic beam with a continuous variation in
thickness, are obtained by substituting Equations (23) and (24) into Equations (21) and (22) as follows,

ρA∂2w
∂t2 − l21(∂

2(ρA)/∂x2 ∂2w
∂t2 + 2(∂(ρA)/∂x) ∂

3w
∂x∂t2 + ρA ∂4w

∂x2∂t2 )

−κc51T(1− l22
∂2

∂x2 )
∂2ψ
∂x2 − κc55A(1− l22

∂2

∂x2 )(
∂ψ
∂x + ∂2w

∂x2 ) = 0
(25)

ρI ∂
2ψ
∂t2 − l21(∂

2(ρI)/∂x2 ∂
2ψ
∂t2 + 2(∂(ρI)/∂x) ∂3ψ

∂x∂t2 + ρI ∂4ψ
∂x2∂t2 )

−c11I(1− l22
∂2

∂x2 )
∂2ψ
∂x2 − c15T(1− l22

∂2

∂x2 )(
∂2w
∂x2 +

∂ψ
∂x )

+κc51T(1− l22
∂2

∂x2 )
∂ψ
∂x + κc55A(1− l22

∂2

∂x2 )(ψ+ ∂w
∂x ) = 0

(26)

In the current study, a combination of simply supported, clamped, and free edges is investigated,
which satisfy the following conditions
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1. Simply supported/Simply supported (SS)

w(x, t) = 0, M(x, t) = 0 at x = 0, L

2. Clamped/Clamped (CC)
w(x, t) = 0, ψ(x, t) = 0 at x = 0, L

3. Clamped/Simply supported (CS)

w(x, t) = 0, ψ(x, t) = 0 at x = 0

w(x, t) = 0, M(x, t) = 0 at x = L

4. Clamped/Free (CF)
w(x, t) = 0, ψ(x, t) = 0 at x = 0

M(x, t) = 0, Q (x, t) = 0 at x = L

3. Solution Procure

3.1. Generalized Differential Quadrature Method (GDQM)

In what follows, the GDQM is proposed as a numerical method to solve the equations of motion
to free the above-mentioned vibration problem of nanobeams, due to its fast convergence and accuracy
as largely demonstrated in the literature for different demanding applications [47–53]. The GDQM
discretizes the partial derivative of a function with respect to a variable by a weighted linear sum of
function values at all grid points in that direction. This approximation yields the following relation [7],

∂r f (ζ, η)
∂ζr

∣∣∣∣∣∣
(ζ,η)=(ζi,η j)

=

Nζ∑
m=1

Aζ(r)im f (ζm, η j) =

Nζ∑
m=1

Aζ(r)im fmj (27)

for i = 1, 2 . . . , Nζ; j = 1, 2 . . . , Nη; and r = 1, 2 . . . , Nζ − 1.
According to this technique, two important factors should be considered, namely, the appropriate

distribution of grid points and weighting coefficients for discretization purposes.
As far as the first key aspect is concerned, different distributions could be selected, involving both

uniform or not uniform discretizations, whose numerical performances have been largely discussed
and compared in literature [54,55]. In this research the Chebyshev–Gauss–Lobatto sampling point rule
is selected, due its high accuracy and fast convergence, and defined by the following relation

ζi
a
=

1
2

{
1− cos

[
(i− 1)π
Nζ − 1

]}
;
ζ j

b
=

1
2

{
1− cos

[
( j− 1)π
Nη − 1

]}
(28)

for i = 1, 2 . . . , Nζ; j = 1, 2 . . . , Nη; and r = 1, 2 . . . , Nζ − 1.
As far as the weighting coefficients are concerned, the following expressions for the first and

second derivatives are considered

Aζi j =



1
Lζ

M(ζi)
(ζi−ζ j)M(ζ j)

for i , j

−

Nζ∑
j = 1
i , j

Aζi j for i = j; i, j = 1, 2, ..., Nζ (29)
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where Lζ is the length of the domain along the ζ-direction and

M(ζi) =

Nζ∏
k=1,i,k

(ζi − ζk) (30)

The weighting coefficients of second-forth order derivative can be obtained as follows

[Bζi j] = [Aζi j][A
ζ
i j] = [Aζi j]

2

[Cζi j] = [Aζi j][B
ζ
i j]

[Dζ
i j] = [Bζi j][B

ζ
i j]

(31)

Before applying this numerical approach, it is worth mentioning the large variety of versions
available in literature. For example, Zhu et al. [56] developed a new Crank–Nicolson type DQM to
discretize the 2D space-fractional advection-diffusion equations based on a set of cubic B-splines. Dahiya
and Mittal [57] presented a modified cubic B-spline DQM to solve numerically a three-dimensional
non-linear diffusion problem, and the pertaining equations. Eftekhari [58] proposed a combined
differential quadrature–integral quadrature procedure, to handle singular functions, and possible
related drawbacks.

3.2. Implementation of the GDQM

The combination of simply supported, clamped and free triclinic nanobeams are here discretized
into N grid points (i = 1, 2 . . . , N). Considering the GDQM, the equations of motion for the nanobeam
at the i-th grid point can be discretized as

ρA
..
wi − µ

2((∂2(ρA)/∂x2)
..
wi + 2(∂(ρA)/∂x)

N∑
j=1

Ai j
..
wi + ρA

N∑
j=1

Bi j
..
wi)

−κc51T
N∑

j=1
Bi jψi − κc55A(

N∑
j=1

Ai jψi +
N∑

j=1
Bi jwi) + l2(κc51T

N∑
j=1

Di jψi + κc55A(
N∑

j=1
Ci jψi +

N∑
j=1

Di jwi)) = 0
(32)

ρI
..
ψi − µ

2((∂2(ρI)/∂x2
..
ψi + 2(∂(ρI)/∂x)

N∑
j=1

Ai j
..
ψi + ρI

N∑
j=1

Bi j
..
ψi)

−c11I
N∑

j=1
Bi jψi − c15T(

N∑
j=1

Bi jwi +
N∑

j=1
Ai jψi) + κc51T

N∑
j=1

Ai jψi + κc55A(ψi +
N∑

j=1
Ai jwi)

+l2(c11I
N∑

j=1
Di jψi + c15T(

N∑
j=1

Di jwi +
N∑

j=1
Ci jψi) − κc51T

N∑
j=1

Bi jψi − κc55A(
N∑

j=1
Bi jψi +

N∑
j=1

Ci jwi)) = 0

(33)

where µ = l1 and l = l2. To find the unknown frequencies, the above equations can be written in the
following form, [

Kdd Kdb
Kbd Kbb

]{
Ud
Ub

}
+

[
Mdd Mdb

0 0

]
..
Ud..
Ub

 = 0 (34)

where the subscripts d and b represent, respectively, the domain and boundary points related to
the stiffness and mass matrices. Considering the eigenvalue and eigenvector system, the natural
frequencies will be computed as

([KK] −ω2[M]){X} = {0} (35)

where M = Mdd −MdbK−1
bb Kbd, KK = Kdd −KdbK−1

bb Kbd. To obtain a non-trivial solution of Equation (35),
the determinant of the coefficient matrix must be enforced equal to zero, namely

det([KK] −ω2[M]) = 0 (36)

After computing the eigenvalues from Equation (36), the system frequencies can be easily obtained.
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4. Numerical Results

In this section a triclinic nanobeam is considered with length L = 36.8 nm, and thickness depending
on its length. A preliminary convergence analysis is performed between our model and predictions
from Ref. [7] based on the application of the DQM (see Table 1). Then, using the present size-dependent
model for anisotropic materials, the convergence of the model is studied for triclinic nanobeams with
different boundary conditions (see Table 2). Based on these two tables, a fast convergence of the results
can be observed, even with a reduced number of grid points. This justifies the selection of the limited
number of grid points N = 19, as done henceforth within the numerical investigation.

Table 1. Convergence analysis of the size-independent Timoshenko beam model.

Node

DQM [7] 5 7 9 11 13 15 17 19 21 23
3.1123 3.0875 3.1129 3.1123 3.1123 3.1123 3.1123 3.1123 3.1123 3.1123 3.1123
6.0676 8.9282 6.0430 6.0702 6.0675 6.0676 6.0676 6.0676 6.0676 6.0676 6.0676
8.7784 12.8690 8.6806 8.7981 8.7771 8.7784 8.7784 8.7784 8.7784 8.7784 8.7784
11.229 24.0798 15.288 11.377 11.248 11.228 11.229 11.229 11.229 11.229 11.229
13.441 24.3004 17.893 13.477 13.509 13.433 13.443 13.442 13.441 13.441 13.441
15.449 24.7858 24.080 21.134 16.092 15.527 15.449 15.450 15.449 15.449 15.449
17.285 24.307 22.975 17.684 17.416 17.261 17.289 17.284 17.285 17.285
18.975 25.859 24.080 24.080 20.430 19.224 18.991 18.977 18.975 18.975

Table 2. Convergence analysis of the size-dependent triclinic beam model (L/h = 100, l = µ = 1 nm2).

Simply Supported Clamped-Simply
Supported Clamped-Clamped Clamped-Free

Node ω1 ω2 ω3 ω1 ω2 ω3 ω1 ω2 ω3 ω1 ω2 ω3

7 3.142 6.233 9.320 3.924 7.078 10.415 4.729 8.065 11.230 1.868 4.660 8.866
9 3.141 6.286 9.432 3.925 7.073 10.250 4.727 7.866 11.086 1.873 4.685 7.587

11 3.141 6.280 9.413 3.925 7.061 10.180 4.727 7.839 10.938 1.873 4.676 7.850
13 3.141 6.280 9.413 3.925 7.062 10.195 4.727 7.842 10.978 1.873 4.676 7.798
15 3.141 6.280 9.413 3.925 7.062 10.192 4.727 7.842 10.968 1.873 4.676 7.804
17 3.141 6.280 9.413 3.925 7.062 10.192 4.727 7.842 10.968 1.873 4.676 7.804

To validate the numerical size-dependent methodology of the present work, the first-two
dimensionless natural frequencies of the nanostructure are compared to predictions by Eltehar [59] for
different values of the nonlocal parameter, based on the Euler Bernoulli beam theory (EBBT), see Table 3.
A systematic study is performed to check for the sensitivity of the response for different boundary
conditions, with a clear good agreement between the two different approaches, and a general increase
of the natural frequencies while moving to a clamped nanostructure at both sides.

More specifically, in Table 4 the first four non-dimensional frequencies of a simply supported
triclinic nanobeam are summarized for a different length-to-thickness ratio (L/h), nonlocal parameter µ,
and strain gradient l. The same results are also represented in the 3D plots of Figure 2. An increased
mode number enables higher values of the frequency, which, in turn reduce for increasing nonlocal
parameters, and increase with the strain gradient parameters. In addition, the small-scale parameter
seems to affect the response especially for higher frequencies rather than the lower ones. For lower
mode numbers, any meaningful impact can be observed for a varying length-to-thickness ratio,
whereas a visible increase of the natural frequency can be observed by changing the length-to-thickness
ratio, for higher modes of vibration (see e.g., the results associated to the forth mode of vibration),
while keeping fixed the strain gradient and the nonlocal parameter.
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Table 3. Sensitivity of the size-dependent natural frequencies for different nonlocal parameters and
boundary conditions.

Simply
Supported

Clamped-Simply
Supported Clamped-Clamped Clamped-Free

µ Method ω1 ω2 ω1 ω2 ω1 ω2 ω1 ω2

0 EBBT [50] 9.87 39.4849 15.4189 49.9738 22.3744 61.6847 3.5161 22.0375
DQM 9.8679 39.4517 1541.20 49.9098 22.3578 61.5739 3.5157 22.0222

1 EBBT [50] 9.4162 33.4301 14.9929 45.3417 21.1096 50.9844 3.5314 20.6817
DQM 9.4143 33.4051 14.9864 45.2878 21.0946 50.9046 3.5310 20.6679

2 EBBT [50] 9.0197 29.5117 14.5997 41.7969 20.033 44.392 3.547 19.5111
DQM 9.0180 29.4911 14.5934 41.7500 20.0193 44.3275 3.5466 19.4985

3 EBBT [50] 8.6695 26.7111 14.2353 38.9732 19.1028 39.822 3.563 18.4857
DQM 8.6678 26.6934 14.2293 38.9312 19.0901 39.7667 3.5626 18.4740

4 EBBT [50] 8.3571 24.5814 13.8965 36.656 18.289 36.4184 3.5795 17.5767
DQM 8.3555 24.5657 13.8907 36.6178 18.2773 36.3694 3.5791 17.5658

5 EBBT [50] 8.0762 22.8914 13.5803 34.7103 17.5696 33.7581 3.5963 16.7629
DQM 8.0747 22.8771 13.5748 34.6750 18.5586 33.7137 3.5960 16.7527

Table 4. Effect of the L/h and small-scale parameters on the natural frequencies for a simply-simply
supported triclinic nanobeam.

L/h l µ ω1 ω2 ω3 ω4

20 0 0 3.1310 6.200972 9.159842 11.9746
1 3.1253 6.156585 9.01551 11.64893
2 3.1197 6.113743 8.881877 11.36322
3 3.1141 6.072352 8.757596 11.10944

1 0 3.1367 6.245678 9.306478 12.31112
1 3.1310 6.200972 9.159836 11.97634
2 3.1254 6.157821 9.024064 11.68264
3 3.1198 6.116131 8.897794 11.42175

2 0 3.1424 6.289444 9.446385 12.64628
1 3.1367 6.244425 9.297538 12.30263
2 3.1310 6.200971 9.159726 12.00114
3 3.1254 6.158989 9.031558 11.73333

100 0 0 3.1412 6.279769 9.413272 12.53916
1 3.1355 6.234819 9.264947 12.19813
2 3.1298 6.191432 9.127618 11.89895
3 3.1242 6.149515 8.999898 11.6332

1 0 3.1469 6.325044 9.563966 12.89129
1 3.1412 6.279769 9.413267 12.54065
2 3.1355 6.23607 9.273739 12.23304
3 3.1299 6.19385 9.143974 11.9598

2 0 3.1525 6.369366 9.707741 13.24306
1 3.1468 6.323774 9.55478 12.88039
2 3.1412 6.279769 9.413157 12.56281
3 3.1355 6.237253 9.281444 12.28104
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Thus, the same systematic study is repeated for a clamped-simply nanobeam, whose results
are listed in Table 5 and are depicted in Figure 3, with the aim of understanding the role of the
nonlocal parameter, the strain gradient parameter, and the nondimensional geometrical ratio L/h, in its
vibration response. Based on a comparative evaluation of the response between the present case
(clamped-simply supports) and the simply-supported case, a general increase in frequency is observed
with respect to the previous example, due to the clamped boundary condition enforced on one side,
and the general increase in stiffness of the structures. Moreover, an increasing nonlocality µ yields
a decreasing structural stiffness, together with a general decrease in the fundamental frequencies.
At the same time, an increase in the strain gradient l enables an increase in frequency, independently of
the length-to-thickness ratio. Similar considerations can be repeated for the whole vibration modes
here analyzed.
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Table 5. Effect of the L/h and small-scale parameters on the natural frequencies for a clamped-simply
supported triclinic nanobeam.

L/h l µ ω1 ω2 ω3 ω4

20 0 0 3.8937 6.9151 9.8060 12.5432
1 3.8855 6.8620 9.6453 12.1940
2 3.8774 6.8109 9.4968 11.8885
3 3.8694 6.7616 9.3591 11.6178

1 0 3.9018 6.9680 9.9669 12.8993
1 3.8937 6.9151 9.8060 12.5476
2 3.8856 6.8641 9.6573 12.2390
3 3.8776 6.8150 9.5192 11.9651

2 0 3.9098 7.0185 10.1150 13.2682
1 3.9017 6.9658 9.9547 12.9287
2 3.8937 6.9151 9.8062 12.6298
3 3.8857 6.8661 9.6680 12.3634

100 0 0 3.9253 7.0621 10.1921 13.3133
1 3.9170 7.0073 10.0226 12.9366
2 3.9087 6.9545 9.8663 12.6078
3 3.9006 6.9036 9.7214 12.3170

1 0 3.9335 7.1167 10.3617 13.6911
1 3.9253 7.0621 10.1922 13.3125
2 3.9171 7.0095 10.0357 12.9807
3 3.9090 6.9588 9.8905 12.6864

2 0 3.9416 7.1687 10.5173 14.0230
1 3.9334 7.1144 10.3490 13.6518
2 3.9253 7.0621 10.1930 13.3228
3 3.9172 7.0116 10.0480 13.0288
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As a further boundary condition, a fully clamped triclinic nanobeam is analyzed under the same
geometry and mechanical assumptions. The results are summarized in Table 6 along with the plots in
Figure 4. As expected, an overall increase in stiffness is observed, because of the clamped boundary
condition at both sides of the structure. Note also that an increase in the strain gradient parameter
l, and nonlocal parameter µ, cause a general increase and decrease of the fundamental frequencies,
respectively, in line with the previous examples. As also reported in the pioneering work on the
topic [60], the fundamental frequency computed according to the MD is always lower than predictions
based on the classical continuum elasticity theory. This behavior is consistent with our findings for
nonlocal clamped nanobeams. The last combination of boundary conditions analyzed herein, accounts
for a clamped-free triclinic nanobeam, whose parametric vibration response is listed in Table 7 and
represented in Figure 5, in terms of the first natural frequencies, while varying the strain gradient
parameter l, the nonlocal parameter µ, and the geometrical ratio L/h. Based on the results, note that the
clamped-free nanobeam exhibits a different behavior compared to the structural response for the other
boundary conditions. Except for the first frequency, the other frequencies reduce for increasing values of
µ, and increase for an increasing value of l. The contrary occurs for the first frequency, which decreases
for an increasing strain gradient parameter l, and increases by increasing the nonlocal parameter µ.
Remarkably, these results are perfectly in line with the findings of Eltaher et al. [59] for a nonlocal
cantilever beam. Due to the higher flexibility of the free structure at one side, the lowest values of
natural frequencies are registered and compared to all the other examples previously discussed.

Table 6. Effect of the L/h and small-scale parameters on the natural frequencies for a clamped-clamped
triclinic nanobeam.

L/h l µ ω1 ω2 ω3 ω4

20 0 0 4.6612 7.6057 10.4263 13.0858
1 4.6508 7.5438 10.2495 12.7141
2 4.6405 7.4842 10.0866 12.3894
3 4.6303 7.4269 9.9357 12.1022

1 0 4.6713 7.6664 10.6000 13.4597
1 4.6612 7.6057 10.4265 13.0948
2 4.6511 7.5472 10.2660 12.7746
3 4.6411 7.4908 10.1171 12.4901

2 0 4.6810 7.7223 10.7537 13.8615
1 4.6710 7.6629 10.5849 13.5770
2 4.6612 7.6057 10.4282 13.3568
3 4.6514 7.5504 10.2821 13.2471

100 0 0 4.7272 7.8425 10.9694 14.0855
1 4.7165 7.7772 10.7780 13.6723
2 4.7060 7.7145 10.6022 13.3132
3 4.6955 7.6542 10.4397 12.9968

1 0 4.7376 7.9064 11.1569 14.4719
1 4.7272 7.8425 10.9697 14.0681
2 4.7168 7.7810 10.7970 13.7138
3 4.7066 7.7218 10.6369 13.3994

2 0 4.7476 7.9649 11.3204 14.6469
1 4.7373 7.9026 11.1404 14.2838
2 4.7272 7.8425 10.9730 13.9543
3 4.7171 7.7846 10.8169 13.6558
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Table 7. Effect of the L/h and small-scale parameters on the natural frequencies for a clamped-free
cantilever triclinic nanobeam.

L/h l µ ω1 ω2 ω3 ω4

20 0 0 1.8721 4.6431 7.6597 10.5185
1 1.8724 4.6317 7.5959 10.3340
2 1.8727 4.6204 7.5345 10.1644
3 1.8730 4.6092 7.4756 10.0078

1 0 1.8711 4.6479 7.7057 10.6684
1 1.8714 4.6368 7.6437 10.4891
2 1.8717 4.6257 7.5840 10.3237
3 1.8720 4.6148 7.5265 10.1705

2 0 1.8692 4.6453 7.7270 10.7511
1 1.8695 4.6345 7.6678 10.5819
2 1.8703 4.6238 7.6107 10.4249
3 1.8701 4.6132 7.5556 10.2785

100 0 0 1.8750 4.6920 7.8464 10.9740
1 1.8753 4.6805 7.7813 10.7822
2 1.8756 4.6692 7.7187 10.6059
3 1.8759 4.6579 7.6585 10.4431

1 0 1.8729 4.6873 7.8654 11.0694
1 1.8731 4.6763 7.8035 10.8894
2 1.8735 4.6653 7.7438 10.7227
3 1.8738 4.6544 7.6864 10.5678

2 0 1.8707 4.6813 7.8744 11.1201
1 1.8710 4.6706 7.8160 10.9550
2 1.9558 4.6645 7.7548 10.8016
3 1.8711 4.6497 7.7051 10.6554

Finally, the last parametric investigation compares the response of the triclinic nanobeam under
the assumption of constant, linear or quadratic variation in thickness. Table 8 summarizes the results
in terms of the first-three non-dimensional natural frequencies, for different nonlocal and strain
gradient parameters and boundary conditions. Based on the results in Table 8, a variation in the
power-law index q yields a different vibration response. This is clearly affected by the combined values
of power-law index and mode numbers. Moreover, it is worth noticing that the small-scale parameters
do not affect significantly the response, for different power-law indexes, which is of great interest for
design purposes.

Table 8. Effect of the L/h and thickness variation on the first-three natural frequencies of a triclinic
nanobeam for different boundary conditions.

L = µ = 1 µ = 2, l = 1 µ = 1, l = 2

q ω1 ω2 ω3 ω1 ω2 ω3 ω1 ω2 ω3

Simply supported

0.2 3.14119 6.27982 9.41334 3.13556 6.23616 9.27387 3.14686 6.32382 9.55485
0.5 3.14120 6.27985 9.41338 3.13559 6.23622 9.27394 3.14687 6.32385 9.55489
1 3.14117 6.27977 9.41326 3.13551 6.23607 9.27373 3.14683 6.32377 9.55478

1.5 3.14105 6.27954 9.41293 3.13528 6.23562 9.27310 3.14671 6.32354 9.55444
2 3.14085 6.27916 9.41237 3.13489 6.23488 9.27205 3.14652 6.32316 9.55387
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Table 8. Cont.

L = µ = 1 µ = 2, l = 1 µ = 1, l = 2

q ω1 ω2 ω3 ω1 ω2 ω3 ω1 ω2 ω3

Clamped-simply-supported

0.2 3.92529 7.06213 10.19228 3.91714 7.00959 10.03581 3.93342 7.11444 10.34900
0.5 3.92530 7.06215 10.19230 3.91718 7.00964 10.03584 3.93343 7.11446 10.34901
1 3.92525 7.06205 10.19214 3.91708 7.00945 10.03555 3.93338 7.11435 10.34881

1.5 3.92510 7.06178 10.19174 3.91678 7.00892 10.03480 3.93323 7.11407 10.34837
2 3.92486 7.06134 10.19111 3.91630 7.00807 10.03361 3.93298 7.11361 10.34768

Clamped

0.2 4.72722 7.84254 10.96980 4.71690 7.78110 10.79713 4.73737 7.90263 11.14051
0.5 4.72724 7.84257 10.96984 4.71694 7.78117 10.79721 4.73739 7.90267 11.14055
1 4.72718 7.84248 10.96971 4.71683 7.78098 10.79697 4.73733 7.90257 11.14042

1.5 4.72701 7.84219 10.96932 4.71648 7.78043 10.79624 4.73716 7.90228 11.14002
2 4.72671 7.84171 10.96867 4.71590 7.77951 10.79502 4.73686 7.90180 11.13936

Clamped-free

0.2 1.87289 4.67610 7.80322 1.87333 4.66500 7.74336 1.87082 4.67050 7.81578
0.5 1.87425 4.67587 7.80279 1.87311 4.66450 7.74256 1.87076 4.67024 7.81536
1 1.88070 4.67591 7.80177 1.87272 4.66347 7.74092 1.87061 4.66971 7.81449

1.5 1.87188 4.67471 7.80088 1.87217 4.66223 7.73892 1.87036 4.66907 7.81344
2 1.87278 4.67396 7.79966 1.87159 4.66074 7.73655 1.87001 4.66833 7.81219

5. Conclusions

In this paper, the free vibration of size-dependent nanobeams made of triclinic material has
been investigated. The equations of motion and the associated boundary conditions have been
handled by means of the Hamiltonian principle and the Timoshenko beam theory in the context of
a nonlocal strain gradient theory. The GDQM has been applied as numerical tool to solve the problem
under different boundary conditions assumptions. First, a convergence study verifies successfully
the accuracy of the proposed formulation against the available literature. It follows a systematic
investigation aimed at checking for the sensitivity of the structural response to small-scale parameters,
geometrical dimensions, or possible variations in thickness. According to the parametric results, it is
concluded that, the fundamental frequencies increase as the strain gradient parameter increases and
nonlocal parameter decreases for all boundary conditions, except for the first mode (in the only case
of clamped-free nanobeams). The structural sensitivity to the small-scale parameters becomes much
pronounced for higher modes rather than the lower ones. Moreover, the thickness variation impact
depends on the vibrational modes and boundary conditions. The highest frequency of the nanobeam is
reached always for clamped-clamped boundary conditions, for the same nonlocal parameters and
geometrical assumptions. A higher flexibility of the nanostructures is gradually permitted moving
from clamped-simply supports, to simply-simply supports, and clamped-free supports. The last
combination of boundary conditions yields the lowest values of the vibrational frequency.
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