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Abstract: The negative environmental impacts of using fossil fuel-powered vehicles underlined
the need for inventing an alternative eco-friendly transportation fleet. Plug-in electrical vehicles
(PEVs) are introduced to cut the continuing increase in energy use and carbon emission of the
urban mobility. However, the increased demand for mobility, and therefore energy, can create
constraints on the power network which can reduce the benefits of electrification as a certain and
reliable source. Thus, the rise in the use of electric vehicles needs electric grids to be able to feed the
increased energy demand while the current infrastructure supports it. In this paper, we introduce a
methodological framework for scheduling smart PEVs charging by considering the uncertainties and
battery degradation. This framework includes an economic model for charging and discharging of
PEVs which has been implemented in a 21-node sample distribution network with a wind turbine as
a distributed generation (DG) unit. Our proposed approach indicates that the optimal charging of the
PEVs has a high impact on the distribution network operation, particularly under the high market
penetration of PEVs. Thus, the smart grid to vehicle (G2V) charging mode is a potential solution
to maximize the PEV’s owner profit, while considering the battery degradation cost of the PEVs.
The simulation result indicates that smart charging effectuation is economical.

Keywords: stochastic optimization; plug-in electric vehicle; smart charging; vehicle to grid; modeling
uncertainties

1. Introduction

The rapid growth in urban mobility and the corresponding increase in energy use, greenhouse
gas emissions, (GHG), air quality [1], and their externalities have driven more people to switch from
their conventional cars to cleaner fleets, electric cars. The population of plug-in electric vehicles (PEVs)
increased drastically over the past decade [2]. The PEVs are equipped with a large battery bank and the
need for fast charging of these batteries and range anxiety issues impose an enormous load demand on
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the residential and distribution networks and this made many operation problems for the distribution
system operator.

Two approaches might be considered when the charging infrastructure is needed. First is
developing a charging infrastructure and increasing the capacity of the network which requires further
investment in grid peak capacity. The second approach is managing the demand by considering
the driving behaviors and charging schedules for cars and predicting the load pattern that the PEVs
force on a daily basis. In this approach, if the pricing and rate structure are correctly planned, the
demand for additional peak capacity investment will be declined and the cost of PEVs charging will be
reduced, in one hand. It also improves the stability of the grid, on the other hand. Grid-to-vehicle
(G2V), and vehicle-to-grid (V2G) are the two solutions suggested to avoid the loss of the power grid
by supplying the network demand in a peak load period. G2V is the common type of PEV charging
procedure, where power goes from grid to vehicle, but V2G, which has various applications in the
power system auxiliary services, transfers power from vehicle to grid. In G2V and V2G, the aggregator
can control and operate a group of PEVs and these vehicles act like storage systems.

There is a body of literature that proposed various managed PEV charging methods [3–7]. Prior
studies in the area of PEVs and electric grid are based on the models, since the actual data of PEVs in a
large scale are limited. However, the results of some of the studies are hampered because of much
uncertainty surrounding the drivers’ behaviors. For example, the current trend in the literature is to
use a simplified PEV travel profile by mapping the travel behavior of conventional vehicles, which
might introduce bias into the results. In addition, considering only a single PEV fleet in the simulation
as a proof of concept or assuming that all vehicles have the same features are other shortcomings
of prior studies [8–12]. The limitations of the distribution network are essential to be considered in
the modeling framework, while they are neglected in some prior studies [13–15]. On-peak charging
might cause serious problems such as voltage instability, reserve capacity, and voltage collapse, voltage
insecurity, and power loss. In addition, while dynamic electricity price is critical in a smart charging
system, the availability of accurate electricity price is an area of concern in a realistic optimization
problem [16–18]. Dynamic pricing can encourage PEV owners to charge their vehicles at a lower rate.

In this study, we compare the uncoordinated, smart G2V versus V2G charging mode for a set
of PEV fleets in a sample distribution network to understand which charging mode has supremacy
over the others. We integrated wind energy into the power grid to consider using renewable energy
resources in the grid. To fill the existing gap in the literature, the uncertainties of load, wind speed,
electricity price, and travel behavior are studied in the PEV-grid model. A detailed driving pattern
including the arrival and departure time and travel distance of PEVs drivers are taken into account.
The Monte Carlo simulation with scenario reduction task is also conducted to model the stochastic
nature of PEVs’ travel behavior. The probabilistic economic dispatch is also applied to optimize the
charging/discharging problem. This study provides insight into the effect of battery degradation in
various charging modes (V2G and G2V) and presents the results in an economic and technical view.

The paper is structured as follows: Section 2 includes the problem statement and the method.
In Section 3, the numerical results of this study are given in different approaches, which clarify the
performance of the proposed method. Section 4 provides the numerical results of different charging
procedures. Finally, Section 5 concludes the findings of this study.

2. Problem Statement

In this research, the objective function in the optimization of PEVs smart charging and discharging
is to minimize the cost function subject to the network constraint:

10∑
s=1

24∑
t=1

{[OCas(t) ×Ras(t) + OCrs(t) ×Rrs(t) + DECs(t)]} × Pr(s) (1)
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where Ras(t) is the active and Rrs(t) is the reactive part of the power supplied in the scenario s at time
t. Indices s and t are presenting scenario number and time respectively, where s ranges from 1 to 10 to
consider all 10 scenarios in this study, and t ranges from 1 to 24, to include all hours in a single day.

OCas(t) and OCrs(t) are the price for active and reactive power, and DECs(t) is PEVs fleet total
battery degradation cost in the scenario s, respectively. The probability of each scenario is presented by
Pr(s). The load and generation equation can be written as follows [16]:

10∑
s

24∑
t

Ras(t) +
10∑
s

24∑
t

Was(t) =
10∑
s

24∑
t

Las(t) +
10∑
s

24∑
t

PEVas(t) +
10∑
s

24∑
t

Plossas(t) (2)

10∑
s

24∑
t

Rrs(t) +
10∑
s

24∑
t

Wrs(t) =
10∑
s

24∑
t

Lrs(t) +
10∑
s

24∑
t

PEVrs(t) +
10∑
s

24∑
t

Plossrs(t) (3)

where Was(t) is the active power that the wind turbines produce, Las(t) is the real part of load demand,
and PEVas(t) is the absorbed or injected active power by PEVs in time t and scenario s. Wrs(t) is the
reactive power produced by the wind turbines, Lrs(t) is the reactive part of the demand and PEVrs(t)
is the absorbed reactive power that is consumed by the charging equipment.

Plossas(t) and Plossrs(t) are power loss in a transmission line that can be calculated using
Equations (4) and (5) [19]:

Plossas(t) =
n∑

i=1

Vs(i, j, t) ×
n∑

j=1

Vs(i, j, t) × {G(i, j) × cos(θs,i,t−θs, j,t) + B(i, j) × sin(θs,i,t − θs, j,t)} (4)

Plossrs(t) =
n∑

i=1

Vs(i, j, t) ×
n∑

j=1

Vs(i, j, t) × {G(i, j) × cos(θs,i,t−θs, j,t) − B(i, j) × sin(θs,i,t − θs, j,t)} (5)

where i and j are indices of buses and n is the number of buses. G and B are the real and imaginary part
of the admittance matrix, and θ is the voltage angle in this equation. Vs(i, j, t) is the voltage difference
between buses i and j at time t in scenario s.

In this framework, power and constraint of all nodes such as a voltage of nodes and frequency
of system should not surpass the boundaries limitation. The nodes’ constraints are introduced in
Equations (6) and (7) [20].

Pu(t) ≤ Pu
max, Qu(t) ≤ Qu

max
u = 1, 2, . . . , neq, neq = total number o f buses

(6)

Vmin ≤ Vl(t) ≤ Vmax,
l = 1, 2, . . . , nLD t = 1, 2, . . . , 24 nLD = total number o f load nodes

(7)

Pu(t) and Qu(t) represent active and reactive consumed power by the equipment u, which must
not pass the equipment’s maximum active and reactive power that are presented by Pu

max and Qu
max.

Voltage magnitude of all nodes Vl(t) must stay between the minimum and maximum value of them,
which are presented by Vmin, Vmax. The most significant restraint in PEVs charging and discharging
problem is the state of charge (SOC) of the batteries which should fulfill the minimum boundaries at
the moment of departure. This constraint is presented in Equation (8) [19]:

SOCp,s(tdep) ≥ SOCdep

p = 1, 2, . . . , NPEV NPEV = total number o f PEVs
(8)
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In this study, for customers convenience, it is assumed that the SOCdep is at least 80 percent of the
total capacity [19]. Here, SOCp,s(tdep) shows SOC of p-th PEV battery at the departure time (tdep) in
scenario s. The undermentioned constraint must be satisfied for all PEVs’ battery.

SOCp,s(t) = SOCp,s(t− 1) + Pchr
p (t) × ηchr − Pdichr

p (t)/ηdichr

p = 1, 2, . . . , NPEV t = 1, 2, . . . , 24
(9)

where, Pchr
p (t), Pdichr

p (t) are charging and discharging rate of each PEVs in time interval t, and ηchr, ηdichr
are the total efficiency of battery charging/discharging and converter, respectively [16].

In Equation (10), battery degradation cost has been calculated based on the PEVs total battery
degradation at each time for each scenario [21].

DECs =
10∑

s=1
(

NPEV∑
p=1

ncyc
p∑

c=1
[CBatt

p ×
DTOT

p,s ×Tcyc
c,s

Q0
p−QUse

p
])

Tcyc
c = c-th Charging cycle

(10)

where CBatt
p is the p-th PEV battery cost and DTOT

p,s represents summation of calendar (DCAL
p,s ) and cyclic

(DCYC
p,s ) degradation of PEVs’ battery in the cycle of Tcyc

c,s in scenario s and cycle c. Also, Q0
p, QUse

p stand
for the nominal and useful capacity of p-th PEV, respectively. QUse

p is extracted based on Equation (11).

QUSE
p = ρ×Q0

p 0 < ρ < 1 (11)

Stem from the United States Advanced Battery Consortium (USABC) PEVs’ battery should be
changed if the battery capacity is reduced to 80% of its total capacity [21], thus ρ = 0.8.

DTOT
p,s (Tcyc

c,s ) = DCAL
p,s (Tcyc

c,s ) + DCYC
p,s (Tcyc

c,s ) (12)

Equations (13) and (14) illustrate the mechanism of the calculating calendar (DCAL
p,s ) and cyclic

(DCYC
p,s ) degradation [21].

DCAL
p,s (Tcyc

c,s ) = Q0
p × exp(

SOCp,s(T
cyc
c,s ) − SOC
b

) × exp(
ψB −ψ0

a
) ×
√

ts (13)

DCYC
p,s (Tcyc

c,s ) = α1 × [DODp,s(T
cyc
c,s )]

2
+ α2 ×DODp,s(T

cyc
c,s ) + α3 (14)

To model the degradation of the PEVs’ batteries, two main criteria including calendar degradation
(DCAL

p,s ) and cycling degradation are considered. Employing calendar degradation (DCAL
p,s ), which is

a function of the SOC of p-th PEV over period T (SOCp,s(T
cyc
c,s )), nominal SOC of p-th PEV (SOC),

ambient temperature (ψB), nominal temperature (ψ0), and charging time (ts), is a vital part in battery
degradation task. Also, a and b are calendar degradation’s fitting parameter. The cycling degradation,
which is a function of DOD over period T (DODp,s(T

cyc
c,s )), has a significant effect on the total battery

life. a and b in Equation (13) are fitting parameters for calendar degradation. α1, α2, and α3 are fitting
parameters for cycling degradation related to DOD. In Equation (15), the benefits of PEV aggregator
has been introduced.

PEVs bene f it =
10∑

s=1

24∑
t=1

npev∑
p=1
{OCas(t) × Pr(s) × [PEVas(t)|m=UNC − PEVas(t)|m=smart]}+

10∑
s=1

24∑
t=1

npev∑
p=1
{OCrs(t) × Pr(s) × [PEVrs(t)|m=UNC − PEVrs(t)|m=smart]}

(15)

where the welfare is calculated as the difference between power consumed by charging and discharging
of PEVs’ batteries in two charging modes: uncoordinated and smart charging [21].
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The power loss in the transmission line in the smart charging mode is different from the
uncoordinated mode, and the difference between this two is considered as the network benefit.

Network bene f it =
10∑

s=1

24∑
t=1

npev∑
p=1
{OCas(t) × Pr(s) × [Plossas(t)|m=UNC − Plossas(t)|m=smart]}+

10∑
s=1

24∑
t=1

npev∑
p=1
{OCrs(t) × Pr(s) × [Plossrs(t)|m=UNC − Plossrs(t)|m=smart]}

(16)

The total benefit of using smart charging and discharging of PEV batteries in smart G2V and V2G
mode is calculated using Equation (17).

Net pro f it = [PEVs bene f it + Network bene f it] −Cinf (17)

where the Cinf is installing smart charging and equipment cost that is extracted from [16].

2.1. Methodology

Figure 1 shows the methodological framework of the study. In general, the driving pattern of PEVs
drivers, the effects of wind energy, electricity price, and load demand are considered in the simulation.
Then the probabilistic economic dispatch is applied to optimize the charging/discharging problem.Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 17 
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2.1.1. Modeling PEVs as Uncertain Enormous Storage

Travel behavior parameters such as arrival and departure times, travel distances, and vehicle type
are obtained from the 2017 National Household Travel Survey (NHTS) database. The characteristics of
the users are extracted among 23,514 daily trips. Figures 2–4 show the probability distribution function
(PDF) of arrival time, PDF of departure time, and PDF of travel distance.

It is important to specify the initial amount of PEVs’ SOCs. Monte-Carlo approach is conducted to
model the PEVs’ travel behaviors under uncertainties [22]. Monte-Carlo is applied to produce different
scenarios based on the input variables such as arrival and departure time, initial SOCs derived from
travel distance, and the type of vehicle in order to get battery characteristics. The initial SOC of each
PEVs is derived from Equation (18).

SOCn
init,p = 100−

dq
p

Ce f f ×Capbat,p
× 100 (18)

where, dn
p is the traveled distance of p-th PEV in q-th iteration by Monte-Carlo simulation, Ce f f

(km/kWh) presents the efficiency coefficient of the battery during the driving mode, and Capbat,p (kWh)
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is the capacity of p-th PEV’s battery. The parameters of this equation are selected according to the
PEVs model. Ce f f and Capbat,p are obtained from [16,19,23]. The input data are extracted from the
probability distribution function (PDF) of travel data to produce the necessary information for PEVs
fleet. The distribution function is used to create the PDF of arrival time and travel distance is the
generalized extreme value (GEV) distribution which are shown in Figures 2–4. Also, for departure
time Weibull distribution function is taken into account as shown in Figure 3.
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2.1.2. Modeling Load Demand, Price, and Wind Speed Uncertainties

The uncertainties in the load demand, electricity price, and wind speed are simulated by using a
Monte-Carlo simulation which produces 1000 scenarios of possible probabilities [24]. The normal and
Weibull distribution functions are suitable solutions for modeling system objective uncertainties [25].
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The input data for the Monte-Carlo simulation is extracted from the PDF created by normal
distribution function for the load demand and electricity price. The PDF created by the Weibull
distribution function for the wind speed is also extracted for the Monte-Carlo simulation [24]. Normal
and Weibull distribution functions are presented in Equations (19) and (20).

f (x|µ, σ2) =
1

√

2πσ2
e−

(x−µ)2

2σ2 (19)

f (x|λ,κ) =
{

κ
λ (

κ
λ )
κ−1e−(

x
λ )
κ

x ≥ 0
0 x < 0

(20)

The generated scenarios for load demand, price, and wind are shown in Figures 5–7, respectively.
The relationship between wind speed and wind power is derived from [26] which is shown in
Equation (21). This function transforms the wind speed to electricity power for a wind turbine.

Pwd
nw,t =


0 vt < vci, vt > vco

PWmax vr < vt < vco
PWmax(vt−vci)

vr−vci
vci < vt < vr

(21)

where Pwd
nw,t is the power generated by the wind turbine. In general, generated power equals to zero

when the wind speed is lower than the cut-in speed (vci) or is greater than the cut-out speed (vco).
When the wind speed is between rated and cut-out speed, the turbine produces its nominal power;
also if it is between a cut-in and rated speed (vr), the generated power is calculated by related function
that is shown in Equation (21). Table 1 shows the parameters of the distribution functions for the
arrival and departure time and travel distance.
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Table 1. Distribution function parameters of the travel behavior uncertainties.

Data Distribution Function Parameter

Departure time Weibull
Scale Factor Shape Factor

21.38 7.67

Arrival time Generalized extreme value
µ σ k

17.65 7.12 −0.05

Travel distance Generalized extreme value
µ σ k

17.27 0.84 −0.06

2.1.3. Scenario Reduction

To handle the uncertainty of various stochastic parameters such as electricity price, wind speed,
and load demand, the Monte-Carlo simulation task is employed in this study. Monte-Carlo simulation
generates various scenarios based on the probability distribution functions. In this study, to increase
the accuracy of the forecasting results, 1000 scenarios are generated in the first step. This large volume
of data makes high computation cost because calculating economic dispatch for all 1000 scenarios
is time-consuming. To handle this problem a scenario reduction task is employed based on the
forwarding scenario selection and the backward scenario reduction approaches that are elaborated
in [20]. This method eliminates the similar scenarios to 10 final scenarios which have the most
probability. This procedure is applied for handling the system uncertainties. For PEV’s modeling,
1000 scenarios which are generated by the Monte-Carlo simulation are reduced to 420 scenarios where
30 PEVs are considered in each bus in distribution network. Then, the economic dispatch is calculated
for these scenarios and the vehicle owners’ savings are derived by multiplying the optimized cost
function by their relative probability.

The boxplot in Figure 5 shows the load profile of the modeling scenarios after the scenario
reduction. Each whisker shows the variability of the load profile of scenarios for each hour of the day.
On average, the load profile is higher between 12 pm to 5 pm. Electricity price is at the highest point at
5 pm, when the load profile is also the highest, on average, as shown in Figure 6. Figure 7 shows the
scenarios for six wind turbines which generate active and reactive power in the distribution network.

2.1.4. Optimization Procedure

A mixed-integer non-linear problem (MINLP) is presented to optimize the cost function by
considering the PEVs batteries’ SOC at the departure time as the optimization constraints. MINLP is
considered because of the complexity of the economic dispatch, power loss considerations and network
constraints compounded with the charging and discharging of PEVs’ batteries. The main goal is to
minimize the Equation (1) by considering the other mentioned constraints such as SOC values.
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In the optimization procedure, the maximum value of the PEV’s SOC is not considered as a
constraint for the problem formulation. The minimum value of batteries’ SOC is employed as a
constraint, so the operator can charge the batteries as much as possible if this procedure is beneficial
(i.e., depends on the electricity price and power system load). For solving the MINLP problem, General
Algebraic Modelling System (GAMS) software has been used [27]. The “Conopt-4” solver is employed
which has the capability to solve the convex nonlinear problem.

3. Results

For the numerical study, a 21-node sample distribution network has been employed which is
13.8 Kv and has 20 feeder section which is shown in Figure 8. In this sample, six wind turbines which
are able to produce 500 kVA are set up in buses 14, 15, and 18 to 21. The network characteristics
and constraints such as voltage deviation and HV/MV substation capacity are derived from [16].
The load demand, electricity price, and wind speed data are simulated by the Monte-Carlo simulation.
The normal distribution function for the load demand and electricity price and the Weibull distribution
function for the wind speed data are taken into account. The load, electricity price, and wind speed data
are for Ontario, Canada [28]. The parameters of the sample network are shown in Table 2. It is assumed
that 30 PEVs are connected to each demand node. The information on arrival and departure time,
travel distances, and type of vehicles are based on the NHTS database [29]. To show the performance
of the proposed charging method, three different approaches including uncoordinated, smart G2V,
and smart V2G are considered.
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3.1. Uncoordinated Charging

In the uncoordinated charging approach, PEVs drivers plug in their vehicle as soon as they arrive
home. The cost of charging is equal to the summation of the consumed power by the PEVs battery to
charge the vehicle. There is a considerable peak in the total load demand of charging PEVs because the
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residual load demand and PEVs load demand occur semi simultaneously. This peak intensifies the
importance of using smart charging during a day. In uncoordinated charging during the night, PEVs
charging rate is close to zero. The costs and power loss of the uncoordinated charging approach are
shown in Table 3.

Table 2. Parameters of the Sample Network.

Parameter Value

Capacity of HV/MV substation (
√

Ras(t) + Rrs(t)) 10 (MVA)
Voltage deviation (Vmin, Vmax) 5%

cos(θ) 0.9872 (lag)
Feeders ‘current limitation (

√
Plossas(t) + Plossrs(t)/Vs(i, j, t)) 314 (A)

Feeders’ resistance (1/G(i, j)) 0.2006 (Ω/km)
Feeders’ reactance (1/B(i, j)) 0.4026 (Ω/km)

Peak load in each node 310 (kW)
Battery charger effective factor (ηchr) 90%

Reactive power cost (Crs(t)) 5.23 ($/MVar)

Table 3. Power loss and costs of uncoordinated charging approach.

Uncoordinated Charging Without Wind With Wind

Purchased energy cost ($/day) 5139.21 5006.08
Power loss (kW/day) 1888.9 0 1020.38

Cost of power loss ($/day) 17.93 17.91
Battery degradation cost ($/day) 340.35 297.45

PEVs charging cost ($/day) 71.66 71.66

3.2. Smart G2V Charging

In the G2V approach of charging PEVs, the aggregator can control the rate of power and time
of charging. In this way, the amount of money that PEV owners should pay is much lower than the
uncoordinated charging modes since the cars can be charged at the off-peak time. Electricity price is
negative in several hours a day in Ontario, so it is beneficial for PEVs owners and operators to charge
the PEVs at this time. PEV owners will be paid by the network operator due to generation constraints.
As Table 4 shows, purchased energy cost in the smart G2V mode is lower than the uncoordinated
charging mode, likewise the degradation cost. The reduction in degradation cost is caused by spreading
the charging time interval.

Table 4. Power Loss and Costs of Smart G2V Charging Approach.

Smart G2V Charging Without Wind With Wind

Purchased energy cost ($/day) 4547.97 4423.74
Power loss (kW/day) 1956.08 1024.63

Cost of power loss ($/day) 21.60 15.86
Battery degradation cost ($/day) 86.55 86.42

PEVs charging cost ($/day) −20.55 −20.52
PEVs charging infrastructure cost ($/day) 17.40 17.40

3.3. Smart V2G Charging

In smart V2G charging, the PEVs can operate in both vehicles to the grid (V2G) and grid to vehicle
(G2V) modes. The charging rate in every hour is varied to minimize the operation cost and maximize
the SOCs of the PEVs. The results are illustrated in Table 5. At this point, the same as G2V charging
mode, the purchased energy cost is reduced in comparison with the uncoordinated and smart G2V
charging mode. Degradation cost in V2G mode is higher than the G2V charging approach.
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Table 5. Power loss and costs of smart V2G charging approach.

Smart V2G Charging Without Wind With Wind

Purchased energy cost ($/day) 3818.64 3703.775
Power loss (kW/day) 1945.86 1056.24

Cost of power loss ($/day) 11.012 10.96
Battery degradation cost ($/day) 434.72 433.17

PEVs charging cost ($/day) −284.534 −288.56
PEVs charging infrastructure cost ($/day) 23.50 23.50

4. Discussion

The benefits of various smart charging mode in comparison with uncoordinated mode are shown
in Table 6. The PEVs battery degradation cost in smart G2V charging mode is higher than the one
in V2G charging mode. This difference exists because in V2G charging mode, PEVs are used as the
electricity storage. Using V2G charging mode reduces the purchased energy cost in comparison with
smart G2V charging mode, while the degradation cost is higher than G2V. It is because batteries are
always in interaction with the network by trading their power, in V2G mode. The difference between
the degradation cost in three charging approaches is shown in Figure 9. As illustrated by the numerical
results, the proposed method has a significant effect on the total charging cost of the PEVs’ owners.
Thus, implementing smart charging is recommended with high penetration of PEVs.

Table 6. Various charging mode benefits.

Economic Analysis
Smart G2V Charging Smart V2G Charging

Without Wind With Wind Without Wind With Wind

PEVs owner benefit 303.10 303.20 218.92 224.49
System operator benefit −3.67 2.05 6.91 6.95

Net benefit 282.03 287.85 202.33 207.94
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The simulation task is done by a PC with an Intel Core i7, 3.4 GHz CPU, and 32 GB DDR4 RAM,
and computational cost for different approaches is presented in Table 7.
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Table 7. The Computational Cost for Different Approaches.

Charging Approaches
Uncoordinated Smart G2V Smart V2G

Without Wind With Wind Without Wind With Wind Without Wind With Wind

Computational cost (seconds) 164 198 237 599 493 2773

5. Conclusions

In this study, we compared three ways of PEVs charging including uncoordinated charging, smart
charging, and V2G charging in a sample distribution network with/without considering the wind
generation. The findings suggest that considering degradation cost of PEV’s batteries is a vital factor
which should be calculated for different charging approaches. While it is almost ignored in common
modeling frameworks, modeling the battery degradation of PEV’s and its non-linear behavior needs to
be further studied. In this study, we showed how considering the behaviors of the battery can change
the results. An algorithm based on Conopt-4 solver in GAMS was used to minimize the operation and
battery degradation cost. Based on the optimization results, a G2V method is much beneficial than two
other methods in terms of owner saving. However, the smart V2G method is more efficient than the
uncoordinated method. The results show that in smart G2V charging mode, the net profit is equal
to 287.85 ($/day) in the presence of wind power while in V2G charging mode, the net profit is much
less than smart G2V Charging. The huge difference between the charging cost in the uncoordinated
method and the two other methods is because of the time of charging. Charging in the off-peak time is
much cheaper than the peak time. In addition, the PEV owner can save more if the vehicle is charged
during the night when the energy price is negative.

Author Contributions: H.T., H.J. and R.N. have modelled the problem mathematically, and have simulated.
M.A.G., A.A. and A.E. have evaluated the accuracy of the model, extracted results, and edit the paper.

Funding: This publication is based upon work supported by the Khalifa University of Science and Technology
under Award No. FSU-2018-05.

Conflicts of Interest: The authors declare no conflicts of interest.

Nomenclature

A. Indices
i Index of node
j Index of node
l Index of load node
p Index of plug-in electric vehicle
q Index of iteration by Monte-Carlo
s Index of scenarios
t Index of time
u Index of equipment
B. Parameters
a Calendar degradation’s fitting parameter
b Calendar degradation’s fitting parameter
B(i, j) Susceptance of transmission line between bus i and bus j
Cinf Charging infrastructure cost
Ce f f Efficiency factor of the p-th PEV
CBatt

p p-th PEV battery cost
Capbat,p The capacity of p-th PEV’s battery
G(i, j) Conductance of transmission line between bus i and bus j
m Charging mode
n Total number of nodes
NPEV Total number of PEVs
nLD Total number of load nodes
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neq Total number of buses
Pu

max Maximum active power of equipment u
Qu

max Maximum reactive power of equipment u
SOCdep PEV’s minimum SOC at departure time
Vmax Maximum voltage of nodes
Vmin Minimum voltage of nodes
α1, α2, α3 Cycling degradation’s fitting parameter
ψB Ambient temperature
ψ0 Nominal temperature
ηchr Charging efficiency parameter
ηdichr Discharging efficiency parameter
ρ Battery useful capacity factor
C. Variables
OCas(t) Cost of active power at time t in scenario s
OCrs(t) Cost of reactive power at time t in scenario s
dq

p Traveled distance of p-th PEV in iteration q
DECs(t) PEVs fleet total battery degradation cost in the scenario s
DTOT

p,s Total degradation for p-th PEV in scenario s
DCAL

p,s (Tcyc
c,s ) Calendar degradation for p-th PEV at c-th charging cycle in scenario s

DCYC
p,s (Tcyc

c,s ) Cycling degradation for p-th PEV at c-th charging cycle in scenario s
DODp,s(T

cyc
c,s ) Depth of discharge for p-th PEV at c-th charging cycle in scenario s

f (x|µ, σ2) Normal distribution function
f (x|λ,κ) Weibull distribution function
Las(t) Active load at time t in scenario s
Lrs(t) Reactive load at time t in scenario s
Pr(s) Probability of the scenario s
Pu(t) Active power of equipment u at time t
Pchr

p (t) Charging rate of p-th PEV ad time t
Pdichr

p (t) Discharging rate of p-th PEV at time t
PEVas(t) PEV’s active power at time t in scenario s
PEVrs(t) PEV’s reactive power at time t in scenario s
Plossas(t) Active power loss at time t in scenario s
Plossrs(t) Reactive power loss at time t in scenario s
Pwd

nw,t Power generated by the wind turbine
PWmax Nominal generated power by the wind turbine
Qu(t) Rective power of equipment u at time t in scenario s
QUSE

p Useful capacity of p-th PEV
Q0

p Nominal capacity of p-th PEV
Ras(t) Purchesed active power at time t in scenario s
Rrs(t) Purchesed reactive power at time t in scenario s
SOCn

init,p SOC at initial time t for p-th PEV
SOCp,s(tdep) SOC at departure time t for p-th PEV
SOCp,s(t) SOC at time t for p-th PEV
SOCp,s(T

cyc
c,s ) SOC of p-th PEV at c-th charging cycle in scenario s

SOC Nominal SOC of p-th PEV
Tcyc

c,s c-th charging cycle
ts Charge time
Was(t) Wind active power at time t in scenario s
Wrs(t) Wind reactive power at time t in scenario s
Vs(i, j, t) Line voltage between bus i and j at time t in scenario s
Vl(t) Voltage value for bus p at time t
vt Wind speed
vci Wind turbine cut-in speed
vco Wind turbine cut-out speed



Appl. Sci. 2019, 9, 3420 14 of 15

vr Wind turbine rated speed
θs,i,t Voltage’s angel of node p at time t
θs, j,t Voltage’s angel of node q at time t
D. Abbreviations
DG Distributed generation
G2V Grid To vehicle
GEV Generalized extreme value
GHG Greenhouse gas emissions
NHTS National household travel survey
PDF Probability distribution function
PEV Plug-in electric vehicle
Smart Smart charging mode
SOC State of charge
UNC Uncoordinated charging mode
USABC United States Advanced Battery Consortium
V2G Vehicle to grid
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