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Abstract: TiO2 nanofibers have high chemical stability and high strength and are applied to many
fields such as air pollution sensors and air pollutant removal filters. ZnO nanofibers also have very
high absorptivity in that air and are used as germicides and ceramic brighteners. TiO2/ZnO nanofibers,
which have a composite form of TiO2 and ZnO, were fabricated and show higher photocatalytic
properties than existing TiO2. The precursor, including zinc nitrate hexahydrate, polyvinyl acetate,
and titanium isopropoxide, was used as a spinning solution for TiO2/ZnO nanofibers. Electrospun
TiO2/ZnO nanofibers were calcined at 600 ◦C and analyzed by field emission scanning electron
microscope (FE-SEM) and X-ray diffraction (XRD). The average diameter of TiO2/ZnO nanofibers
was controlled in the range of 189 nm to 1025 nm. XRD pattern in TiO2/ZnO nanofibers have a TiO2

anatase, ZnO, Ti2O3, and ZnTiO3 structure. TiO2/ZnO nanofibers with a diameter of 400 nm have the
best photocatalytic performance in the methylene blue degradation experiments and an absorbance
decrease of 96.4% was observed after ultraviolet (UV) irradiation of 12 h.
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1. Introduction

There is a growing concern about air pollution due to internal combustion engines installed
in vehicles and the large amount of exhaust gas generated in various industrial fields. Typical air
pollutants include volatile organic compounds which are known to be very harmful to the human
body. The World Health Organization (WHO) has announced that the incidence of various respiratory
diseases can be lowered by reducing air pollution. Air pollution will become more and more serious as
the scale of various industries increases. Accordingly, various solutions for reducing the concentrations
of pollutants in the air such as microorganisms, photocatalysts, and activated carbon have been
proposed. Among them, photocatalyst technology has attracted attention because it can continuously
decompose pollutants by using renewable energy [1–3]. A photocatalytic method has been studied
as a method of removing pollutants. A photocatalyst means that the oxidation-reduction reaction
on the surface of a substance occurs by absorbing light. It is applied to various tasks such as
decomposition of harmful substances by the oxidation-reduction reaction that occurs on the surface,
gas detection, ultraviolet blocking, antibacterial function, and midnight function. The photocatalytic
reaction does not require other energy because the reaction is also caused by solar energy and light.
Since CO2 and H2O generated by these photocatalytic reactions do not pollute the environment,
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they are environmentally friendly and economical because they can be used semipermanently [4–7].
Many TiO2 nanomaterials and ZnO nanomaterials are used as these photocatalyst materials [8–15].
This is because TiO2 nanomaterials are very stable physically and chemically and have excellent heat
resistance and bio-friendly properties [16–19]. ZnO nanomaterials have a high degree of adsorption
and are used as ceramic brighteners, germicides, and the like [20–23].

Nanomaterials such as nanofibers, nanotubes, and nanoparticles have various physical and
chemical properties because they have various structures and pore distribution [24–26]. Among such
nanomaterials, one-dimensional nanomaterials have different properties from bulk materials and
have been studied in various fields for the application of chemical sensors, photovoltaic cells, optical
filters, and improvement of catalytic activity [27–33]. Nanofibers have excellent photocatalytic and
electrical properties because of their large specific surface area and one-dimensional structure [34–37].
The electrospinning process is a practical technique with a low cost and high efficiency, and many
studies have reported producing these various nanofibers [38–43]. In the electrospinning process,
the precursor solution flows through at a constant rate through a pump in such a way as to create a
continuous nanofiber; then electrodes are connected to the inflowing electrospinning solution and
other electrodes are connected to the appliance plate. At this time, if a high voltage is applied, it is
emitted in a conical shape by surface tension at the electrospinning solution end. The charge is
subsequently stored in the electrospinning solution, and the mutual repulsion causes the cone to be
radiatively stretched to jet when the surface tension of the electrospinning solution is exceeded. In the
radiation-stretched electrospinning solution, volatilization of the solvent occurs before it collects in the
plate, and it is possible to obtain disorderly arranged nanofibers in the plate [44,45].

In this study, the electrospinning process was used to fabricate TiO2/ZnO nanofibers for
photocatalyst materials and process variables were controlled to obtain a stable and optimized
one-dimensional structure. The microstructure and phase of the electrospun TiO2/ZnO nanofibers
were analyzed through field emission scanning electron microscopy (FE-SEM) and X-ray diffraction
(XRD), respectively. The photocatalytic efficiencies of TiO2/ZnO nanofibers and TiO2 nanofibers were
observed by ultraviolet–visible spectroscopy (UV–Vis) using the photocatalytic decomposition of
methylene blue.

2. Materials and Methods

2.1. Electrospinning Process

The solution, N,N-Dimethylformamide (DMF, extra pure, DAEJUNG Chemicals and Metals Co.,
Ltd., Siheung-Si, Korea), was used as a solvent for dissolving a polyvinyl acetate (PVAc, Mw~500,000
by GPC, Powder, Sigma-Aldrich Co., Ltd., St. Louis, MO, USA) and 5 wt % PVAc was dissolved.
DMF solution of 5g with PVAc was stirred for 4 h using a stirrer. After dissolution was complete, 6 g
titanium (IV) isopropoxide (TTIP, JUNSEI Co., Ltd., Tokyo, Japan) and 21–35 wt % acetic acid (extra
pure, DAEJUNG Chemicals and Metals Co. Ltd., Siheung-Si, Korea) were added. The solution became
clear and 0.1 g zinc powder (Powder, Sigma-Aldrich Co., Ltd., St. Louis, MO, USA) was added and
stirred for 2 h.

Figure 1 is a diagram schematically showing the electrospinning process. The distance between the
needle and the plate was 15 cm and a 10-mL syringe was used. To obtain the various microstructures
of TiO2/ZnO nanofibers, experimental variables such as voltage, inflow rate, and amount of acetic acid
were controlled. The applied voltages of 12 kV, 15 kV, and 18 kV, the pump inflow rates of 1 mL/h,
0.8 mL/h, and 0.6 mL/h, and 21 wt %, 28 wt %, and 35 wt % of acetic acid were used, respectively.
The electrospinning process variables for TiO2/ZnO nanofibers are summarized in Table 1.
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Figure 1. Schematic diagram of electrospinning process. 

Table 1. Process variables of electrospinning for TiO2/ZnO nanofibers. 

Variable Voltage (kV) Flow Rate (mL/h) Acetic Acid (wt %) 

Voltage 
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15 1 21 
18 1 21 

Flow rate 
12 1 21 
12 0.8 21 
12 0.6 21 

Acetic acid 
12 1 21 
12 1 28 
12 1 35 
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was observed using FE-SEM (SU-70, Hitachi Co., Japan) and the diameters of TiO2/ZnO nanofibers 
were measured. To confirm the metal oxide phase of TiO2/ZnO nanofibers, XRD (AXS-D8, Bruker 
Co., Madison, WI, USA) patterns were also observed from 20° to 80° at a rate of 0.03° per step using 
a Cu Kα target. 
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Figure 1. Schematic diagram of electrospinning process.

Table 1. Process variables of electrospinning for TiO2/ZnO nanofibers.

Variable Voltage (kV) Flow Rate (mL/h) Acetic Acid (wt %)

Voltage
12 1 21
15 1 21
18 1 21

Flow rate
12 1 21
12 0.8 21
12 0.6 21

Acetic acid
12 1 21
12 1 28
12 1 35

Electrospun TiO2/ZnO nanofibers were dried at 80 ◦C for 24 h in an oven. The dried TiO2/ZnO
nanofibers was heat-treated at 600 ◦C for 1 h in a furnace. The microstructure of TiO2/ZnO nanofibers
was observed using FE-SEM (SU-70, Hitachi Co., Tokyo, Japan) and the diameters of TiO2/ZnO
nanofibers were measured. To confirm the metal oxide phase of TiO2/ZnO nanofibers, XRD (AXS-D8,
Bruker Co., Madison, WI, USA) patterns were also observed from 20◦ to 80◦ at a rate of 0.03◦ per step
using a Cu Kα target.

2.2. Evaluation of Photocatalytic Efficiency

The photocatalytic decomposition reaction was carried out using an ultraviolet lamp (JINLED
Co., Ltd.) of 10 W at room temperature as an irradiation light source. The irradiation distance between
the lamp and the sample was fixed to 10 cm. A nanofiber of 0.5 g was added to the methylene blue
aqueous solution, and the mixture was stirred to irradiate the light source. To compare TiO2/ZnO
nanofibers with TiO2 nanofibers, TiO2 nanofibers were fabricated by the electrospinning process.
The electrospinning process conditions for the nanofibers are shown in Table 2.

Table 2. Electrospinning process conditions of nanofibers used in the decomposition of methylene blue
for photocatalytic performance evaluation.

Voltage (kV) Flow Rate (mL/h) Acetic Acid (wt %)

TiO2 nanofibers 15 1 0
TiO2/ZnO-1 nanofibers 15 3 28
TiO2/ZnO-2 nanofibers 15 2 28

To fabricate TiO2 nanofibers, polyvinylpyrrolidone (PVP, MW 1,300,000 Powder, ALFA AESAR
Co., Ltd., Tewksbury, MA, USA) and ethyl alcohol (EtOH, 99.5%, SAMCHUN Chemical Co., Ltd.,
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Seoul, Korea) were used. TTIP and acetylacetone (ACAC, JUNSEI Chemical Co., Ltd., Tokyo, Japan)
were also added into the PVP-based solution and the mixed solution was stirred for 2 h. The prepared
TiO2 electrospinning solution was mounted on the pump and the electrospinning was conducted at
the pump inlet rate of 1 mL/h and voltage of 15 kV. As-spun TiO2 nanofibers were heat-treated at
450 ◦C for 3 h and TiO2 nanofibers with an anatase phase were prepared to compare with TiO2/ZnO
nanofibers. The molar ratio of TiO2 to ZnO was equal to 17:1 in TiO2/ZnO-1 and TiO2/ZnO-2 nanofibers.
To obtain a different diameter, the flow rate was controlled. TiO2/ZnO-1 and TiO2/ZnO-2 nanofibers
were fabricated at a flow rate of 3 mL/h and 2 mL/h, respectively. The prepared TiO2/ZnO nanofibers
were dried at 80 ◦C for 24 h. The dried specimen was placed in a heating furnace and heat-treated at
600 ◦C for 1 h. To evaluate the photocatalytic activity, UV–Vis spectrums with the TiO2 and TiO2/ZnO
nanofibers were observed using the photocatalytic decomposition of methylene blue.

3. Results

3.1. TiO2/ZnO Nanofibers

Figure 2 shows the FE-SEM images of TiO2/ZnO nanofibers fabricated by the electrospinning
process at various applied voltages of 12 kV, 15 kV, and 18 kV. TiO2/ZnO nanofibers have a typical
one-dimensional and clean microstructure without droplets. Increasing the voltage during the
electrospinning process increased the charge density of the solution and nanofibers with a small
diameter were obtained. When voltage exceeding the limit was applied, nanofibers were not formed
and sprayed. If a lower voltage is used then surface tension is applied, and nanofibers in the form of
nanofiber intermediate beads can be obtained instead of nanofibers of a constant diameter.
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Figure 2. Field emission scanning electron microscope (FE-SEM) images of electrospinning TiO2/ZnO
nanofibers: (A) 12 kV, (B) 15 kV, and (C) 18 kV.

The average diameters of TiO2/ZnO nanofibers with applied voltage was 1025 nm, 735 nm,
and 694 nm, respectively. It reveals that the higher the voltage, the smaller the diameter. The diameters
of TiO2/ZnO nanofibers with applied voltage are plotted in Figure 3.
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Figure 3. Average diameters of TiO2/ZnO nanofibers with voltage.

Figure 4 shows FE-SEM images of TiO2/ZnO nanofibers fabricated by the electrospinning process
at various inflow rates of 1.0 mL/h, 0.8 mL/h, and 0.6 mL/h. A one-dimensional nanofiber was observed
in all TiO2/ZnO nanofibers. When the flow rate of the electrospinning solution is fast, the size of
the droplet that forms on the tip of the needle becomes large. Even when the solution is reached at
the collector, the solvent in the solution may not be completely evaporated, and a nanofiber with a
bead-shape or large diameter can be obtained.
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Figure 4. FE-SEM images of electrospinning TiO2/ZnO nanofibers: (A) 1 mL/h, (B) 0.8 mL/h, and (C)
0.6 mL/h.

The average diameters of TiO2/ZnO nanofibers with an inflow rate were 1025 nm, 771 nm,
and 728 nm, respectively. The average diameter of TiO2/ZnO nanofibers increased with inflow rate.
The diameters of TiO2/ZnO nanofibers with an inflow rate are plotted in Figure 5.



Appl. Sci. 2019, 9, 3404 6 of 13Appl. Sci. 2019, 9, x 6 of 13 

 

Figure 5. Average diameters of TiO2/ZnO nanofibers with inflow rate. 

Figure 6 shows FE-SEM images of TiO2/ZnO nanofibers fabricated by the electrospinning 
process at various amounts of acetic acid—21 wt %, 28 wt %, and 35 wt %—in the precursor solution. 
All TiO2/ZnO nanofibers have nanofiber structural networks. As the amount of acetic acid in the 
electrospinning solution increases, the viscosity decreases, and the diameter of the nanofibers 
dramatically decreases. This reveals that the viscosity is the most important parameter for controlling 
the diameter in the electrospinning process. 

 

Figure 6. FE-SEM images of electrospinning TiO2/ZnO nanofibers: (A) 21 wt %, (B) 28 wt %, and (C) 
35 wt %. 

The average diameters of TiO2/ZnO nanofibers with an inflow rate were 1025 nm, 233 nm, and 
189 nm, respectively and the average diameter dramatically decreased with the amount of acetic acid. 
The diameters of TiO2/ZnO nanofibers with different amounts of acetic acid are plotted in Figure 7.  

Figure 5. Average diameters of TiO2/ZnO nanofibers with inflow rate.

Figure 6 shows FE-SEM images of TiO2/ZnO nanofibers fabricated by the electrospinning process at
various amounts of acetic acid—21 wt %, 28 wt %, and 35 wt %—in the precursor solution. All TiO2/ZnO
nanofibers have nanofiber structural networks. As the amount of acetic acid in the electrospinning
solution increases, the viscosity decreases, and the diameter of the nanofibers dramatically decreases.
This reveals that the viscosity is the most important parameter for controlling the diameter in the
electrospinning process.
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Figure 6. FE-SEM images of electrospinning TiO2/ZnO nanofibers: (A) 21 wt %, (B) 28 wt %, and (C) 35
wt %.

The average diameters of TiO2/ZnO nanofibers with an inflow rate were 1025 nm, 233 nm,
and 189 nm, respectively and the average diameter dramatically decreased with the amount of acetic
acid. The diameters of TiO2/ZnO nanofibers with different amounts of acetic acid are plotted in
Figure 7.
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Appl. Sci. 2019, 9, x 7 of 13 

 
Figure 7. Average diameters of TiO2/ZnO nanofibers according to the amount of acetic acid. 

To observe the crystal phase of TiO2/ZnO nanofibers, XRD analysis was conducted. Figure 8 
shows the XRD pattern of TiO2/ZnO nanofibers. The peaks of TiO2 anatase, ZnO, Ti2O3, and ZnTiO3 
were identified and the peak of ZnTiO3 was obtained by the reaction of TiO2 and ZnO. 

 

Figure 8. X-ray diffraction (XRD) pattern of TiO2/ZnO nanofibers. 

3.2. Photocatalytic Performance Evaluation 

The photocatalytic reaction of TiO2/ZnO is schematically shown in Figure 9. The electrons in the 
valence band can move to the conduction band and generate holes in the valence band by ultraviolet 
(UV) rays in sunlight. In heterojunction of ZnO with an energy band gap of 3.2 eV and TiO2 with an 
energy band gap of 3.4 eV, the electrons in the conduction band of ZnO move to the conduction band 
of TiO2; then the holes move from the valence band of TiO2 to the valence band of ZnO. Electrons 
transferred to the TiO2 conduction band react with O2 to form a superoxide anion (O2¯). The holes 
transferred to the ZnO valence band react to form a strong hydroxyl radical (OH•). Such reactions 
continuously occur under UV irradiation, and high active radicals such as O2− and OH• can promote 
the photodegradation of organic pollutants [46–49]. Photodegradation characteristics using 
methylene blue were investigated for photocatalytic performance evaluation of TiO2/ZnO nanofibers. 
TiO2 nanofibers were used as a reference material to compare with TiO2/ZnO nanofibers. All 
nanofibers were fabricated by the electrospinning process. 

Figure 8. X-ray diffraction (XRD) pattern of TiO2/ZnO nanofibers.

3.2. Photocatalytic Performance Evaluation

The photocatalytic reaction of TiO2/ZnO is schematically shown in Figure 9. The electrons in the
valence band can move to the conduction band and generate holes in the valence band by ultraviolet
(UV) rays in sunlight. In heterojunction of ZnO with an energy band gap of 3.2 eV and TiO2 with an
energy band gap of 3.4 eV, the electrons in the conduction band of ZnO move to the conduction band
of TiO2; then the holes move from the valence band of TiO2 to the valence band of ZnO. Electrons
transferred to the TiO2 conduction band react with O2 to form a superoxide anion (O2¯). The holes
transferred to the ZnO valence band react to form a strong hydroxyl radical (OH•). Such reactions
continuously occur under UV irradiation, and high active radicals such as O2

− and OH• can promote the
photodegradation of organic pollutants [46–49]. Photodegradation characteristics using methylene blue
were investigated for photocatalytic performance evaluation of TiO2/ZnO nanofibers. TiO2 nanofibers
were used as a reference material to compare with TiO2/ZnO nanofibers. All nanofibers were fabricated
by the electrospinning process.
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Figure 9. Illustration of photocatalytic mechanism in TiO2/ZnO heterojunction [46].

Figure 10 shows the FE-SEM images of TiO2 nanofibers and TiO2/ZnO-1 and TiO2/ZnO-2
nanofibers used in methylene blue photolysis experiments for photocatalytic performance evaluation.
The microstructure in all nanofibers shows a typical one-dimensional nanofiber structure and their
shapes are similar to each other. The diameters of TiO2, TiO2/ZnO-1, and TiO2/ZnO-2 nanofibers are
400 nm, 600 nm, and 400 nm, respectively. The diameters of TiO2 nanofibers and TiO2/ZnO-1 and
TiO2/ZnO-2 nanofibers are summarized in Table 3.
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Table 3. The nanofibers used in the methylene blue decomposition experiments for photocatalytic
performance evaluation.

Nanofibers Diameter (nm)

TiO2 400 ± 32
TiO2/ZnO-1 600 ± 27
TiO2/ZnO-2 400 ± 13

Figure 11 shows the absorption spectra to evaluate the photocatalytic performance of TiO2/ZnO
nanofibers observed by UV–Vis analysis. Figure 11a–d are the spectra of methylene blue without
nanofibers, with TiO2 nanofibers, with TiO2/ZnO-1 nanofibers, and with TiO2/ZnO-2 nanofibers,
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respectively. A total of 0.5 g of nanofiber was added in a 200 mL methylene blue solution (Figure 11b–d).
All spectra have peaks at wavelength of 291 nm, 611 nm, and 656 nm. The intensity of the peaks
gradually decreased with time because some factors such as UV, TiO2 nanofibers, and TiO2/ZnO
nanofibers, cause methylene blue to decompose. Since methylene blue shows a low absorbance when
photolyzed by photocatalytic reaction, it is possible to know whether the photocatalytic reaction has
occurred or not [50,51].
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To make sure methylene blue decomposed by photocatalytic reaction, the concentration of
methylene blue on time was measured and normalized. The curves of normalized value (C/Co) were
plotted as shown in Figure 12. In methylene blue solution without TiO2 nanofibers, the concentration
very slowly decreased with time and only UV irradiation decomposed the methylene blue. After UV
irradiation of 12 h, the normalized value of 0.874 was shown and the photodegradation rate was
12.6%. In methylene blue solution with TiO2 nanofibers, the normalized value decreased to 0.581
and the photodegradation rate was 41.9%. In methylene blue solution with TiO2/ZnO nanofibers,
the normalized value dramatically decreased. This reveals that UV irradiation and photocatalytic
reaction of TiO2/ZnO nanofibers affect the decomposition of methylene blue. After UV irradiation of
12 h, the normalized values in methylene blue with TiO2/ZnO-1 nanofibers and TiO2-ZnO-2 nanofibers
were 0.054 and 0.037 and a photodegradation rate of 94.6% and 96.3% were observed, respectively.
The photodegradation rate in methylene blue with TiO2/ZnO nanofibers was higher than with TiO2

nanofibers. This shows that TiO2/ZnO nanofibers decompose methylene blue more efficiently than TiO2

nanofibers, and the photodegradability of TiO2/ZnO nanofibers is better than that of TiO2 nanofibers.
The best photocatalytic decomposition performance for methylene blue was observed in methylene
blue with TiO2/ZnO-2 nanofibers. It was found that TiO2/ZnO-2 nanofibers with a small diameter have
better photolytic properties than TiO2/ZnO-1 nanofibers [46–51].
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One-dimensional TiO2/ZnO nanofibers were fabricated by the electrospinning process with
various process conditions. The voltage, inflow rate, and amount of acetic acid in precursor were
controlled to obtain the optimized microstructure of TiO2/ZnO nanofibers. The average diameter of
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and increased with inflow rate. Electrospun TiO2/ZnO nanofibers have the crystalline structures
of TiO2 anatase, ZnO, Ti2O3, and ZnTiO3. The best photocatalytic decomposition performance of
methylene blue was observed in TiO2/ZnO-2 nanofibers having a diameter of 400 nm. To increase
the specific surface area in a way that improves the photocatalytic properties of these TiO2/ZnO
nanofibers, variables of the electrospinning process should be controlled to make the diameter small.
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