
applied  
sciences

Article

A Novel Combined Evolutionary Algorithm for
Optimal Planning of Distributed Generators in
Radial Distribution Systems

Rabea Jamil Mahfoud 1 , Yonghui Sun 1,*, Nizar Faisal Alkayem 2 , Hassan Haes Alhelou 3 ,
Pierluigi Siano 4,* and Miadreza Shafie-khah 5

1 College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China
2 Department of Engineering Mechanics, Hohai University, Nanjing 210098, China
3 Department of Electrical Power Engineering, Faculty of Mechanical and Electrical Engineering,

Tishreen University, Lattakia 2230, Syria
4 Department of Management & Innovation Systems, University of Salerno, 84084 Salerno, Italy
5 School of Technology and Innovations, University of Vaasa, 65200 Vaasa, Finland
* Correspondence: sunyonghui168@gmail.com (Y.S.); psiano@unisa.it (P.S.); Tel.: +39-320-4646-454 (P.S.)

Received: 7 July 2019; Accepted: 15 August 2019; Published: 17 August 2019
����������
�������

Abstract: In this paper, a novel, combined evolutionary algorithm for solving the optimal planning
of distributed generators (OPDG) problem in radial distribution systems (RDSs) is proposed.
This algorithm is developed by uniquely combining the original differential evolution algorithm (DE)
with the search mechanism of Lévy flights (LF). Furthermore, the quasi-opposition based learning
concept (QOBL) is applied to generate the initial population of the combined DELF. As a result, the
new algorithm called the quasi-oppositional differential evolution Lévy flights algorithm (QODELFA)
is presented. The proposed technique is utilized to solve the OPDG problem in RDSs by taking three
objective functions (OFs) under consideration. Those OFs are the active power loss minimization,
the voltage profile improvement, and the voltage stability enhancement. Different combinations of
those three OFs are considered while satisfying several operational constraints. The robustness of
the proposed QODELFA is tested and verified on the IEEE 33-bus, 69-bus, and 118-bus systems and
the results are compared to other existing methods in the literature. The conducted comparisons
show that the proposed algorithm outperforms many previous available methods and it is highly
recommended as a robust and efficient technique for solving the OPDG problem.

Keywords: radial distribution systems; distributed generators; differential evolution; Lévy flights;
quasi-opposition based learning

1. Introduction

The importance of the optimal operation of radial distribution systems (RDSs) arises from the
continuous need of highly reliable operation of those systems to ensure high quality delivered-power
to the end consumers, which is not an easy mission due to multiple reasons. The main reason is the
lack of controllability because of the absence of power generation, in other words, the passive nature of
RDSs. Other reasons are the high R/X ratio and the increase of load demand [1].

The operation of RDSs with the presence of those difficulties may lead to many operational
problems, such as low reliability and bad quality of electricity, an increase of the system’s power losses,
high voltage deviation, and poor voltage stability. Converting the nature of RDSs from passive to
active by installing small distributed generators (DG) near to end consumers is one of the solutions
to overcome those technical problems. DG units improve the voltages along the feeder; enhance the
reliability, as well as the quality; increase the voltage stability; allow more power to be transmitted
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through the feeders which defers the investments on future expansion of transmission and distribution
systems; and reduce the total system’s losses along with their costs [2,3].

In order to extract the maximum advantages from the installed DGs, it is necessary to allocate
them at the optimum buses with the optimal sizes, whereas inappropriate installation of DGs could
lead to unwanted effects, such as higher power losses. Hence, the optimal planning of DGs (OPDG) is
regarded as a critical problem needed to be effectively solved, especially for large-scale RDSs. It is
difficult to find the global optimal solution of the OPDG problem, due to the nonlinear nature of the
objective functions and constraints. Therefore, this challenge gives researchers a good motivation to
develop new algorithms for solving this problem. In recent years, numerous research works using
different methods have been published about the OPDG problem in RDSs. Those methods can be
basically categorized into groups which are mainly: Analytical techniques, conventional approaches,
and evolutionary algorithms [4,5].

Many analytical techniques have been applied for solving the OPDG problem in RDSs [6–10].
Some of them are based on sensitivity indices, such as power stability index [6], voltage stability
index [7], and combined power loss sensitivity [8]. A comparison of optimal DG allocation methods
based on many sensitivity approaches was presented in [9]. In [10], the proposed method was based
on minimizing the losses associated with the changes in active and reactive components of branch
currents caused by DG placements. In general, most of those analytical methods were applied to only
minimize power loss in small and medium-scale RDSs.

The nonlinear features of the OPDG problem make it solvable by implementing the conventional
iterative methods. Two of those methods are: Non-linear programming (NLP) [11], and dynamic
programming (DP) [12]. In [13], the active power loss was minimized by a mixed integer non-linear
programming (MINLP) based approach, which was used for allocating single and multiple DGs in
RDSs. The main disadvantage of those methods was their inability when dealing with complex and
large-scale problems, regarding either the computational time or convergence.

In the last few decades, evolutionary algorithms (EA) have been massively employed for solving
the OPDG problem. Those metaheuristic methodologies have proved their ability to effectively
solve that problem even for complex and large-scale RDSs. In [14], the OPDG was addressed as
multi-objective mixed integer problem solved by a genetic algorithm (GA) used to minimize the costs
of different parts of the system. Many versions of GAs were developed to deal with the OPDG problem,
as in [15,16], where the power loss and voltage deviation were minimized by the optimal allocation
of DGs, considering uncertainties of load and generation in [15]. The same objectives of power loss
and voltage deviation were minimized by optimally allocating DGs and on-load tap changer (OLTC)
in [16]. A particle swarm optimization (PSO) algorithm was also widely used for solving the OPDG
problem. A multi-objective index-based method for the optimal planning of multiple DGs in RDSs with
different loads was proposed in [17] by applying PSO. In [18], different types of DGs were considered
for the optimal planning by minimizing the power loss using PSO. A new formulation was proposed
to consider the uncertainties in the renewable DGs output in order to optimally allocate them while
minimizing the total harmonic distortion, power loss, and total costs by PSO in [19]. An artificial
bee colony (ABC) based method was presented in [20] to solve the OPDG problem by minimizing
the power loss. Several algorithms were also developed to solve that problem, such as the modified
honey bee mating optimization algorithm (HBMO) [21], the improved gravitational search algorithm
(IGSA) [22], and symbiotic organisms search (SOS) algorithm [23].

Moreover, the hybridization of two or more EA methods in order to improve their performances
has been rapidly adopted as an efficient way to solve the OPDG problem. The authors in [24]
presented a hybrid GA–PSO method to simultaneously minimize the power loss and voltage
deviation while enhancing the voltage stability. A multi-objective hybrid teaching—learning based
optimization—Grey–Wolf optimizer (MOHTLBOGWO) based on a fuzzy decision-making method was
developed in [25] for loss minimization and reliability enhancement using renewable DGs. Another
multi-objective opposition based chaotic differential evolution (MOCDE) algorithm was proposed
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in [26] for solving a similar problem but with various objectives. Additionally, powerful hybrid
techniques were proposed to find the optimal solution of the same problem, such as the grid-based
multi-objective harmony search (GrMHS) algorithm [27], and the quasi-oppositional swine influenza
model based optimization with quarantine (QOSIMBO-Q) [28].

However, most of the aforementioned algorithms were only applied on small and medium-scale
RDSs. Nevertheless, few works have been done so far considering the large-scale systems [29–32].
The algorithms applied in those papers are: QO-teaching-learning based optimization (QOTLBO) [29],
loss sensitivity factor-simulated annealing (LSFSA) [30], krill herd algorithm (KHA) [31], and stochastic
fractal search algorithm (SFSA) [32]. Therefore, new and robust algorithms are needed to solve the
OPDG problem, especially for large-scale RDSs with different combinations of the most important
objectives regarding the optimal operation of radial systems.

In this paper, a novel combined evolutionary algorithm, named the quasi-oppositional differential
evolution Lévy flights algorithm (QODELFA) is proposed. The quasi-opposition based learning
concept (QOBL) is applied to generate the initial population of the combination between the original
differential evolution (DE) algorithm and the Lévy flights (LF) perturbation. The new method is
utilized for optimal sitting and sizing of DGs in RDSs by taking three objective functions (OFs) under
consideration. Those OFs are the active power loss (APL) minimization, the voltage deviation (VD)
improvement, and the voltage stability index (VSI) enhancement. Two types of DGs are studied
based on their power factor (PF); i.e., unity and non-unity. Different combinations of the three OFs
are considered while satisfying several operational constraints. The effectiveness of the proposed
QODELFA is tested and verified on the IEEE 33-bus, 69-bus, and large-scale 118-bus systems, and the
results are compared to many existing methods in the literature.

The rest of this paper is arranged as follows: The detailed description of the proposed QODELFA
is presented in Section 2. A performance comparison between QODELFA and several novel algorithms
is also addressed in this section. The OPDG problem formulation is explained in Section 3. In Section 4,
the implementation of the proposed algorithm on the OPDG problem is described in details. Simulation
results, comparisons, and discussions are demonstrated in Section 5. Finally, Section 6 outlines
the conclusions.

2. Details and Performance Analysis of QODELFA

2.1. Main Procedures of QODELFA

The QODELFA proposed in this paper is basically a unique combination of the DE algorithm and
LF perturbation. Furthermore, the concept of QOBL is applied to generate the initial population of the
combined DELFA. The main operations and steps of QODELFA are demonstrated in detail as follows.

2.1.1. Procedures of DE

DE is a simple and efficient meta-heuristic optimization method [33]. The basics of DE are
described in this subsection.

• Mutation:

The concept of DE depends on generating new solutions by

Slmi = Slrnd1 + FDE·(Slrnd2 − Slrnd3) (1)

where Slmi stands for the mutant solution, Slrnd1 , Slrnd2 , and Slrnd3 are randomly defined solutions, and
FDE ∈ [0, 2] is an amplifying parameter.
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For better enhancing the DE’s performance, the superior solution Slsu is deduced in every
generation, and multiple randomly defined solutions (Slrnd1 , Slrnd2 , Slrnd3 , and Slrnd4) are created.
This procedure can be explained as

Slmi = Slsu + Fm
DE·(Slrnd1 − Slrnd2 + Slrnd3 − Slrnd4), (2)

where Fm
DE is modified by utilizing it as given in the following equation

Fm
DE = Fmax − (t− 1)(Fmax − Fmin)/(M− 1), (3)

where Fmin = 0, Fmax = 2, t is the iteration number, and M is the maximum number of iterations.

• Crossover:

Another improvement of the searching process is done by executing the crossover, where trial
solutions tri in iteration t + 1 are evolved by

trt+1
i =

{
Slt+1

mi

Slti

i f
i f

r ≤ cr
r ≥ cr

, (4)

where r ∈ [0, 1], and cr is the crossover rate.

• Greedy Selection:

The last step in DE is to perform the selection by the ‘greedy selection’, where a comparison
between Slt+1

mi
and Slti is made, then the most superior solution will be placed in the population.

2.1.2. LF Perturbation:

LF perturbation is based on mathematically characterizing the random walks of the critters [34],
where the generation of a new solution by LF is executed by

Slt+1
i = Slti + stepi, (5)

where stepi is the step size [34], which is calculated by

stepi = α0(Sltj − Slti) ⊕ Levy(β) ≈ 0.01
x∣∣∣y∣∣∣ 1
β

(Sltj − Slti), (6)

where α0 is a constant, Sltj and Slti stand for two randomly defined solutions, ⊕ is the entry-wise
multiplication, Levy(β) represents the Lévy probability distribution function of β, and x and y can be
computed by applying the normal distribution function{

x = N(0, σ2
x)

y = N(0, σ2
y)

, (7)

where σx =

 Γ(1+κ) sin( πκ2 )

Γ
[
(1+κ)

2

]
κ2

(κ−1)
2


1
η

, κ ∈ [1, 2] is an index, Γ stands for the gamma function, η = 1.5 and

σy = 1.

2.1.3. Concept of QOBL

The opposition-based learning (OBL) was essentially developed for the purpose of reducing the
computational time, as well as improving the convergence abilities of different EAs [35]. By considering
each of the current populations and their opposite populations based on OBL, the candidate solution
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will be improved. This concept is simple and easy to implement which makes it suitable to enhance
the performance of the combined DELF algorithm proposed in this paper. As mentioned in [35],
an opposite candidate solution (CS) might be closer to the global optimal solution than an arbitrary CS.
Hence, the comparison between a random CS and its opposite will lead to the global optimum with
faster convergence rate. The quasi-opposite number was further investigated in [36] and proved that it
is usually closer to the optimal solution than the opposite number. This improved concept of QOBL
has been used to solve the OPDG problem by enhancing the performance of some algorithms [28,29],
but it has not been utilized to improve such a combined DELF algorithm as proposed in this paper.
Accordingly, the initial population of this algorithm is generated based on the QOBL concept, where the
greedy selection of DE is employed to determine whether an initial random solution is better than
its quasi-opposite solution or not. As a result of this comparison, the best among original and
quasi-opposite solutions will be kept in the initial population. This will increase the diversity and
exploration of the generated initial population. Consequently, the algorithm will mostly converge to
the global optimum with faster rate. The definitions of opposite number, opposite point, quasi-opposite
number, and quasi-opposite point are given as follows [28]:

For any random number x ∈ [a, b], its opposite number xo is given by

xo = a + b− x, (8)

while the opposite point for multi-dimensional search space (d dimensions) is defined as

xi
o = ai + bi

− xi; i = 1, 2, . . . , d (9)

and the quasi-opposite number xqo of any random number x ∈ [a, b] is given by

xqo = rand(
a + b

2
, xo), (10)

similarly, the quasi-opposite point for multi-dimensional search space (d dimensions) is defined as

xi
qo = rand(

ai + bi

2
, xi

o). (11)

2.2. The QODELFA

The main procedures mentioned in the previous subsection are uniquely combined to construct
the QODELFA as depicted in the flowchart given in Figure 1. The stochastic parameters of the proposed
technique are varied in a step-wise fashion to select the optimal parameter values able to provide the
best algorithmic performance. First, an initial population of random solutions is created and then
enhanced by using the QOBL concept. Thereafter, the DE is used to improve the initial population
using mutation, crossover and selection. After that, the LF perturbation is executed along with the DE’s
crossover and selection operations. The greedy selection is utilized as a selection mechanism along the
stages of the algorithm. Finally, the iterations are terminated when the stopping criteria are satisfied.

2.3. Performance Comparison by Solving Benchmark Functions

In order to analyze the performance of QODELFA, ten benchmark functions taken from [37],
as shown in Table 1, were used as test functions. Besides, the proposed algorithm’s performance was
compared with several algorithms: PSO, DE, GA, ABC, the sine-cosine algorithm (SCA), and the firefly
algorithm (FA). The default parameters of those algorithms were used in this procedure. For each
test function and each algorithm, ten independent runs are executed. For the comparison purposes,
40,000 evaluations were considered for all algorithms.



Appl. Sci. 2019, 9, 3394 6 of 32

Table 2 illustrates the results for minimizing the test functions using the mentioned algorithms,
including the minimum (Min.), maximum (Max.), mean, and standard deviation (SD) values for each
function. The desired optimal value of minimizing all the ten benchmark functions is zero.

According to the results presented in Table 2, it can be observed that QODELFA gives better values
than the other algorithms regarding most of the test functions. Those results verify the robustness of
the proposed algorithm.Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 33 
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Figure 1. Flowchart of the quasi-oppositional differential evolution Lévy flights algorithm (QODELFA).

The effectiveness of QODELFA was further validated by comparing its convergence characteristics
with those of the algorithms listed in Table 2. The functions: Rastrigin, Perm 0, d, β, Power sum,
and Rosenbrock were selected for this test as they are categorized in different groups [37]. A total
of 20,000 evaluations were considered for all algorithms in this comparison. Figures 2–5 illustrate
the evolution of the mean value of the four functions versus the iteration number of all algorithms.
The “semiology” command is used in Matlab for plotting, since the logarithmic scale on the y-axis is
needed to clearly depict the comparison. As obviously shown in Figures 2–5, the QODELFA effectively
converges to the optimal values faster than the other algorithms.

3. OPDG Problem Formulation

The aim of the OPDG problem studied in this paper is to optimally allocate and operate DGs in
RDSs to minimize each instance of active power loss and voltage deviation, and maximize the voltage
stability index, while satisfying different equality and inequality constraints.
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The mathematical formulations of this optimization problem are given as follows.

3.1. Objective Functions

3.1.1. Minimization of Active Power Loss

The active power loss (APL) of the RDS is minimized according to this objective function which is
given by

OF1 : min(
APL
APLb

), (12)

where APLb is the active power loss of the base-case (before adding DGs). The APL is expressed by

APL =
br∑

k=1

I2
k Rk, (13)

where br is the number of branches in the system, and Ik and Rk are the current and resistance of branch
k, respectively [25].

Table 1. Benchmark functions.

Function Formula Input
Domain No. of Parameters

f1(x)
1

−20 exp

−0.2

√
1
d

d∑
i=1

x2
i

− exp
(

1
d

d∑
i=1

cos(2πxi)

)
+ 20 + e [−32.768,32.768] 20

f2(x)
2

d∑
i=1

x2
i

4000 −
d∏

i=1
cos

(
xi√

i

)
+ 1 [−600,600] 20

f3(x)
3 10d +

d∑
i=1

[
x2

i − 10 cos(2πxi)
]

[−5.12,5.12] 5

f4(x)
4 sin2(πw1) +

d−1∑
i=1

(wi − 1)2
[
1 + 10 sin2(πwi + 1)

]
+

(wd − 1)2
[
1 + sin2(2πwd)

] [−10,10] 20

f5(x)
5 d∑

i=1

 d∑
j=1

( j + β)
(
xi

j −
1
ji

)2

[−d,d] 5

f6(x)
6

d∑
i=1

ix2
i [−10,10] 30

f7(x)
7

d∑
i=1

i∑
j=1

x2
j [−65.54,65.54] 20

f8(x)
8 d∑

i=1

 d∑
j=1

xi
j

− bi

2

[0,d] 4

f9(x)
9

d−1∑
i=1

[
100(xi+1 − x2

i )
2
+ (xi − 1)2

]
[−5,10] 4

f10(x)
10 (x1 − 1)2 +

d∑
i=2

i(2x2
i − xi−1)

2 [−10,10] 10

1Ackley, 2Griewank, 3Rastrigin, 4Levy, 5Perm 0, d, β, 6sum squares, 7rotated hyper-ellipsoid, 8power sum,
9Rosenbrock, 10Dixon–Price.

3.1.2. Minimization of Voltage Deviation

The voltage deviation (VD) of the system is minimized based on this objective function so that the
voltage profile is improved, which is given by

OF2 : min(
VD
VDb

), (14)
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where VDb is the voltage deviation of the base-case. The VD is formulated as

VD =
n∑

i=1

(Vi −Vr)
2, (15)

where n denotes the number of buses in the system, Vi is the voltage magnitude at bus i, and Vr is the
rated voltage which is equal to 1.0 p.u. [24].

3.1.3. Maximization of Voltage Stability Index

As shown in Figure 6, the voltage stability index (VSI) of bus j = 2, 3, . . . , n of an RDS is defined by

VSI j = |Vi|
4
− 4 ∗ (P jXk −Q jRk)

2
− 4 ∗ (P jRk + Q jXk) ∗ |Vi|

2. (16)

The VSI is usually calculated to evaluate whether the system is stable or not, where for stable
systems, VSI should be more than zero for all buses along the feeder so that the system can avoid the
voltage collapse. Thus, this index needs to be maximized [25]. In this case, the objective function is
written as

Table 2. Comparison of results for minimizing benchmark functions by using different algorithms.

Function Value GA PSO DE FA ABC SCA QODELFA

f1(x)

Min. 0.001500000 7.9936E-15 5.5078E-05 3.5994E-05 0.001499 3.3672E-05 3.2346E-06
Max. 1.501800000 1.5099E-14 9.1151E-05 5.0207E-05 0.005632 0.00136427 1.8930E-05
Mean 0.494010000 1.1546E-14 7.7296E-05 4.3945E-05 0.003136 0.00052707 7.6498E-06

SD 0.650915210 3.7449E-15 1.3982E-05 4.1056E-06 0.001235 0.00039639 4.6941E-06

f2(x)

Min. 1.67057E-07 1.85E-13 1.89310E-06 4.48524E-08 0.023929 3.53044E-05 3.01981E-14
Max. 0.007396679 0.058921 6.47944E-05 0.009864731 0.305490 0.260080741 0.022126734
Mean 0.000740400 0.026802 1.42411E-05 0.002465738 0.088867 0.079647319 0.007140086

SD 0.002338778 0.019734 1.85757E-05 0.004026563 0.085039 0.105481599 0.008401261

f3(x)

Min. 0.994959 0 2.01E-11 0.994959 0.200500 0 0
Max. 5.969749 1.989918 1.15E-09 5.969754 1.657200 9.32E-11 3.34E-13
Mean 2.984877 0.596975 3.80E-10 3.283365 0.768219 9.40E-12 1.19E-13

SD 1.483196 0.839023 3.53E-10 1.410988 0.537652 2.94E-11 1.23E-13

f4(x)

Min. 3.02E-09 3.28E-19 6.41E-10 9.21E-11 0.000138 1.056931 1.80E-12
Max. 0.998176 3.91E-18 2.03E-09 1.33E-10 0.001058 1.279176 4.79E-10
Mean 0.172109 2.65E-18 1.14E-09 1.19E-10 0.000406 1.180877 9.38E-11

SD 0.335319 1.52E-18 4.79E-10 1.27E-11 0.000265 0.085863 1.45E-10

f5(x)

Min. 0.000224 3.50E-05 0.003839 8.36E-09 0.001526 0.204203 8.50E-11
Max. 0.051547 0.000233 0.105156 0.031277 0.025481 1.154009 1.91E-09
Mean 0.017779 0.000159 0.031891 0.005996 0.014717 0.523433 7.76E-10

SD 0.018239 7.25E-05 0.030668 0.009571 0.008200 0.299470 5.70E-10

f6(x)

Min. 1.50E-05 5.76E-13 6.34E-05 7.05E-09 0.119930 0.001221 4.21E-06
Max. 0.000791 3.05E-11 0.000117 1.08E-08 0.221020 2.772696 9.49E-05
Mean 0.000243 8.88E-12 9.21E-05 9.15E-09 0.169986 0.887205 3.10E-05

SD 0.000294 9.99E-12 1.57E-05 1.02E-09 0.032625 1.029825 2.83E-05

f7(x)

Min. 2.91E-08 2.22E-17 1.13E-07 7.16E-08 6.58E-05 1.14E-06 1.19E-09
Max. 0.002864 5.91E-15 2.52E-07 1.09E-07 0.000191 0.001364 6.48E-08
Mean 0.000306 1.21E-15 1.84E-07 9.21E-08 0.000109 0.000251 1.87E-08

SD 0.000900 1.93E-15 3.93E-08 1.36E-08 3.71E-05 0.000455 2.12E-08

f8(x)

Min. 0.000104 3.97E-09 0.001110 6.21E-08 0.002016 0.068476 1.36E-11
Max. 0.067100 0.000751 0.035307 0.000303 0.024256 1.294515 4.61E-07
Mean 0.012986 0.000230 0.016135 0.09E-07 0.009848 0.832464 8.88E-08

SD 0.021051 0.000288 0.012371 0.000102 0.007333 0.404648 1.34E-07

f9(x)

Min. 0.044047 0.002463 0.003089 1.01E-11 0.004665 0.389459 0
Max. 3.750229 0.007062 0.068908 8.66E-11 0.146660 1.238042 3.72E-29
Mean 1.217668 0.004882 0.023161 4.15E-11 0.052185 0.694527 5.08E-30

SD 1.364193 0.001598 0.022713 2.45E-11 0.041106 0.247694 1.16E-29

f10(x)

Min. 0.666667 1.84E-12 1.19E-11 0.666667 0.592410 0.666668 0.028088
Max. 0.666747 0.666667 0.743694 0.666667 0.667160 0.666776 0.097842
Mean 0.666675 0.600000 0.572044 0.666667 0.659358 0.666689 0.058687

SD 2.54E-05 0.210819 0.302020 3.24E-11 0.023524 3.59E-05 0.026335
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max(VSI j) = min(
1

VSI j
) (17)

⇒ OF3 : min(
VSI−1

VSIb
−1

), (18)

where VSIb
−1 is the voltage stability index of the base-case.

The overall objective function is formulated using the weighted sum method as follows:

F = min(ω1·OF1 +ω2·OF2 +ω3·OF3), (19)

where ω1,ω2 and ω3 ∈ [0, 1] are the weighting factors. In this paper, three different cases regarding
the mentioned OFs are considered in the study according to their importance. Hence, for each case,
the weighting factors will take different values, which will be explained later.
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3.2. Constraints

3.2.1. Power Balance

The mathematical formulations of the power flow equations, which are defined as equality
constraints are given by

Pss +

nDG∑
i=1

PDGi =

nL∑
i=1

PLi + APL, (20)

Qss +

nDG∑
i=1

QDGi =

nL∑
i=1

QLi + RPL, (21)

where Pss and Qss are the active and reactive power taken from the substation, PDGi and QDGi are the
active and reactive power of the DG at bus i, PLi and QLi denote the active and reactive power of load
at bus i, nDG is the total number of DGs, nL is the total number of loads, and APL and RPL represent
the active and reactive power loss of the system, respectively [23].

3.2.2. Voltage Limits

The voltage magnitudes at all buses along the feeder should remain within the limits:

Vmin ≤ Vi ≤ Vmax, (22)

where Vmax and Vmin are the upper and lower limits of bus voltage, respectively [27].

3.2.3. Active and Reactive Power Limits of DG

Both active and reactive powers of DGs should be kept in their limits as

PDGmin ≤ PDGi ≤ PDGmax, (23)

P2
DGi

+ Q2
DGi
≤ S2

DGi
, (24)

where PDGmin and PDGmax are the minimum and maximum limits of DG’s active power, and PDGi ,
QDGi , and SDGi denote the active, reactive, and apparent power of the DG at bus i, respectively [28].

It should be noted that for DGs at the unity power factor, only the constraint given in Equation (23)
is considered. Whereas both constraints given in Equations (23) and (24) are taken when DGs operate
at non-unity power factor.

3.2.4. Permissible Limit of DG Penetration

The sum of all powers injected into the system by DGs should be limited for unity power factor
units as

nDG∑
i=1

PDGi ≤

nL∑
i=1

PLi , (25)

and for non-unity power factor units as

nDG∑
i=1

SDGi ≤

nL∑
i=1

SLi (26)

where SLi is the apparent power of load at bus i [32].

4. Implementation of QODELFA on the OPDG Problem

In this section, a detailed demonstration of utilizing the QODELFA to solve the OPDG problem in
RDS by minimizing the APL, VD, and maximizing the VSI is given.
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Algorithm: QODELFA for solving the OPDG problem.

A: Input load and line data for the RDS, and set required
parameters for the algorithm: maximum number of iterations (M),
population size (PS), total number of variables (N), cr, and β.
B: Run the power flow program to record the base-case values of
the system’s characteristics and the objective functions.
C: QOBL Initialization
1: Create initial population (IP) of random solutions by generating
a (PS × N) matrix, where every row of this matrix contains the
sizes and locations of DGs.
2: Evaluate the IP by the objective function (OF) given in (19) after
adding penalties in case of violating the constraints as

OFTotal = OF + ρ1

n∑
i=1

(Vi −Vr)
2 + ρ2

n∑
i=1

(PDG − Plim
DG)

2 (27)

where ρ1,ρ2 are penalty coefficients.
3: Regenerate the IP based on the QOBL technique given in (11).
4: Evaluate the QOBL-based IP by the OFTotal given in (27).
5: Apply the greedy selection (GS) to compare both IPs evaluated
in steps 2 and 4 and save the best population.
6: Assign the QOBL-based population saved in step 5 as the IP of
the DELF’s main loop.

D: Main loop:
7: while stopping criterion is not satisfied, do
8: Apply the mutation of DE on the population according to (2)
considering the limits on sizes and locations of DGs.
9: Evaluate the mutant solution by the OFTotal given in (27).
10: Execute the crossover on the mutant solution according to (4),
then evaluate it by the OFTotal given in (27).
11: Apply the GS to keep the superior population by comparing
both solutions evaluated in steps 9 and 10.
12: Apply the LF perturbation on the superior solution saved in
step 11 according to (5) considering the limits on sizes and
locations of DGs.
13: Evaluate the new solution by the OFTotal given in (27).
14: perform the crossover on the new solution according to (4),
then evaluate it by the OFTotal given in (27).
15: Apply the GS to keep the new superior solution by comparing
both solutions evaluated in steps 13 and 14.
16: end while
E: Display the final obtained solutions and save the results.

Remark 1: The QOBL technique has been used to solve the OPDG problem by enhancing the
performance of some algorithms in the population initialization and generation stage as in [28,29],
but this concept has not been utilized to improve a combined DELF algorithm, as proposed in this paper.

Remark 2: In general, evolutionary computation techniques initially depend on the generation of
arbitrary solutions using Gaussian distribution functions. Thereafter, the preliminary solutions are
improved by various operators to get the overall optimal or near optimal solutions. The proposed
QODELFA applies two main frameworks; the former finds the global optimum solution using DE,
whereas, the latter implements a local permutation using LF. Comparing it to the original DE algorithm
previously applied for balanced systems [38], the implementation of QODELFA ensures the convergence
towards the optimum rapidly and reliably. The combined technique also elects the elite solutions in
each generation which guarantees the flexible flow of solutions to the optimal region inside the search
space. The developed paradigm combining the above superior features is also suitable to be utilized in
various engineering applications.

5. Results and Discussions

The QODELFA has been applied on three test systems: The IEEE-33 bus, 69-bus, and large-scale
118-bus systems. Backward-forward sweep algorithm (BFSA) has been used to run the load flow.
For each system, three different cases were taken under consideration for the best verification
and validity of the proposed algorithm. Case 1 represents the minimization of the system’s APL,
the minimization of both APL and VD together is addressed in Case 2, and Case 3 is for simultaneously
minimizing APL, VD, and VSI−1. Moreover, for each case, three subcases are tested depending on
the power factor value of the DGs; i.e., with unity power factor, and with two different values of
power factors.

Based on the literature included in this paper, and as mentioned in [18], different types of DGs can
be characterized when they are optimally planned in radial distribution systems (RDSs). Those types
can be distinguished depending on their capability of injecting active, reactive, or both active and
reactive powers. The photovoltaic and fuel cells are good examples of DGs capable of injecting active
power only, which means that they operate at a unity power factor. While synchronous machines are
an example of DGs capable of injecting both active and reactive power, that means they operate at a
non-unity power factor. Furthermore, different fixed power factors will lead to different operations
and utilizations of DGs in RDSs. Thus, as observed in several references used for comparisons in
this paper, such as [28,29,31,32,39], many types of DGs with unity and non-unity power factors are
usually selected to simulate several categories of practical generators allocated in RDSs. Hence, it is
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important to compare the proposed algorithm’s performance with as many algorithms in the literature
as possible, and to demonstrate the effect of selecting the best power factor value on achieving the
optimal objective functions’ values. Therefore, three different power factors are chosen for each case.

As it is observed from the literature survey, the concept of “better compromise among the
objectives” has been used in many references when comparing results, especially for bi-objective and
multi-objective optimization problems. Those objectives’ importance- and value-wise comparisons are
needed when the solutions obtained from any proposed method have one of a total of two objectives
or two of a total of three objectives better or worse than the other solutions. Thus, all the comparisons
performed in this paper have been done relying on this concept. As it is well known regarding the
OPDG problem, the minimization of the system’s APL is considered as the most important objective,
as it has the biggest effect on the system’s operation and performance. Therefore, the APL is usually
given the highest significance in bi-objective and multi-objective optimization problems. Furthermore,
the minimization of VD and VSI−1 contribute to enhancing the voltage profile and stability along the
distribution feeder. Additionally, they serve to keep the minimum bus voltages within their limits as
defined by the system’s operators, which is also provided when minimizing the APL. In conclusion,
when the APL value of the proposed algorithm is much better than that of another method, and
the VD value of the proposed algorithm is slightly higher than that of the other method, also when
the solutions obtained from the proposed method have two of the total three objectives better than
the others, the proposed method’s solutions will be regarded as better solutions due to the better
compromise among the objectives.

Depending on the system’s scale, the main QODELFA’s parameters are defined, as mentioned
before, using a step-wise variation of stochastic parameters in order to obtain the best performance of
the algorithm, where cr is varied between 0 and 1 with a step of 0.1, and β is varied between 1.2 and 1.8
with step of 0.1. For each system and each case, 20 independent runs are performed to get the best
solutions. Matlab-R2013a has been used for programming and running the codes on a PC with Intel
Core processor (TM) i5, 3.2 GHz speed and 4 GB RAM.

5.1. System 1: The IEEE 33-Bus

The load and line data of this RDS are taken from [40]. The base voltage and power are 12.66 kV
and 100 MVA. The total active and reactive power loads are 3.715 MW and 2.300 MVAr, respectively.
The base-case active and reactive power losses obtained from solving the BFSA-based load flow are
210.99 kW and 143.13 kVAr, respectively.

The base-case values of the VD and (VSI−1, VSI) are 0.13381 p.u. and (1.4988, 0.6672) p.u.,
respectively. For this system, the QODELFA’s optimal parameters are selected as PS = 50, cr = 0.9,
and β = 1.7 for all cases with M = 200.

5.1.1. Case 1: APL Minimization

In this case, only the APL minimization (OF1) is considered. Hence, the weighting factors in
Equation (18) are taken as ω1 = 1,ω2 = ω3 = 0. The QODELFA is applied for three different values of
power factor: Unity, 0.95 and 0.866 lag. The results are listed in Table 3.

It can be noticed that the active power loss is reduced from the base-case value (210.988 kW) to
72.785 kW with unity power factor DGs (Case 1.1) by using the proposed algorithm. As shown in
Table 3, the value of APL obtained from QODELFA is better than those from other methods in [13]
and [28]. Although the results of QODELFA and SFSA applied in [32] are the same, but the DG sizes
are smaller when using the algorithm evolved is this paper. When the power factor is set to 0.95 lag
(Case 1 and 2), the APL is more effectively minimized by using QODELFA, where it reaches 28.533 kW.
This value is better than that from SIMBO-Q algorithm [28], the same as that from SFSA [32], and
approximately similar to that from QOSIMBO-Q algorithm [28]. When the power factor is set to 0.866
lag (Case 1.3), the loss reduction (LR) percentage reaches 92.73%, which is clearly higher than that
from KHA [31]. This LR percentage explains the power factor’s effect on decreasing the losses.
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Table 3. Results for the IEEE 33-bus RDS with active power loss (APL) minimization (objective
function 1, (OF1)).

Technique Optimal
Locations

Optimal Sizes
(MW/MVAr)

APL
(kW)

VD
(p.u.)

VSI−1

(p.u.)
VSI

(p.u.) LR% SD

Case 1.1: DGs with unity power factor (PF = 1)

SIMBO-Q [28]
14 0.7638/0.0

73.40 0.0151 1.1444 0.8738 65.21 -24 1.0415/0.0
29 1.1352/0.0

QOSIMBO-Q [28]
14 0.7708/0.0

72.80 0.0151 1.1358 0.8804 65.50 -24 1.0965/0.0
30 1.0655/0.0

MINLP [13]
13 0.8000/0.0

72.79 - - - 65.34 -24 1.0900/0.0
30 1.0500/0.0

SFSA [32]
13 0.8020/0.0

72.785 0.01509 1.1357 0.8805 65.50 5.91E-0924 1.0920/0.0
30 1.0537/0.0

QODELFA
13 0.8018/0.0

72.785 0.01509 1.1358 0.8804 65.50 4.84E-0824 1.0913/0.0
30 1.0536/0.0

Case 1.2: DGs with lagging power factor (PF = 0.95)

SIMBO-Q [28]
13 0.8875/0.2917

29.00 0.00098 1.0367 0.9646 86.26 -24 1.0853/0.3567
30 1.3092/0.4303

QOSIMBO-Q [28]
13 0.8303/0.2729

28.500 0.00210 1.0493 0.9530 86.49 -24 1.1239/0.3694
30 1.2398/0.4075

SFSA [32]
13 0.8306/0.2730

28.533 0.00207 1.0493 0.9530 86.48 5.24E-0824 1.1256/0.3700
30 1.2396/0.4074

QODELFA
13 0.8302/0.2728

28.533 0.00207 1.0493 0.9530 86.48 4.95E-0724 1.1247/0.3697
30 1.2396/0.4074

Case 1.3: DGs with lagging power factor (PF = 0.866)

KHA [31]
13 0.8530/0.4925

19.578 - 1.0769 0.9286 90.72 -24 0.9000/0.5196
30 0.8999/0.5196

QODELFA
13 0.7582/0.4378

15.347 0.00065 1.0317 0.9692 92.73 5.82E-0724 1.0273/0.5930
30 1.2139/0.7009

The sign “-” means unreported.

After results evaluation, it is observed that the APL obtained from the proposed QODELFA for
this case is better than the APLs from most of the available algorithms in the literature.

In addition, as indicated in Table 3, the SD of results in all cases when using the proposed algorithm
is quite small, which proves its robustness.

It can be noted from the convergence characteristics of QODELFA given in Figure 7 that the
proposed algorithm can quickly reach the optimal solutions for all cases (1.1, 1.2, and 1.3), which
verifies its effectiveness.
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5.1.2. Case 2: Simultaneous Minimization of APL and VD

In this case, the minimization of both APL (OF1) and VD (OF2) is simultaneously considered.
Therefore, in order to provide different solutions regarding the studied problem, the weighting factors
in Equation (18) are taken as ω1 = 0.5 = ω2 = 0.5,ω3 = 0.

The QODELFA is applied for three different values of power factor: Unity, 0.95 and 0.866 lag.
The results obtained by applying the proposed QODELFA are given in Table 4 and compared to those
from two other methods. It might be noticed that, with unity power factor DGs (Case 2.1), the APL is
reduced to 78.308 kW by using QODELFA, which is less than that of 92.50 kW from SIMBO-Q [28] and
88.90 kW from QOSIMBO-Q [28].

Similarly, when the power factor is set to 0.95 lag (Case 2.2), the APL reduced by QODELFA
(29.231 kW) is lower than that of 32.20 kW from SIMBO-Q [28] and 31.10 kW from QOSIMBO-Q [28].

Since the VD values (0.0055 and 0.0007 p.u.) obtained by QODELFA are slightly higher than those
obtained from both algorithms in [28], and the APL values (in kW) gained by QODELFA are much
lower than those from the algorithms in [28] for cases 2.1 and 2.2, the solutions for both APL and VD of
the proposed algorithm are regarded as better solutions because they have a better compromise than
those of the methods from [28].

When the power factor is set to 0.866 lag (Case 2.3), the APL and VD reach 15.502 kW and
0.0003 p.u., respectively. This explains the power factor’s effect again on the optimal operation of
DGs as well as its importance to achieve better values of the studied objective functions. Moreover,
as pointed out in Table 4, the very small SD of results in all cases obtained by the proposed algorithm
also proves its robustness.

As noticed from Figure 8, which shows the convergence characteristics of Case 2 as a verification
of effectiveness, the QODELFA can rapidly converge to the optimal solutions.
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Table 4. Results for the IEEE 33-bus RDS with simultaneous minimization of OF1 and OF2.

Technique Optimal
Locations

Optimal Sizes
(MW/MVAr)

APL
(kW)

VD
(p.u.)

VSI−1

(p.u.)
VSI

(p.u.) LR% SD

Case 2.1: DGs with unity power factor (PF = 1)

SIMBO-Q [28]
14 0.9029/0.0

92.50 0.0022 - - 56.16 -26 1.4491/0.0
31 0.9137/0.0

QOSIMBO-Q [28]
12 1.3232/0.0

88.90 0.0022 - - 57.87 -24 1.0223/0.0
30 1.3735/0.0

QODELFA
13 1.0204/0.0

78.308 0.0055 1.0900 0.9175 62.88 3.45E-1024 1.1504/0.0
30 1.2702/0.0

Case 2.2: DGs with lagging power factor (PF = 0.95)

SIMBO-Q [28]
13 0.8813/0.2897

32.20 0.0003 - - 84.74 -24 1.3048/0.4289
30 1.5000/0.4930

QOSIMBO-Q [28]
13 0.8303/0.2729

31.10 0.0003 - - 85.26 -24 1.1239/0.3694
30 1.2398/0.4075

QODELFA
13 0.9001/0.2958

29.231 0.0007 1.0331 0.9679 86.48 4.13E-0824 1.1438/0.3759
30 1.3214/0.4343

Case 2.3: DGs with lagging power factor (PF = 0.866)

QODELFA
13 0.7582/0.4378

15.502 0.0003 1.0243 0.9763 92.65 3.71E-0824 1.0273/0.5930
30 1.2139/0.7009

The sign “-” means unreported.Appl. Sci. 2019, 9, x FOR PEER REVIEW 17 of 33 
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5.1.3. Case 3: Simultaneous Minimization of APL, VD, and VSI−1

In this case, the minimization of APL (OF1), VD (OF2), and VSI−1 (OF3) is simultaneously
considered. Thus, the weighting factors in Equation (18) are taken as ω1 = 1,ω2 = 0.65,ω3 = 0.35,
as in [32]. The QODELFA is implemented for three different values of power factor: Unity, 0.95 lag, and
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0.866 lag. The results obtained from the proposed QODELFA are presented in Table 5 and compared
to those from three other methods. It can be observed that, with unity power factor DGs (Case 3.1),
the APL is minimized to 77.408 kW by using QODELFA, which is much less than that of 98.20 kW from
SIMBO-Q [28], 97.10 kW from QOSIMBO-Q [28], and approximately the same as that from SFSA [32].

However, the VD and VSI−1 (in p.u.) obtained by QODELFA are not better than those obtained
from both algorithms in [28].

Similar aspects can be remarked for Case 3.2 with DGs operating at PF = 0.95 lag when comparing
the results obtained by QODELFA to those from methods in [28], where the ALP is reduced to 29.386 kW
by the proposed algorithm, which is less than that of SIMBO-Q (32.40 kW) and QOSIMBO-Q (31.70 kW).
The values of VD and VSI−1 obtained from QODELFA in this case are slightly higher than those
obtained from both algorithms in [28].

Table 5. Results for the IEEE 33-bus RDS with simultaneous minimization of OF1, OF2, and OF3.

Technique Optimal
Locations

Optimal Sizes
(MW/MVAr)

APL
(kW)

VD
(p.u.)

VSI−1

(p.u.)
VSI

(p.u.) LR% SD

Case 3.1: DGs with unity power factor (PF = 1)

SIMBO-Q [28]
12 1.3482/0.0

98.20 0.00081 1.0370 0.9643 53.46 -24 1.3805/0.0
30 1.5000/0.0

QOSIMBO-Q [28]
12 1.3465/0.0

97.10 0.00088 1.0383 0.9631 53.98 -24 1.3043/0.0
30 1.5000/0.0

SFSA [32]
13 0.9647/0.0

77.410 0.00623 1.0891 0.9182 63.31 2.73E-0724 1.1337/0.0
30 1.3018/0.0

QODELFA
13 0.9647/0.0

77.408 0.00621 1.0891 0.9182 63.31 2.62E-1024 1.1334/0.0
30 1.3017/0.0

Case 3.2: DGs with lagging power factor (PF = 0.95)

SIMBO-Q [28]
13 0.9429/0.3099

32.40 0.0003 1.0234 0.9771 84.74 -24 1.3271/0.4362
30 1.4429/0.4742

QOSIMBO-Q [28]
13 0.8980/0.2952

31.70 0.0003 1.0235 0.9770 85.26 -24 1.3928/0.4578
30 1.4193/0.4665

SFSA [32]
13 0.9174/0.3015

29.383 0.0007 1.0312 0.9697 86.07 1.47E-0724 1.1463/0.3768
30 1.3157/0.4324

QODELFA
13 0.9169/0.3013

29.386 0.0007 1.0311 0.9698 86.07 1.97E-0924 1.1466/0.3768
30 1.3167/0.4327

Case 3.3: DGs with lagging power factor (PF = 0.866)

QODELFA
13 0.7911/0.4567

15.498 0.0003 1.0242 0.9764 92.65 3.52E-0824 1.0411/0.5991
30 1.2431/0.7178

The sign “-” means unreported.

When the power factor is set to 0.866 lag (Case 3.3), the APL, VD, and VSI−1 are improved to
15.498 kW, 0.0003, and 1.0242 p.u., respectively. This verifies that better solutions can be achieved
when choosing the best value of DGs’ power factor.

Besides that, for all cases (3.1, 3.2, and 3.3), the robustness by the small SDs and the fast convergence
of the proposed algorithm are validated as given in Table 5 and Figure 9, respectively. The voltage
profiles for Case 3 of the IEEE 33-bus system are shown in Figure 10, where the voltages along the
feeder are well enhanced for all subcases, especially for Case 3.3.
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5.2. System 2: The IEEE 69-Bus

The load and line data of this RDS are taken from [39]. The base voltage and power are 12.66 kV
and 100 MVA. The total active and reactive power loads are 3.80 MW and 2.69 MVAr, respectively.
The base-case active and reactive power losses obtained from solving the BFSA-based load flow are
225 kW and 102.16 kVAr, respectively. The base-case values of the VD and (VSI−1, VSI) are 0.09933 p.u.
and (1.4635, 0.6833) p.u., respectively.

For this system, the QODELFA’s optimal parameters are chosen as PS = 50, cr = 0.9, and β = 1.8
for all cases with M = 200.
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5.2.1. Case 1: APL Minimization

The minimization of APL (OF1) only, is considered in this case. Hence, the weighting factors in
Equation (18) are taken as ω1 = 1,ω2 = ω3 = 0. By applying QODELFA for three different values of
power factor: Unity, 0.95 lag, and 0.82 lag, the obtained results are presented in Table 6.

Table 6. Results for the IEEE 69-bus RDS with OF1.

Technique Optimal
Locations

Optimal Sizes
(MW/MVAr)

APL
(kW)

VD
(p.u.)

VSI−1

(p.u.)
VSI

(p.u.) LR% SD

Case 1.1: DGs with unity power factor (PF = 1)

QOSIMBO-Q [28]
9 0.8336/0.0

71.000 0.0071 1.1131 0.8984 68.44 -18 0.4511/0.0
61 1.5000/0.0

MINLP [13]
11 0.5300/0.0

69.590 - - - 69.07 -17 0.3800/0.0
61 1.7200/0.0

KHA [31]
12 0.4962/0.0

69.563 - 1.0887 0.9185 69.08 -22 0.3113/0.0
61 1.7354/0.0

SFSA [32]
11 0.5273/0.0

69.428 0.00518 1.0886 0.9186 69.14 5.24E-0818 0.3805/0.0
61 1.7198/0.0

QODELFA
11 0.5267/0.0

69.426 0.00519 1.0887 0.9185 69.15 3.16E-1018 0.3806/0.0
61 1.7189/0.0

Case 1.2: DGs with lagging power factor (PF = 0.95)

SIMBO-Q [28]
19 0.5656/0.1859

23.100 0.00075 1.0281 0.9727 89.73 -61 1.5000/0.4930
64 0.4220/0.1387

QOSIMBO-Q [28]
17 0.5828/0.1916

22.800 0.00069 1.0266 0.9741 89.87 -61 1.5000/0.4930
64 0.4272/0.1404

SFSA [32]
11 0.5435/0.1786

20.727 0.00033 1.0234 0.9772 90.79 6.51E-0617 0.4132/0.1358
61 1.8728/0.6156

QODELFA
11 0.5597/0.1839

20.716 0.00027 1.0235 0.9770 90.79 4.33E-0818 0.4172/0.1371
61 1.8775/0.6171

Case 1.3: DGs with lagging power factor (PF = 0.82)

IA [39]
17 0.5100/0.3560

4.950 - - - 97.74 -50 0.6798/0.4745
61 1.6999/1.1865

QODELFA
11 0.4986/0.3480

4.286 0.00012 1.0234 0.9771 98.09 1.84E-0518 0.3762/0.2559
61 1.6869/1.1774

The sign “-” means unreported.

As it can be noted for cases 1.1 and 1.2, the active power loss is decreased from the base-case
value (225 kW) to 69.426 kW with unity power factor DGs and to 20.716 with 0.95 lag power factor
DGs by using the QODELFA. As demonstrated in Table 6 for each of cases 1.1 and 1.2, the values
of APL obtained by applying QODELFA are better than those obtained by applying MINLP [13],
QOSIMBO-Q [28], KHA [31], and SFSA [32]. The LR percentage is well increased to reach 98.09% when
the power factor is set to 0.82 lag (Case 1.3).

This value is higher than that from the improved analytical method (IA) [39]. The APL obtained by
applying QODELFA in all cases is obviously better than those from several algorithms in the literature,
where the small SD of results is small enough to verify its robustness.
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The convergence characteristics of QODELFA given in Figure 11 validate its effectiveness, where the
proposed algorithm can quickly converge to the optimal solution for all cases (1.1, 1.2, and 1.3).Appl. Sci. 2019, 9, x FOR PEER REVIEW 21 of 33 
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5.2.2. Case 2: Simultaneous Minimization of APL and VD

The simultaneous minimization of both APL (OF1) and VD (OF2) is considered in this case.
Thus, as for the IEEE 33-bus system, the weighting factors in Equation (18) are taken as ω1 = 0.5 =

ω2 = 0.5,ω3 = 0. The QODELFA is applied for three different values of power factor: Unity, 0.95 lag,
and 0.82 lag. The results obtained by applying the proposed algorithm are outlined in Table 7.

It may be remarked that, the APL and VD are reduced to 72.154 kW and 0.00150 p.u. by using
QODELFA with a unity power factor DGs (Case 2.1); to 20.806 kW and 0.00014 p.u. with a 0.95 lag
power factor DGs (Case 2.2); and to 4.302 kW and 0.00010 p.u. with a 0.82 lag power factor DGs
(Case 2.3). By comparing the results of cases 2.1 and 2.2 to those from both methods in [28], it might
be easily noticed that the solutions provided by the QODELFA have a better compromise than those
of SIMBO-Q and QOSIMBO-Q considering both OFs. As also demonstrated in Table 7, significant
enhancement of APL as well as VD is obtained when the power factor is set to 0.82 lag (Case 2.3).
The small SD of the obtained solutions is listed in Table 7 as well. In addition, the fast convergence of
the proposed algorithm to the optimal solution for Case 2.1, 2.2, and 2.3 is depicted in Figure 12.

5.2.3. Case 3: Simultaneous Minimization of APL, VD, and VSI−1

The simultaneous minimization of APL (OF1), VD (OF2) and VSI−1 (OF3) is considered in this
case. Accordingly, the weighting factors in Equation (18) are taken as ω1 = 1,ω2 = 0.65,ω3 = 0.35,
as in [32]. The QODELFA is applied for three different values of power factor: Unity, 0.95 lag, and
0.82 lag. The results obtained from the proposed QODELFA are illustrated in Table 8 and compared to
those from methods in [28,32].



Appl. Sci. 2019, 9, 3394 21 of 32

Table 7. Results for the IEEE 69-bus RDS with simultaneous minimization of OF1 and OF2.

Technique Optimal
Locations

Optimal Sizes
(MW/MVAr)

APL
(kW)

VD
(p.u.)

VSI−1

(p.u.)
VSI

(p.u.) LR% SD

Case 2.1: DGs with unity power factor (PF = 1)

SIMBO-Q [28]
16 0.7693/0.0

78.100 0.00100 - - 65.29 -59 0.7233/0.0
61 1.4597/0.0

QOSIMBO-Q [28]
18 0.6987/0.0

77.400 0.00100 - - 65.6 -59 0.7037/0.0
61 1.5000/0.0

QODELFA
11 0.6616/0.0

72.154 0.00150 1.0535 0.9492 67.93 4.17E-0520 0.4554/0.0
61 1.9201/0.0

Case 2.2: DGs with lagging power factor (PF = 0.95)

SIMBO-Q [28]
14 0.7976/0.2622

25.900 0.00020 - - 88.48 -61 0.6549/0.2153
62 1.3615/0.4475

QOSIMBO-Q [28]
14 0.8167/0.2685

24.600 0.00020 - - 89.06 -61 1.5000/0.4930
64 0.4615/0.1517

QODELFA
11 0.5859/0.1926

20.806 0.00014 1.0235 0.9770 90.75 3.21E-0418 0.4359/0.1433
61 1.9080/0.6272

Case 2.3: DGs with lagging power factor (PF = 0.82)

QODELFA
11 0.5077/0.3544

4.302 0.00010 1.0234 0.9771 98.08 2.96E-0418 0.3875/0.2593
61 1.6959/1.1837

The sign “-” means unreported.
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It may be observed that, by applying QODELFA with unity power factor DGs (Case 3.1), the APL
is reduced to 72.295 kW, which is lower than that of 80.0 kW from SIMBO-Q [28], 79.70 kW from
QOSIMBO-Q [28], and 72.445 kW from SFSA [32]. However, the VD and VSI−1 (in p.u.) obtained by
QODELFA in this case are not better than those obtained from the algorithms in [28,32].
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For Case 3.2 with DGs operating at PF = 0.95 lag, and by comparing the results obtained by
QODELFA to those from methods in [28,32], it can be remarked that the APL is reduced to 20.774
kW by the proposed algorithm, which is less than that of SIMBO-Q (30.90 kW) and QOSIMBO-Q
(25.70 kW), and the same as that of SFSA. Additionally, the value of VD obtained by QODELFA in this
case (0.00015 p.u.) is better than the other three algorithms in [28,32]. Also, the VSI−1 values obtained
from all compared algorithms are approximately the same in this case, which gives the proposed
algorithm the advantage of providing better compromised solutions than the methods in [28], while
almost the same performance is noted from both QODELFA and SFSA in [32].

Moreover, when the power factor is set to 0.82 lag (Case 3.3), the APL, VD, and VSI−1 are minimized
to 4.297 kW, 0.00010, and 1.0234 p.u., respectively. This proves that when selecting the best value of
DGs’ power factor, better solutions can be achieved.

Table 8. Results for the IEEE 69-bus RDS with simultaneous minimization of OF1, OF2 and OF3.

Technique Optimal
Locations

Optimal Sizes
(MW/MVAr)

APL
(kW)

VD
(p.u.)

VSI−1

(p.u.)
VSI

(p.u.) LR% SD

Case 3.1: DGs with unity power factor (PF = 1)

SIMBO-Q [28]
15 0.7722/0.0

80.000 0.00070 1.0235 0.9770 64.44 -61 1.3526/0.0
62 0.8232/0.0

QOSIMBO-Q [28]
15 0.7754/0.0

79.700 0.00070 1.0237 0.9770 64.58 -61 1.4385/0.0
63 0.7235/0.0

SFSA [32] 11 0.5703/0.0
72.445 0.00143 1.0485 0.9537 67.80 3.80E-0519 0.4661/0.0

61 1.9674/0.0

QODELFA
11 0.6294/0.0

72.295 0.00150 1.0499 0.9525 67.87 2.12E-0520 0.4386/0.0
61 1.9537/0.0

Case 3.2: DGs with lagging power factor (PF = 0.95)

SIMBO-Q [28]
15 0.5380/0.1768

30.900 0.00020 1.0233 0.9772 86.27 -56 1.2817/0.4213
62 1.5000/0.4930

QOSIMBO-Q [28]
14 0.8276/0.2720

25.700 0.00020 1.0234 0.9771 88.58 -60 0.5339/0.1755
61 1.5000/0.4930

SFSA [32] 11 0.5804/0.1908
20.774 0.00016 1.0234 0.9772 90.77 1.10E-0418 0.4344/0.1428

61 1.8992/0.6242

QODELFA
11 0.5797/0.1905

20.774 0.00015 1.0235 0.9770 90.77 1.24E-0418 0.4340/0.1426
61 1.9013/0.6249

Case 3.3: DGs with lagging power factor (PF = 0.82)

QODELFA
11 0.5058/0.3531

4.297 0.00010 1.0234 0.9771 98.09 2.27E-0418 0.3859/0.2589
61 1.6939/1.1823

The sign “-” means unreported.

Besides that, as demonstrated in Table 8 and Figure 13 for all cases (3.1, 3.2, and 3.3), the effectiveness
of the proposed algorithm is verified by the small SDs and the fast convergence to the optimal solutions
as well. As illustrated in Figure 14, the voltages at all buses of the IEEE 69-bus system for Case 3 are
well enhanced, where the most improvement is achieved for Case 3.3.



Appl. Sci. 2019, 9, 3394 23 of 32
Appl. Sci. 2019, 9, x FOR PEER REVIEW 24 of 33 

 
Figure 13. Convergence characteristics for Case 3 of the IEEE 69-bus system using QODELFA. 

 
Figure 14. Voltage profile for Case 3 of the IEEE 69-bus system using QODELFA. 

5.3. System 3: The IEEE 118-Bus 

The load and line data of this large-scale RDS are taken from [41] where the bus numbers are 
rearranged. The base voltage and power are 11 kV and 100 MVA. The total active and reactive power 
loads are 22.710 MW and 17.041 MVAr, respectively.  

The base-case active and reactive power losses obtained from solving the BFSA-based load flow 
are 1297.95 kW and 978.54 kVAr, respectively. The base-case values of the VD and (VSI-1, VSI) are 
0.35764 p.u. and (1.7552, 0.5697) p.u., respectively. For this system, the QODELFA’s optimal 
parameters are selected as 50PS = , 0.9cr= , and 1.8β = for all cases with 300M= . 

5.3.1. Case 1: APL Minimization 

Figure 13. Convergence characteristics for Case 3 of the IEEE 69-bus system using QODELFA.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 24 of 33 

 
Figure 13. Convergence characteristics for Case 3 of the IEEE 69-bus system using QODELFA. 

 
Figure 14. Voltage profile for Case 3 of the IEEE 69-bus system using QODELFA. 

5.3. System 3: The IEEE 118-Bus 

The load and line data of this large-scale RDS are taken from [41] where the bus numbers are 
rearranged. The base voltage and power are 11 kV and 100 MVA. The total active and reactive power 
loads are 22.710 MW and 17.041 MVAr, respectively.  

The base-case active and reactive power losses obtained from solving the BFSA-based load flow 
are 1297.95 kW and 978.54 kVAr, respectively. The base-case values of the VD and (VSI-1, VSI) are 
0.35764 p.u. and (1.7552, 0.5697) p.u., respectively. For this system, the QODELFA’s optimal 
parameters are selected as 50PS = , 0.9cr= , and 1.8β = for all cases with 300M= . 

5.3.1. Case 1: APL Minimization 

Figure 14. Voltage profile for Case 3 of the IEEE 69-bus system using QODELFA.

5.3. System 3: The IEEE 118-Bus

The load and line data of this large-scale RDS are taken from [41] where the bus numbers are
rearranged. The base voltage and power are 11 kV and 100 MVA. The total active and reactive power
loads are 22.710 MW and 17.041 MVAr, respectively.

The base-case active and reactive power losses obtained from solving the BFSA-based load flow
are 1297.95 kW and 978.54 kVAr, respectively. The base-case values of the VD and (VSI−1, VSI) are
0.35764 p.u. and (1.7552, 0.5697) p.u., respectively. For this system, the QODELFA’s optimal parameters
are selected as PS = 50, cr = 0.9, and β = 1.8 for all cases with M = 300.
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5.3.1. Case 1: APL Minimization

The weighting factors in Equation (18) are taken as ω1 = 1,ω2 = ω3 = 0; in this case as only the
APL minimization (OF1) is considered.

The QODELFA is implemented for unity, 0.866 lag, and 0.82 lag power factors. The results are
listed in Table 9. It may be clearly observed that the APL is decreased from the base-case value
(1297.95 kW) to 518.653 kW with unity power factor DGs (Case 1.1) by using the proposed algorithm.
From the comparison outlined in Table 9, the APL obtained by applying QODELFA is better than that
of 576.182 kW from QOTLBO [29], 574.710 kW from KHA [31], and 525.277 kW from SFSA [32].

The APL is more reduced in Case 1.2 (when the power factor is set to 0.866 lag) by implementing
the proposed QODELFA, where it reaches 148.931 kW. This value is lower than that of 312.661 kW
from KHA [31], and 155.159 kW from SFSA [32].

The most significant LR value is reached when setting the power factor to 0.82 lag (Case 1.3),
where it is increased to 89.77% by using the proposed algorithm. Table 9 and Figure 15 respectively
depict the small values of SD and the fast convergence to the optimal solutions for all cases, which
indicates the robustness and effectiveness of the QODELFA.

5.3.2. Case 2: Simultaneous Minimization of APL and VD

In this case, the weighting factors in Equation (18) are taken as ω1 = 0.65,ω2 = 0.35,ω3 = 0 in
order to achieve the best results, since the simultaneous minimization of both APL (OF1) and VD (OF2)
is considered. Three different values of power factor: Unity, 0.866 lag, and 0.82 lag are defined as the
subcases for the QODELFA’s implementation.

It may be noted from the results shown in Table 10 obtained by applying the proposed algorithm
that the APL and VD are decreased to 536.134 kW and 0.0365 p.u. with unity power factor DGs
(Case 2.1); to 149.215 kW and 0.0067 p.u. with 0.866 lag power factor DGs (Case 2.2); and to 134.049 kW
and 0.0064 p.u. with 0.82 lag power factor DGs (Case 2.3).

As presented in Table 10, strong improvements of APL and VD are obtained in the last subcase.
The SD of the results is also given in Table 10. Moreover, the fast convergence of QODELFA to the
optimal solution for Case 2.1, 2.2, and 2.3 is demonstrated in Figure 16.

5.3.3. Case 3: Simultaneous Minimization of APL, VD, and VSI−1

The weighting factors in Equation (18) are taken as ω1 = 1,ω2 = 0.65,ω3 = 0.35, as in [32],
where the simultaneous minimization of APL (OF1), VD (OF2,), and VSI−1 (OF3) is considered.

The QODELFA is applied for three different values of power factor: Unity, 0.866 unity, and
0.82 lag. It may be noted from the results listed in Table 11 that, by applying QODELFA with unity
power factor DGs (Case 3.1), the APL, VD, and VSI−1 are decreased to 554.682 kW, 0.0297 p.u., and
1.1250 p.u., respectively, which are better than those from SFSA [32] and SOS [32]. The obtained results
from QODELFA are also better than those from QOTLBO [29], except for the VD value. Nevertheless,
the QODELFA’s overall solutions have a better compromise than those of QOTLBO considering the
three OFs together.

By comparing the results obtained by QODELFA to those from SFSA [32] for Case 3.2 with DGs
operating at PF = 0.866 lag, it can be noticed that the proposed algorithm’s solutions provide a better
compromise regarding APL (156.142 kW), VD (0.0067 p.u.), and VSI−1 (1.1024 p.u.) than the solutions
of 176.969 kW, 0.00852 p.u., and 1.0978 p.u., respectively, from SFSA [32].
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Table 9. Results for the IEEE 118-bus RDS with OF1.

Technique Optimal
Locations

Optimal Sizes
(MW/MVAr)

APL
(kW)

VD
(p.u.)

VSI−1

(p.u.)
VSI

(p.u.) LR% SD

Case 1.1: DGs with unity power factor (PF = 1)

QOTLBO [29]

24 1.2463/0.0

576.182 0.0629 1.2093 0.8269 55.61 -

42 0.7322/0.0
47 3.5392/0.0
74 2.6792/0.0
78 1.2483/0.0
94 1.0865/0.0
108 3.2432/0.0

KHA [31]

48 1.7242/0.0

574.710 - 1.2433 0.8043 55.73 -

53 1.3356/0.0
74 1.8623/0.0
80 1.8653/0.0
96 1.6631/0.0
109 1.9473/0.0
112 1.1848/0.0

SFSA [32]

21 1.3757/0.0

525.277 0.0612 1.2090 0.8271 59.53 6.40E-03

42 1.1997/0.0
50 2.7418/0.0
71 2.8915/0.0
81 1.7025/0.0
97 1.3321/0.0
110 2.6674/0.0

QODELFA

20 1.7908/0.0

518.653 0.0578 1.2129 0.8245 60.04 7.50E-03

39 2.7341/0.0
47 1.8329/0.0
73 2.4034/0.0
80 1.7505/0.0
90 2.2945/0.0
110 2.7998/0.0

Case 1.2: DGs with lagging power factor (PF = 0.866)

KHA [31]

43 1.9726/1.1389

312.661 - 1.1393 0.8777 75.91 -

51 1.9849/1.1460
69 1.7929/1.0351
73 1.8551/1.0710
88 1.8975/1.0955

108 1.9905/1.1492
109 1.9951/1.1519

SFSA [32]

21 1.9351/1.1174

155.159 0.00861 1.1015 0.9078 88.05 1.10E-02

40 2.0810/1.2016
50 3.1301/1.8074
71 2.8920/1.6699
80 2.0541/1.1861
96 1.3859/0.8003

110 3.2306/1.8654

QODELFA

20 1.8771/1.0839

148.931 0.00860 1.1024 0.9071 88.53 2.17E-02

39 3.0909/1.7847
46 2.1775/1.2573
74 2.3591/1.3621
85 1.7023/0.9829
90 2.4516/1.4156

110 3.1123/1.7971

Case 1.3: DGs with lagging power factor (PF = 0.82)

QODELFA

20 1.7850/1.2459

132.787 0.00790 1.1033 0.9064 89.77 3.42E-03

39 2.9683/2.0719
46 2.0693/1.4443
74 2.2927/1.4828
85 1.7000/1.0798
91 2.1408/1.4943

110 2.9738/2.0758

The sign “-” means unreported.
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When the power factor is set to 0.82 lag (Case 3.3), the APL, VD, and VSI−1 are well minimized to
134.978 kW, 0.006 p.u., and 1.1009 p.u., respectively. Table 11 and Figure 17 verify the effectiveness
as well as the robustness of the proposed algorithm for all cases (3.1, 3.2, and 3.3) by demonstrating,
respectively, the small SDs and the fast convergence.

The voltage profiles for Case 3 of the IEEE 118-bus system depicted in Figure 18 indicate the
significant enhancement of all bus voltages for all subcases, especially for Case 3.3.

Table 10. Results for the IEEE 118-bus RDS with simultaneous minimization of OF1 and OF2.

Technique Optimal
Locations

Optimal Sizes
(MW/MVAr)

APL
(kW)

VD
(p.u.)

VSI−1

(p.u.)
VSI

(p.u.) LR% SD

Case 2.1: DGs with unity power factor (PF = 1)

QODELFA

20 2.0856/0.0

536.134 0.0365 1.1641 0.8590 58.69 6.74E-03

39 3.3381/0.0
47 2.1249/0.0
73 2.7940/0.0
80 2.0369/0.0
90 2.6069/0.0

110 3.1877/0.0

Case 2.2: DGs with lagging power factor (PF = 0.866)

QODELFA

20 2.0187/1.1656

149.215 0.0067 1.1044 0.9055 88.50 5.39E-03

39 3.2905/1.9000
47 2.0615/1.1903
74 2.4092/1.3911
85 1.7437/1.0069
90 2.5473/1.4709

110 3.1775/1.8348

Case 2.3: DGs with lagging power factor (PF = 0.82)

QODELFA

20 1.8988/1.3254

134.049 0.0064 1.1045 0.9054 89.67 3.68E-03

39 3.1073/2.1689
46 2.2465/1.5680
74 2.3442/1.5137
85 1.7033/1.1081
91 2.2008/1.5361

110 3.0356/2.1189
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Table 11. Results for the IEEE 118-bus RDS with simultaneous minimization of OF1, OF2, and OF3.

Technique Optimal
Locations

Optimal Sizes
(MW/MVAr)

APL
(kW)

VD
(p.u.)

VSI−1

(p.u.)
VSI

(p.u.) LR% SD

Case 3.1: DGs with unity power factor (PF = 1)

QOTLBO [29]

43 1.5880/0.0

677.588 0.02330 1.1372 0.8794 47.80 -

49 3.8459/0.0
54 0.9852/0.0
74 3.1904/0.0
80 3.1632/0.0
94 1.9527/0.0
111 3.6013/0.0

SFSA [32]

19 2.0313/0.0

564.104 0.03085 1.1420 0.8757 56.54 6.20E-03

41 1.9135/0.0
49 4.0113/0.0
73 2.7996/0.0
79 3.0734/0.0
96 2.0861/0.0
108 3.8194/0.0

SOS [32]

18 3.1920/0.0

561.000 0.0675 1.2032 0.8311 56.78 -

39 2.7580/0.0
48 1.2360/0.0
66 1.4450/0.0
74 2.0650/0.0
80 1.9480/0.0
110 2.6780/0.0

QODELFA

20 2.1256/0.0

554.682 0.0297 1.1250 0.8889 57.26 6.74E-03

39 3.8797/0.0
47 2.3173/0.0
73 2.8518/0.0
80 2.0957/0.0
91 2.4212/0.0
110 3.2376/0.0

Case 3.2: DGs with lagging power factor (PF = 0.866)

SFSA [32]

19 1.8454/1.0656

176.969 0.00852 1.0978 0.9109 86.37 1.30E-02

39 2.2060/1.2738
50 3.6561/2.1111
74 2.2638/1.3071
80 2.4474/1.4132
90 2.0355/1.1753
108 3.4768/2.0076

QODELFA

18 2.4594/1.4201

156.142 0.00670 1.1024 0.9071 87.97 2.21E-02

39 3.3315/1.9237
47 2.1185/1.2233
73 2.4898/1.4377
80 1.8385/1.0616
91 2.3071/1.3322
110 3.1879/1.8407

Case 3.3: DGs with lagging power factor (PF = 0.82)

QODELFA

20 1.9294/1.3467

134.978 0.00600 1.1009 0.9083 89.60 1.84E-02

39 3.1467/2.1964
46 2.3361/1.6306
74 2.3503/1.5174
85 1.7077/1.1109
91 2.2096/1.5423
110 3.0441/2.1248

The sign “-” means unreported.

By implementing the QODELFA on the benchmark functions as well as the OPDG problem,
its advantages can be concluded as follows:
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1. Two main mechanisms are combined to construct the proposed QODELFA; the former finds the
global optimum solution using DE, whereas, the latter implements a local permutation using
LF. Furthermore, the initial population of the combined DELF is generated by applying the
QOBL concept, which consequently increases the diversity and exploration of the initial solutions.
As a result, the implementation of the proposed QODELFA ensures the convergence towards
the optimum rapidly and reliably. In addition, the elite solutions are elected in each generation,
which guarantees the efficient and flexible flow of solutions to the optimal region inside the
search space.

2. The obtained results presented in this paper show that the SDs are quite small. Hence, the proposed
algorithm’s performance stability and robustness are validated.

3. The effectiveness of the QODELFA is also verified by demonstrating the convergence characteristics
of the proposed algorithm as given in this paper. Apparently, the optimal solutions are obtained
with a small number of iterations.

Additionally, the disadvantages are summarized:

1. The computational time for QODELFA is slightly more than some original algorithms discussed in
the literature and the paper. This is mainly because of the combined framework of three powerful
search mechanisms together; namely, QOBL, DE, and LF, in addition to the implementation of
crossover and selection many times during the execution of the proposed algorithm. Nevertheless,
using a relatively more powerful computer can overcome this problem. Also, a slight additional
computational time can be neglected when much better solutions are obtained.

2. The proposed algorithm has been tested using well-known benchmark functions, including,
many minima, bowl-shaped, valley-shaped, and other difficult objective functions besides the
OPDG problem solved in this paper. Hence, it is recommended here, to further investigate the
performance of the algorithm in other engineering applications.
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6. Conclusions

The proposed QODELFA has been applied to solve the OPDG problem in RDSs by taking three
objective functions under consideration, which are the active power loss minimization, the voltage
profile improvement, and the voltage stability enhancement. Different combinations of those objective
functions by using the weighted sum method have been studied while satisfying different operational



Appl. Sci. 2019, 9, 3394 30 of 32

constraints. The effectiveness of the proposed QODELFA for solving the OPDG problem has been
verified on the IEEE 33-bus, 69-bus, and 118-bus systems. For each system, three values of DGs’
power factor have been included in the analysis. The performed comparisons between the proposed
QODELFA and several existing methods from the literature for the three test systems have depicted
that the proposed algorithm has better performance than many of the previous methods for most of
the studied cases, particularly for the large-scale IEEE 118-bus system. Moreover, the results have
signified that the proper selection of the DGs’ power factor plays an important role in achieving the best
solutions regarding the three studied objective functions. Additionally, the robustness and effectiveness
of the proposed algorithm in solving the OPDG problem have been validated by depicting the fast
convergence and small standard deviations for all cases. As a result, the QODELFA can be suggested
as a powerful method for solving the OPDG problem.
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