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Abstract: Crowd counting has attracted much attention in computer vision owing to its fundamental
contribution in public security. But due to occlusions, perspective distortions, scale variations, and
background interference it faces a great challenge. In this paper we propose a novel model to
count crowds, named FDCNet: frontend-backend fusion dilated network through channel-attention
mechanism. It merges the frontend feature map with the backend feature map, achieving a fusion
of various scale features without additional branches or extra subtasks. The fusion is fed into the
channel-attention block to optimize the procedure and to conduct feature recalibration to use global
and spatial information. Furthermore, we utilize dilated layers to obtain a high-quality density map,
and the SSIM-based loss function is added to compare the local correlation between the estimated
density map and the ground truth. Our FDCNet is verified in four common datasets and gets a
brilliant estimation.
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1. Introduction

In recent years, with the rapid development of living standards and transportation, there has been
a dramatic improvement in crowd counting. It plays a critical role in the maintenance of public security.
For instance, in the congested scene, the monitoring device can real-time monitor the change of crowd to
prevent overcrowding and abnormal conditions. Whereas the task suffers from occlusions, perspective
distortions, scale variations, and background interference. It immensely remains a challenge to reach
remarkable accuracy on the prediction of crowd counting in a single image.

Extensive studies and a mountain of efforts have been attempted. There has been considerable
progress in crowd counting. Early works detected each individual pedestrian in a crowd scene [1],
or used multiple handcrafted features to regress the number of persons [2]. But they got trouble in
detecting pedestrians in congested scenes caused by severe occlusions. Nowadays, mainstream works
aim to generate crowd density maps instead of counting persons directly to alleviate the occlusions.
Furthermore, density maps also contain spatial information, which can be better applied in public
security. GAN- based [3,4] and CNN-based [5–16] methods have achieved excellent improvements.

Due to the different distances from the surveillance camera and perspective problems, there are
persons with unequal sizes of head in a single image. Hence, the biggest conundrum is the scale
diversity, which restrains the counting accuracy. Some works [5–9] use multi-scale architecture with
different convolutional kernels to address the scale variation, while some works [10,11] suggest to
replace diverse convolutional kernels with piles of kernels with the same size. Furthermore, due to
background interference, the density maps estimated may have a large deviation and extra information
is added to the training process to remedy the problem [14,15]. Unfortunately, these methods still retain
disadvantages that cannot solve scale variation well. Li et al. [11] demonstrated that each column in
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different branches learned nearly identical features, having little contribution to scale variation. When
the network becomes tanglesome, calculation and computational complexity sharply increase. It also
leads to the tardiness of the training speed and gradient explosion. Based on this, to extract various
scale features and eliminate the background noise influence, we consider using the network with a
single-column and single-size convolutional kernel, fusing the feature maps from the frontend and
the backend. It is proved that different levels of layers in the network contain different scale feature
information, and multiple convolution kernels of the same size have the same feature learning ability
as large convolution kernels. For example, two succeeding 3 × 3 convolution kernels are equivalent to
one 5 × 5 convolution kernel and three succeeding 3 × 3 convolution kernels are equivalent to a 7 × 7
convolution kernel. Therefore, the low-level and high-level feature maps contain features of different
scales. In addition, different levels of layers also contain different levels of semantic information. A
low-level convolution can extract detailed edge patterns and effectively regress the congested area to
obtain density maps, and a high-level can selectively obtain useful semantic information to distinguish
between human and background noise. This obtains different scale information while not increasing
the amount of computation and network structure complexity.

Nevertheless, various features of the fusion of different sizes of human head regions are difficult
to be selectively enhanced well through straightforward connections. And the channel of convolution
is always ignored which may lose crucial information especially the global information. Since the
generated density values follow pixel-by-pixel prediction, the output density map must contain spatial
coherence so that they can present a smooth transition between the nearest pixels. Therefore, we
consider the SE (extrusion and excitation) module [10] as a channel-attention block for optimizing
fusion. Hu et al. [10] proposed that the SE module can consider the weight of the channel, perform
feature recalibration to capture spatial correlation, and selectively emphasize information features.
In this way, the feature fusion can be optimized after feeding into the channel-attention block, and
various scale features of different sizes of human head regions can be selectively emphasis. This
process avoids losses caused by direct connections, allowing the final density map to exhibit a smooth
transition between nearest pixels to improve quality.

In addition, the spatial resolution of the feature map reduces after passing through the max pooling
layers, and the spatial information is also lost. This brings about the decrease of the output density
map resolution. We consider using dilated convolution at the tail end of the network. Li et al. [11]
proved that the dilated convolution can better preserve the resolution of feature maps compared
to convolution, pooling, and deconvolution. At the same time, it can contain more detailed spatial
information and global information and extend the receptive field without adding any parameters or
calculations. Therefore, we can use dilated convolution to generate high-quality density maps.

Finally, in crowd scenes, the local pattern and texture features of the throng region are very different
from those of other regions. Unfortunately, the Euclidean loss is based on the pixel independence
assumption and ignores the local correlation of the density map. We consider adding the structural
similarity index (SSIM) to the loss function, which calculates the similarity between two images
according to the local pattern. It can compare the similarity between the generated density map and
the ground truth, thereby improving the estimation accuracy.

Based on the above discussion, we propose a new crowd counting structure: FDCNet
(frontend-backend fusion dilated network through channel-attention mechanism), showing in Figure 1.
We merge the frontend feature map with the backend feature map, which is then fed to the baseline.
Thereby, the feature maps with various scales can be fused and the challenge of head size variation can be
solved without any additional branches or extra subtasks. We then exploit the Squeeze-and-Excitation
block [10] as our channel-attention block to optimize the front-back fusion and make full use of the
global information. And in the tail end of our framework, we apply the dilated layer to replace the
convolutional layer for high-quality density maps. In additional, the SSIM-based loss function is added
to the loss function for better measuring the errors between the estimation and the ground truth. The
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method we propose has prominent performance in four common datasets, showing its brilliance and
robustness. The source code is provided in https://github.com/zyq0203/package.
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Figure 1. The architecture of our FDCNet (frontend-backend fusion dilated network through
channel-attention mechanism) model. The input of the network is the original crowd image, which is
fed into different convolutional groups. Conv1_2 et al. represent the feature maps output from different
levels. The feature maps from the low level and high level are concatenated, then they are sent to the
channel-attention blocks. In the end, the feature maps are fed into the dilated blocks, followed the
output density map.

In a nutshell, our contributions are four-fold:

• We fuse the feature maps of the frontend and the backend. It has only a single column with
convolutional kernels of one size, subtracting additional branches and multi-columns and
reducing parameters. The convolutional layers of different levels contain not only different
semantic information but also different scale feature information. Their fusion can deal with the
large scale variation due to the perspective effect and the background interference, and share
more features. It also requires fewer parameters and computation.

• We introduce the channel-attention block motived by Reference [10]. Avoiding the crude
concatenate, the channel-attention block could take the weights of channels into consideration
and ensure consummate fusion by enhancing the various scale features. On the other hand, it can
conduct feature recalibration to capture spatial correlations and selectively emphasize informative
features, so as to make the density map present a smooth transition between nearest pixels and
improve the representation of our network.

• We utilize the dilated layer as the dilated block to the tail end of the network, which has less
parameters but expands the receptive field. Furthermore, it contains more detailed global and
spatial information to generate a high-quality density map.

• We subjoin SSIM to the loss function, which measures the local pattern consistency of the estimated
density map and ground truth. So the final loss function has better representation of the difference
between the estimation and the ground truth. Owing to it the accuracy can be greatly improved.

2. Related Work

Counting people in images and videos has attached attention in computer vision for a long time.
Because it plays a significant role in video surveillance and public security. But the improvement of
the estimation accuracy is quite a challenge on account of occlusions, perspective distortions, scale
variations, and background interference. Up to now the research of crowd counting can be roughly
summed up as the following three categories.

2.1. Detection-Based Methods

Early works detected the individuals and added them up to count. In 2012, Piotr Dollar et al. [17]
used a moving-window-like detector to detect people and count the number in images. Haar
wavelets classifier [18] was used to extract low-level features from the detected human body
while Navneet Dalal et al. [19] replace it with HOG (histogram oriented gradients) classifier.
Pedro F Felzenszwalb et al. [20] tried to detect some typical part of the body rather than the whole,
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because in crowd scenes human bodies were always occluded. But all these early works got awful
results in congested scenes.

2.2. Regression-Based Methods

As scenes become more thronged, there is a limitation for detection-based methods to improve
accuracy. So the regression-based methods were proposed. Antoni B Chan et al. [21] firstly used the
foreground and texture features to generate low-level information, and the number of the crowd was
calculated after learning the relations that the crowd corresponded to the extracted features. Then
in 2013, Idrees et al. [2] introduced Fourier analysis and SIFT (Scale invariant feature transform) to
extract features like [21]. But the saliency feature was easily overlooked, resulting in larger deviations.
Then in [22], a linear mapping between features in the local region and its density maps was learned
to integrate the information of saliency. In 2015, Pham et al. [23] proposed to learn a non-linear
mapping instead of the linear one by random forest regression on account of the trouble in ideal linear
mapping gain.

2.3. CNN-Based Methods

With the rapid development of the convolutional neural network, the brilliance in computer
vision involved crowd counting was shown.

In 2015, Zhang et al. [24] trained CNNs to regress the crowd density map. They retrieved images
using density and perspective information, then used them to fine-tune the trained network and
predicted the density map. However, its applicability was limited by requirements of perspective
maps and the fine-tuning of each test scene. In 2016, a multi-scale CNN architecture was used by
Zhang et al. [16] to tackle the large scale variations in crowd scenes. And fully-connected layers were
used to fuse the maps from each of the CNN trained at a particular scale to regress the density map.
It aimed to solve the trouble in scale variation. Then, the multi-column [8,25] or multi-scale [3,7,12]
network architecture was often utilized for crowd density regression. To be specific, Sam et al. [8]
introduced a classifier to choose a specified column for training according to dense levels. Cao et al. [7]
used a scale aggregation module as an encoder to extract features in diverse scales, and a group
of transposed convolutions as a decoder to generate high-quality density maps. The local pattern
consistency loss was as well proposed. Zhang et al. [12] combined the feature maps of multiple layers
to adapt the changes in pedestrian scale and perspective and introduced a multi-task loss by adding a
relative head count loss. But some works [11–13] suggested to replace diverse convolutional kernels
with piles of the same size kernels. Li et al. [11] verified that the effectiveness of using multi-columns
may not be prominent and that each column in such a branch structure had learned nearly identical
features. They used VGG16 as the baseline and introduced dilated layers to the backend, which was a
great improvement.

Furthermore, extra information was added to the training process to remedy background
interference [14,15]. Shi et al. [14] proposed a self-supervised task to optimize the training of networks
for crowd counting, leveraging unlabeled crowd images at training time to significantly improve
performance. This generated a ranking of sub-images which were used to train a network to estimate
whether one image contained more persons than another. Liu et al. [15] integrated the perspective
information into crowd density maps for efficient crowd counting to provide additional information
about the person scale change in an image. It was particularly helpful on the density regression of a
small person area. However, extra information and tasks may require more resources and computations.

In 2019, more solutions have been proposed to solve this problem. Qi Wang et al. [26] constructed
a large-scale and diverse synthetic crowd counting dataset to pretrain their designed Spatial Fully
Convolutional Network. Weizhe Liu et al. [27] introduced an end-to-end architecture that combined
features obtained using multiple receptive field sizes and learned the importance of each such feature
at each image location. Chenchen Liu et al. [28] detected ambiguous image regions to zoom into high
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resolution for re-inspection, and added the localization task. Almost all the methods added extra
information or tasks for enhancing the single counting task.

3. Our Proposed Method—FDCNet

Many previous methods introduced the multi-column fusion network architecture to reduce the
errors caused from head scale variation due to the perspective effect. They can fuse the feature maps of
various receptive fields from layers of various filter sizes or different columns. But various kernels
may bring about more parameters and computations while multi-column architecture may make
the network more complex. Hence, inspired by Reference [12], we propose to fuse the frontend and
the backend feature maps of the one-column and one-size kernel network through channel-attention
mechanism. The network will be more robust for the head scale variation and background noise, and
meanwhile keep the conciseness. Furthermore, the dilated layer is exploited in the last part of our
network, and SSIM-based loss is added into the loss function.

Our proposed architecture is shown in Figure 1. We call it FDCNet (Frontend-backend fusion
dilated network through channel-attention mechanism). Next, we will elaborate on our model from
four aspects.

3.1. The Frontend-Backend Fusion

During the collection of crowd scenes, the distance between pedestrians and cameras are not
uniform. The head sizes would be different caused by the perspective effect, namely scale variety. In
order to solve this problem and extract various scale features, we propose to fuse the frontend and
backend feature maps in the crowd counting problem.

The backbone of our network is VGG-16. It has strong feature represent ability and easily to be
concatenated. And we adopt the first 13 layers from VGG-16 to extract multi-scale feature maps. It
composes with all the filter sizes as 3 × 3, the stacking several of which has the same effect as large
filters. For example, the effect of two 3 × 3 filters cascade is the same as the 5 × 5 filter, and three
3 × 3 filters cascade could replace the 7 × 7 filter. Hence, it can extract various scale features but
requires far less computation, and can build a deeper network.

The layers of different levels in the network contain not only the different level semantics
information but also the different scale feature information. The frontend layers can extract the
detail edge patterns, which are of significance for regressing the value of the congested region in the
density map. But it cannot catch the details, which may cause incorrect regression with the cluttered
backgrounds interference. The backend layers selectively obtain useful semantics information, so the
network can distinguish the human heads from the background noise. In view of their specialties we
fuse the frontend and the backend feature maps through the channel-attention block to acquire and
fuse sufficient features from the backbone.

We use feature maps from Conv1_2, Conv2_2, Conv3_3, Conv4_3, and Conv5_3 in VGG backbone
as shown in Figure 1 (Convi_j is the output feature map of the i_j layer in VGG-16 backbone). These
inputs at different abstract levels help represent multi-scale features. Through the max pooling layers,
the sizes of output feature maps are 1/2, 1/4, 1/8, and 1/16 of the original input images size, respectively.

First, the output of Conv4_3 is upsampled using nearest neighbor interpolation and is concatenated
(put the two feature maps together in the first dimension) with Conv3_3. Then the fusion map is
fed into the channel-attention block to adjust the weight of two layers fusion with different feature
information and improve the representation of our network. Secondly, Conv5_3 and Conv2_2 are
conducted like Conv4_3 and Conv3_3. Then, the output is also fed into the channel-attention block,
followed by a group convolutional layers: conv1 × 1 × 512, conv3 × 3 × 512 and conv3 × 3 × 512.
The 1 × 1 convolution before the 3 × 3 is used to reduce the computational complexity. After this
procedure the output Conv6_3 is upsampled, concatenated with Conv1_2, and then is fed into the
channel-attention block in the same way. Finally, the output feature map generates a density map after
the process of the dilated block.
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The channel-attention block and the dilated block are shown in Figure 2. We will introduce them
specifically then.Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 15 
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3.2. The Channel-Attention Block

Attention Model has now become an important concept in neural networks that has been
researched in diverse application domains [29]. Reference [10] introduced the SE building block. It
models the interdependencies between the channels of its convolutional features so as to improve the
representational power of a network.

Since most of the previous works directly combine the feature maps from different convolutions,
they do not consider their respective weights when fusing. On the other hand, the channels of
convolutional layers are always ignored, causing the deficiency of spatial information. The SE blocks
can conduct the feature recalibration, selectively emphasizing informative features and suppressing
less useful ones. Owing to that, the network can learn to use global information. Furthermore, it is also
helpful for capturing spatial correlations without requiring additional supervision. One final point,
it is computationally lightweight. With so many benefits, it only imposes a slight increase in model
complexity and computational burden.

According to Reference [10], the SE block has been demonstrated to be accumulated through the
entire network to improve the performance. Therefore, we transform the SE block to our framework as
the channel-attention block. The specific architecture is shown in Figure 2a. The channel-attention
block includes three processes: squeezing S, excitation E, and rescaling R.

The output feature map of the concatenation N is firstly sent to a squeezing operation S.
The squeezing operation aggregates the feature maps across the spatial dimension and generates
channel-wise statistics through the global average pooling. The spatial dimension is h×w× c, which
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becomes 1 × 1 × c after shrinking. The corresponding channel descriptor Dx(x = 1, 2, · · · , c) of the
feature map in Nx(x = 1, 2, · · · , c) each channel is calculated by:

Dx = S(Nx) =
1

h×w

∑h

i=1

∑w

j=1
nx(i, j) (1)

where nx(i, j) is the element value of the ith row and the jth column on the feature map Nx. Through
this we get the channel descriptor D = {Dx, x = 1, 2, · · · , c}. The channel descriptor embeds the global
distribution of channel-wise feature responses, so that its lower layers are able to utilize the information
of the global receptive fields.

Then, D is fed into an excitation operation E, generating the extractor T. E composes with two fully
connected layers around the non-linearity, a Relu function and a sigmoid function. It is represented as:

T = E(D; FC) = σ(g(D; FC)) = σ(FC2δ(FC1D) (2)

where FC1 is a dimensionality-reduction layer with reduction ratio k, k is a crucial hyperparameter
which could vary the capacity and computational cost of the blocks in the model, and FC2 is a
dimensionality-increasing layer.

Following [10], we set k = 16 to achieve a good balance between accuracy and complexity. δ is the
Relu function, σ is the sigmoid function. The two fully connected layers can limit the model complexity
by reducing the dimension and learning a nonlinear interaction between channels to fit the complex
dependency of channels and aid generalization. Furthermore, the sigmoid activation emphasis multiple
channels opposed to one-hot activation. The whole excitation operation fully captures channel-wise
dependencies and governs the excitation of each channel, obtaining the normalized weights between 0
and 1.

Finally, the input of the channel-attention block N is reweighted by the extractor T:

F = R(N; T) = T·N (3)

where R represents the channel-wise multiplication between the input feature map N and the extractor
T. That is, the weight of T in each channel is weighted to each feature of the corresponding channel
feature map in N by means of multiplication, to complete the recalibration of the original feature on
the channel dimension. The final output F of the block can be fed directly into the next layers.

3.3. The Dilated Block

In our network, the input image of crowd is downsampled by the max pooling layers and
upsamled before fusion. After those processes, the generated feature map is only half of the original
input. The max pooling layers control overfitting and maintain invariance. Unfortunately, they reduce
the spatial resolution so the spatial information of the feature map is lost. After passing through
the max pooling layers, the feature maps are in lower resolution, and have difficulty in producing
high-quality density maps.

In Reference [11], the dilated convolution is proved to maintain the resolution of the feature map
better than the scheme of using the convolutional layer, pooling layer, and deconvolutional layer.
Although deconvolutional layers can alleviate the loss of information, it would increase additional
complexity and execution latency. Dilated convolution is a better choice to alternate the pooling layer.
Based on this, we exploited the dilated convolutional layer in the tail end of our framework. The dilated
convolution enlarges the receptive field without increasing the parameters or the computation amounts.
Meanwhile, the output from dilated layers includes more detailed spatial and global information, and
the spatial resolution would not be reduced. Hence, we could get a high-quality density map through
the dilated convolutions and improve the estimation accuracy.

We tried a dilated convolution with a dilation rate of 2 in the tail end of our network. The
dilated block is represented in Figure 2b. It composes four dilated layers with the dilation rate 2 and a
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convolutional layer of 1 × 1. The channels of dilated layers are all different and they are all followed by
a batch normalization layer and a Relu layer. The 1 × 1 convolutional layer is to output the density
map with fewer parameters and computation compared with the fully connected layer. The output
from the dilated block can contain more detailed information. Finally we can retrieve the final density
map of a high resolution.

3.4. The Loss Function

Mainstream works set pixel-wise Euclidean loss as their loss function in the training procedure.
In the crowd scenes, the local patterns and texture features of the high-density regions vastly differ
from other regions (low-density regions or background). However, the Euclidean loss is established
on the pixel independence hypothesis and ignores them. The local correlation of density maps is not
taken into consideration.

To remedy the aforementioned problems, we combined the loss function based on Structural
Similarity Index (SSIM) with the Euclidean loss as our final loss function. The SSIM can be used to
estimate the local consistency, optimizing the final loss function to measure the difference between
the estimation and the ground truth. Owing to the training accuracy, the generation of high-quality
density maps was improved.

3.4.1. The Euclidean Loss Function

The Euclidean loss function is used to measure the difference between the output and the
corresponding ground truth at pixel level. The definition is as follows:

LE(Θ) =
1
N

∑N

i=1

∣∣∣∣∣∣Fd(Ii; Θ) −Di
∣∣∣∣∣∣2 (4)

where Θ denotes a set of the network parameters, and N is the number of training samples. Fd(Ii; Θ)

represents the output estimated density map of the input image Ii with parameters Θ, while Di is the
corresponding ground truth density map.

3.4.2. The SSIM-Based Loss Function

SSIM is an indicator widely used in the field of image quality assessment. It computes the
similarity between two images in terms of local patterns including mean, variance, and covariance.
The range of SSIM value is from −1 to 1. The more similar two images are, the larger the value is.
When the two images are identical, it is equal to 1.

We add SSIM to the loss function following SANet [7]. First, an 11 × 11 normalized Gaussian
kernel with standard deviation of 1.5 is used to estimate local statistics. Then, the weight is defined by:

W =
{
W(r)

∣∣∣r ∈ R, R =
{
(−5, 5), · · · , (−5, 5)

}}
(5)

where r is offset from the center and R contains all positions of the kernel. So for each location t, we
calculate the local statistics on the estimated density map Fd and the corresponding ground truth D.

First, the local mean µFd and the variance estimation σ2
Fd

of Fd are respectively calculated by:

µFd

(
tFd

)
=

∑
rFdεRFd

W
(
rFd

)
·F

(
tFd + rFd

)
(6)

σ2
Fd

(
tFd

)
=

∑
rFdεRFd

W
(
rFd

)
·

[
F
(
tFd + rFd

)
− µFd

(
tFd

)]2
(7)

Then the local mean µD and the variance estimation σ2
D of D are represented as:

µD(tD) =
∑

rDεRD
W(rD)·F(tD + rD) (8)
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σ2
D(tD) =

∑
rDεRD

W(rD)·[F(tD + rD) − µD(tD)]
2 (9)

Thereout the local covariance estimation σFdD between Fd and D is calculated by:

σFdD(t) =
∑

rεR
W(r)·

[
F(t + r) − µFd

(
tFd

)]
·[Y(t + r) − µD(tD)] (10)

After calculating these indexes, the SSIM is calculated point by point as:

SSIM(t) =

(
2µFdµD + Q1

)(
2σFdD + Q2

)(
µ2

Fd
+ µ2

D + Q1

)(
σ2

Fd
+ σ2

D + Q2

) (11)

Q1 and Q2 are randomly small constants to avoid division by zero and we set them following [7].
The SSIM-based loss function is introduced as:

Ls = 1−
1
M

∑M

t=1
SSIM(t) (12)

where M is the number of pixels in density maps.

3.4.3. The Fusion Loss Function

After the SSIM-based loss penalty is added to the training process, the ultimate fusion loss function
is introduced function as follows:

L = LE + βLs (13)

where β is the SSIM-based weight loss to get a balance. We set β = 0.001 after experimenting for
verification as well.

4. Experiments

4.1. Training Details and Data Augmentation

Our experiment is trained on four pieces of TITAN Xp GPU. The framework is based on the
Pytorch framework, and we use the Adam optimizer to optimize the parameters and set the original
learning rate as 1 × 10−6 and momentum at 0.9. The parameters are randomly initialized by Gaussian
distribution with mean zero and standard deviation of 0.01. We also used batch normalization
layers after every convolution layer except for the output layers to improve the speed of training
and effectively avoid the disappearance and explosion of the gradient. We trained 2000 epochs for
each dataset.

Given a training set, we augmented it by randomly cropping nine patches from each image. Each
patch is 1/4 size of the original image. All patches were used to train our FDCNet.

4.2. Ground Truth Generation

Nowadays, the datasets generally provide the original images, the total numbers of crowds, and
the corresponding coordinates of each person. Following the method of generating density maps in [16],
we used the geometry-adaptive kernels to tackle the highly congested scenes. The geometry-adaptive
kernel is defined as:

F(x) =
∑N

i=1
δ(x− xi) ×Gσi(x), σi = βdi (14)

where x is the position of a pixel in the image. For each annotation xi in the ground truth δ, we used di
to indicate the average distance of k nearest neighbors. To generate the density map, we convolved
δ(x− xi) with a Gaussian kernel with the standard deviation σi, In our experiment, we followed the
configuration in [16] and set β = 0.3, k = 3. By blurring each head annotation using a normalized
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Gaussian kernel, we generated the ground truth considering the spatial distribution of all images from
each dataset.

4.3. Evaluation Metric

Most of the existing works use two metrics to estimate the accuracy for crowd counting, the mean
absolute error (MAE), and the mean squared error (MSE). MAE indicates the accuracy of the estimation
while MSE reflects the robustness of the estimation. Small values of MAE and MSE indicate good
performance. The definitions are as follows:

MAE =
1
N

∑N

i=1

∣∣∣Fdi −Di
∣∣∣ (15)

MSE =

√
1
N

∑N

i=1

∣∣∣Fdi −Di
∣∣∣2 (16)

where N is the number of the test images, Di is the actual number of crowd in the ith image, and Fdi is
the estimated number of crowd in the ith image.

4.4. Performance on Common Datasets

We experimented on four common crowd datasets with various density and environments. These
datasets are introduced and compared in Table 1 and the results are compared to state-of-the-art
methods to demonstrate our performance.

Table 1. Different dataset statistics.

Dataset Average
Resolution

Total
Images

Min
Number

Max
Number

Avg
Number

Total
Number

ShanghaiTech
Part A 589 × 868 482 33 3139 501 241,677

ShanghaiTech
Part B 768 × 1024 716 9 578 124 88,488

UCF_CC_50 2101 × 2888 50 94 4543 1280 63,974
UCSD 238 × 158 2000 11 46 25 49,885
Mall 640 × 480 2000 13 53 31 62,325

Figure 3 shows some output density maps. The first column are the original images from five
datasets. The outputs of our FDCNet are in the third column. We also generated density maps from the
VGG-16 backbone in the second column to compare the effectiveness of the two networks. Obviously,
the density maps of our method show their brilliance.

We can see from the output density maps that our model solves the problems mentioned before
well. All of the images have the background interference. The first three images are congested and
have different head sizes. Compared to the VGG-16 backbone, the density far from the camera is
much higher in the density map of FDCNet, matching the ground truth better. The last two images are
sparse, having obvious background interference. The density map of our network for the fourth image
is more accurate than that of VGG-16.
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Figure 3. Some output density map of our FDCNet and the VGG-16 backbone. The first row are
the original images in dataset, and the second row are the estimation density maps of the VGG-16
backbone. The third row are the estimation density maps of FDCNet. The images are selected from
all datasets. They are selected from (a) ShanghaiTech Part A dataset; (b) ShanghaiTech Part B dataset;
(c) UCF_CC_50 dataset; (d) UCSD dataset; (e) the mall dataset.

4.4.1. The ShanghaiTech Dataset

The ShanghaiTech crowd counting dataset is a diverse and crowded dataset introduced by
Reference [16]. It has two parts, Part A and Part B. Part A is collected from the Internet. We can see
from the Table 1 that it is mostly congested while Part B is taken from busy streets in Shanghai and is
comparatively less dense with crowd counts. For Part A, 300 images are used for training and the
remaining 182 images for testing. Similarly, 400 images of Part B are for training and 316 for testing.

Table 2 reports the performance of our model along with other methods. It can be seen that
our method got good estimations in the Part A dataset, nearly close to the result of CSRNet [11].
Furthermore, in the Part B dataset our method estimates better than other existing methods. It reflects
that our model works well in extremely dense crowd scenes. Additionally, it may reflect that more
experiments are required on this large dataset to improve the accuracy.

Table 2. The estimation errors on ShanghaiTech dataset.

Method
Part A Part B

MAE MSE MAE MSE

MCNN [16] 110.2 173.2 26.4 41.3
SwitchCNN [8] 90.4 135.0 21.6 33.4

SaCNN [12] 86.8 139.2 16.2 25.8
CSRNet [11] 68.2 115.0 10.6 16.0

FDCNet 75.1 118.5 10.3 15.8

4.4.2. The UCF_CC_50 Dataset

The UCF_CC_50 dataset proposed by Idrees et al. [2] includes 50 images with different perspective
and resolutions. It is an extremely congested dataset. Due to its limited images and various crowd
counts and scenes, it is an extraordinary challenging dataset training for estimation. Hence, we perform
five-fold-cross validation following the standard setting in Reference [2], making the utmost of the
few samples.

Result comparisons of MAE and MSE are listed in Table 3. The errors of our model are the smallest
among all the models both in MAE and MSE, which indicates our method outperforms all other
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methods for crowd counting on the UCF_CC_50 dataset. Compared to CSRNet [11], the MAE was
improved by 7.25%, and MSE was improved by 18.9%, which demonstrates its excellence for extremely
dense crowds.

Table 3. The estimation errors on UCF_CC_50 dataset.

Method MAE MSE

MCNN [16] 377.6 509.1
SwitchCNN [8] 318.1 439.2

SaCNN [12] 314.9 424.8
CSRNet [11] 266.1 397.5

FDCNet 246.8 322.2

4.4.3. The UCSD Dataset

The UCSD dataset [30] is taken from a stationary camera. Similar to Reference [30], we use frames
601–1400 as the training set and the rest of them as the testing set. The results in Table 4 show that
FDCNet gets better results than other methods in MSE. However, the result of MAE is a little worse
than CSRNet [11], reflecting that our network does not do very well in the UCSD dataset. Seen from
Figure 3, this dataset is a sparse dataset, which may get relatively lager errors when generating density
maps due to the large intervals between heads. We therefore consider the need to experiment more on
sparse datasets for better generalization.

Table 4. The estimation errors on UCSD dataset.

Method MAE MSE

MCNN [16] 1.07 1.35
SwitchCNN [8] 1.62 2.10

CSRNet [11] 1.16 1.47
FDCNet 1.25 1.45

4.4.4. The Mall Dataset

The Mall dataset [31] is collected in a shopping mall. We set the first 800 frames as the training
dataset and the rest 1200 frames for testing following the pre-defined setting. Since it is not an extensive
dataset in crowd counting, we compare our model with some approaches that did experiments in this
dataset. The evaluation results are exhibited in Table 5. Our model performs the best compared to
other models. Figure 3 shows that the mall dataset is also a sparse dataset, verifying that our network
is also suitable for sparse datasets.

Table 5. The estimation errors on Mall dataset.

Method MAE MSE

R-FCN [32] 6.02 5.46
Exemplary Density [33] 1.82 2.74

FDCNet 1.80 2.52

4.4.5. Ablation Study

We perform the ablation study to validate the efficacy of our FDCNet. Several ablation experiments
are conducted on ShanghaiTech Part A dataset. The comparisons are shown in Figure 4, where the
proposed framework gets the best estimation.
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• VGG-16 framework

To verify the effectiveness of our method, we first did experiments on the backbone VGG-16
framework. The result in Figure 4 shows that our proposed framework improved the estimation more
than the VGG-16, which implies that the improvements of our network are efficient and feasible.

Figure 3 demonstrates the output density maps from VGG-16 framework. Compared with the
backbone results, we can see that our framework remedied the background interference and the
perspective problem because the density maps are accurate in locating the head and eliminating the
background. Furthermore, it is more suitable for congested images than VGG-16, as seen in the three
extremely dense images.

• One-fusion framework

We have another choice to fuse different levels of feature maps before the dilated block, this is
shown in Figure 5. The convolutional layers are set as FDCNet. There is only one fusion that Conv1_2,
Conv2_2, Conv3_3, Conv4_3, Conv5_3, and Conv6_3 are concatenated together in the framework.
After fusion the feature map is fed into the channel-attention block.
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We trained using the ShanghaiTech Part A dataset on this one-fusion framework and compared the
estimation with FDCNet. Seeing the results in Figure 4, the errors of one-fusion are much worse than
FDCNet. It is obvious that FDCNet shows a more brilliant performance than the one-fusion framework.

On the one hand, the fusion of two levels can capture more varied scale features and send them to
the next convolution, so that the backbone can extract more information. On the other hand, more
channel-attention blocks following the fusion adjust them and obtain more spatial information. Owing
to these factors, the FDCNet performs much better.
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• The channel-attention block

We removed the three channel-attention blocks and let the output of the concatenation feed directly
into the next convolutional layers. We can see from Figure 4 that the accuracy without channel-attention
blocks are lower, which proves that the channel-attention block brings an awesome improvement with
a slight computation.

• The dilated block

We do the experiments on our model to inspect the effect of using the dilated convolution.
In the ablation study, the dilated layers in the dilated block are all replaced with the normal
convolutional layers.

Figure 4 shows that both the MAE and MSE are much worse than that of FDCNet, respectively
reduced by 6.5% and 3.7%. The results reflect that dilated convolution works better than the normal
convolution without increasing the number of parameters or the amount of computation.

• The loss function

We also do experiments using only the L2 loss function. Figure 4 reflects that both of the MAE
and MSE of the fusion loss function are better. It proves that the SSIM-based loss does work. Since the
SSIM compares the consistency between the estimated density map and the corresponding ground
truth, the fusion loss function performs better than the merely L2 loss.

5. Conclusions

This paper sets out to improve the accuracy of crowd counting. We proposed a FDCNet framework
which is based on a single column network with a one size convolutional kernel but showed a brilliant
performance. We introduced the fusion of the frontend features and the backend features, followed
by the channel-attention blocks. The final feature maps are fed into the dilated block to produce
density maps of high resolution. The estimations on four datasets perform well, some of which are
better than the state-of-the-art versions. Our FDCNet is accurate, robust, and concise with a good
generalization ability.
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