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Abstract: An adaptive fractional-order fuzzy control method for a three-phase active power filter
(APF) using a backstepping and sliding mode controller is developed for the purpose of compensating
harmonic current and stabilizing the DC voltage quickly. The dynamic model of APF is changed to an
analogical cascade system for the convenience of the backstepping strategy. Then a fractional-order
sliding mode surface is designed and a fuzzy controller is proposed to approximate the unknown
term in the controller, where parameters can be adjusted online. The simulation experiments are
conducted and investigated using MATLAB/SIMULINK software package to verify the advantage of
the proposed controller. Furthermore, the comparison study between the fractional-order controller
and integer-order one is also conducted in order to demonstrate the better performance of the
proposed controller in total harmonic distortion (THD), a significant index to evaluate the current
quality in the smart grid.
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1. Introduction

With the development of power grids, more and more problems occur, accompanied by
convenience and benefits. While power grids and distribution networks are desired to simultaneously
interact with a large quantity of loads, the increasing number of nonlinear loads connected to the grids
has caused a negative effect on the quality of electric power supply such as low power factor, electrical
harmonics, and so on. Instead of a passive filter, the active power filter (APF) is a new power electronic
device used for its higher flexibility and better capability of suppressing harmonic currents.

Due to the wide range of applications of APF in power systems over the past decades, many
scholars have applied a variety of intelligent control methods to APF. Ouadi et al. [1] developed a new
oriented control model for shunt active power filter (SAPF)-load system, and designed an adaptive
controller based on the new model. Kale et al. [2] proposed a new robust adaptive controller based
on shunt active power filters, to reduce high overshoot and large settling time in the DC link voltage.
Fei et al. [3], Chu et al. [4], Fang et al. [5], and Fei et al. [6] investigated intelligent control methods
such as an adaptive neural network controller and fuzzy neural controller for an active power filter
to track command current to eliminate the harmonic current and improve the power quality of the
power system. Gregory et al. [7] presented a SAPF configuration and showed advantages of harmonic
distortion and power converter losses. Dey et al. [8] presented a D-Q current control method using a
phase lock loop to improve the power quality.

Recently, fractional calculus as well as its application begins to attract more and more attention.
In the last three decades, many engineers have applied fractional calculus and fractional differential
equation theory with various applications [9–14]. Backstepping control techniques are powerful
tools for their systematic and recursive design methodology for nonlinear feedback control [15–18].
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Adaptive fractional fuzzy sliding mode controls and adaptive fuzzy-neural fractional finite-time
sliding controllers are developed for active power filters [19–21]. In the nonlinear systems, unknown
nonlinearities can be approximated by intelligent methods such as fuzzy systems [22–29] and neural
networks [30–35]. Intelligent control methods have been investigated for dynamic systems. Motivated
by the above literature, in this paper, a fractional adaptive backstepping sliding mode control method
combined with fuzzy controller for a three-phase APF is proposed. The main motivations are
emphasized as follows:

(1) A backstepping control strategy is applied to the design of a fractional sliding mode adaptive
fuzzy controller. We avoid establishing a precise mathematical model of active power filter
by transforming the general circuit equation into an analogical cascade system where the
backstepping approach can be implemented.

(2) Based on the backstepping control design, this paper extends the conventional integer-order
sliding surface to fractional ones for three-phase active power filter. That means the system
can achieve an extra degree of freedom and there would be more parameters to be adjusted to
improve total harmonic distortion (THD).

(3) A fractional sliding mode controller ensures that the control system reaches the sliding surface
while the adaptive control strategy and fuzzy controller are also combined together to approximate
the unknown dynamic model term and identify adaptive parameters online.

2. System Description

The three-phase shunt active power filter has the structure of Figure 1, composed of a harmonic
current detection module, control system, and main circuit.
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Figure 1. Block diagram of active power filter (APF).

In Figure 1, vs1, vs2, vs3, are the grid voltages, is1, is2, is3 are the power currents, iL1, iL2, iL3 are the
load currents, v1, v2, v3 are the voltages of public join points, i1, i2, i3 are the compensation current of
APF, C is the capacitor of DC side, vdc is the voltage of C, idc is the current of C, Lc is the inductance of
AC side, and Rc is the equivalent resistance.

The model of the APF will be given in the following steps. Applying Kirchhoff rules to the system,
we can get the following equations:

v1 = Lc
di1
dt + Rci1 + v1M + vMN

v2 = Lc
di2
dt + Rci2 + v2M + vMN

v3 = Lc
di3
dt + Rci3 + v3M + vMN

(1)



Appl. Sci. 2019, 9, 3383 3 of 14

where νMN represents the voltage between M and N.
Supposing the AC supply voltage is balanced and taking the three equations in (1), and considering

the absence of the zero-sequence in the three-wire system currents, yields the following equation:

vMN= −
1
3

3∑
m=1

vmM (2)

In order to indicate the working status of Insulated Gate Bipolar Transistor (IGBT), we define ck as
the switch function as

ck =

{
1, if Sk is on and Sk+3 is off

0, if Sk is off and Sk+3 is on
(3)

where k = 1, 2, 3.
At the same time, taking vkm = ckvdc into consideration, thus Equation (1) can be reformulated as

di1
dt = −

Rc
Lc

i1 +
v1
Lc
−

vdc
Lc
(c1 −

1
3

3∑
m=1

cm)

di2
dt = −

Rc
Lc

i2 +
v2
Lc
−

vdc
Lc
(c2 −

1
3

3∑
m=1

cm)

di3
dt = −

Rc
Lc

i3 +
v3
Lc
−

vdc
Lc
(c3 −

1
3

3∑
m=1

cm)

(4)

The switching state function is defined as

dnk =

ck −
1
3

3∑
m=1

cm


n

(5)

Equation (5) denotes the relationship between dnk and ck. Based on Equation (5) and eight
permissible switching states of the IGBT, the following equation is obtained

dn1

dn2

dn3

 = 1
3


2 −1 −1
−1 2 −1
−1 −1 2




c1

c2

c3

 (6)

Then Equation (4) is be simplified as
di1
dt = −

Rc
Lc

i1 +
v1
Lc
−

vdc
Lc

dn1
di2
dt = −

Rc
Lc

i2 +
v2
Lc
−

vdc
Lc

dn2
di3
dt = −

Rc
Lc

i3 +
v3
Lc
−

vdc
Lc

dn3

(7)

Two state variables are defined as  x1 = i
x2 =

.
i

(8)

where x1 = i = ( i1 i2 i3 )
T

, x1 = ( x11 x12 x13 )
T

, x2 = ( x21 x22 x23 )
T

.
Taking the time derivative of x1 and x2 with respect to time yields

.
xik =

.
ik = −

Rc

Lc
ik +

vk
Lc
−

vdc
Lc

dnk (9)

.
x2k = −

Rc
Lc

.
ik + 1

Lc

dvk
dt −

1
Lc

dvdc
dt dnk

=
R2

c
L2

c
ik −

Rc
L2

c
vk +

1
Lc

dvk
dt + (Rc

L2
c
vdc −

1
Lc

dvdc
dt )dnk

(10)



Appl. Sci. 2019, 9, 3383 4 of 14

where k = 1, 2, 3.
Considering the external disturbances, the model of active power filter can be rewritten as{ .

x1 = x2
.
x2 = f (x1) + bu + fd

(11)

where

f (x1k) = f (ik) =
R2

c
L2

c
ik −

Rc
L2

c
vk +

1
Lc

dvk
dt , f (x1) = f (i) = ( f (i1) f (i2) f (i3) )

T
,

b = Rc
L2

c
vdc −

1
Lc

dvdc
dt , u = dn = ( dn1 dn2 dn3 )

T
, fd = diag( fd1 fd2 fd3 )

are bounded external disturbances.
The design of an adaptive fractional fuzzy controller for a three-phase active power filter using

backstepping sliding mode control is based on the above mathematical model (Equation (11)), which
will be developed in detail in Section 3.

3. Design of Fractional Backstepping Sliding Mode Controller

3.1. Fractional Calculus Preliminaries

In this section, fractional calculus is briefly introduced. aDα
t is defined as the fundamental operator,

where a and t are the bounds of the operation and α is the order of fractional calculus. There are three
definitions as follows:

1. Grunwald–Letnikov definition

aDα
t f (t) = lim

h→0
h−α

∞∑
j=0

(−1) j(
α
j
)(t− jh) (12)

2. RL (Riemann-Liouville) definition

aDα
t f (t) =

dn

dtn [
1

Γ(n− α)

t∫
0

f (τ)

(t− τ)α−n+1
dτ] n− 1 < α < n (13)

3. Caputo definition

aDα
t f (t) =

1
Γ(n− α)

∫ t

a

f (n)(τ)

(t− τ)α−n+1
dτ n− 1 < α < n (14)

For the purpose of simplifying the notation, in the following section, the fractional derivative of
order α is denoted as Dα instead of aDα

t .

3.2. Fractional Backstepping Sliding Mode Controller

In this section, a fractional backstepping sliding mode controller is proposed for APF in two
steps. Firstly, a virtual control function is designed based on a Lyapunov function V1. Secondly, a real
controller is proposed. In the following, we will give the two design steps of the procedure.

Step 1: Assume the reference trajectory is xd, and xd has continuous second order derivatives.
The position’s tracking error can be defined as

e1 = x1 − xd (15)

Then
.
e1 =

.
x1 −

.
xd = x2 −

.
xd (16)
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The virtual control is designed as

α1 = −c1e1 +
.
xd (17)

where c1 is a positive constant.
The error is defined as

e2 = x2 − α1 (18)

The first Lyapunov function is chosen as

V1 =
1
2

eT
1 e1 (19)

Then one can obtain .
V1 = eT

1
.
e1 = eT

1 (x2 −
.
xd)

= eT
1 (e2 + α1 −

.
xd)

= eT
1 (e2 − c1e1 +

.
xd −

.
xd)

= −c1eT
1 e1 + eT

1 e2

(20)

If e2 = 0, then
.

V1 = −c1eT
1 e1 ≤ 0.

Step 2: The derivative of Equation (18) is

.
e2 =

.
x2 −

.
α1

= f (x1) + bu−
.
α1

(21)

The sliding surface is defined as

s = λ1e1 + λ2Dα−1e1 + λ3e2 (22)

where λ1,λ2,λ3 are positive constants and α − 1 is the fractional order in the fractional derivate

operation, s =
[

s1 s2 s3
]T

.

The second Lyapunov function V2 =
[

V21 V22 V23
]T

is defined as

V2k = V1k +
1
2

s2
k (23)

Remark 1. V2 =
[

V21 V22 V23
]T

is a vector representing three scalar values V21, V22, V23 such as
V21 = V11 +

1
2 s2

1, V22 = V12 +
1
2 s2

2, V23 = V13 +
1
2 s2

3. For the convenience of annotation, we use vector

V2 =
[

V21 V22 V23
]T

to represent three Lyapunov functions that are scalar values.

Differentiating Equation (23) with respect to time yields

.
V2k =

.
V1k + sk

.
sk

= −c1e2
1k + e1ke2k + sk(λ1

.
e1k + λ2Dαe1k + λ3

.
e2k)

(24)

where k = 1, 2, 3, e2k =
sk−λ1e1k−λ2Dα−1e1k

λ3
.
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Then,
.

V2k can be further proposed as

.
V2k = c1e2

1k + e1ke2k + sk(λ1
.
e1k + λ2Dαe1k + λ3

.
e2k)

= −c1e2
1k +

e1k
λ3
(sk − λ1e1k − λ2Dα−1e1k) + sk[λ1

.
e1k + λ2Dαe1k + λ3( f (x1k) + buk −

.
α1k)]

= −c1e2
1k −

λ1
λ3

e2
1k +

ske1k
λ3
−
λ2e1kDα−1e1k

λ3
+ sk[λ1

.
e1k + λ2Dαe1k + λ3( f (x1k) + buk −

.
α1k)]

= −c1e2
1k −

λ1
λ3

e2
1k + sk[

e1k
λ3
−

1
skλ3

λ2e1kDα−1e1k + λ1
.
e1k + λ2Dαe1k + λ3( f (x1k) + buk −

.
α1k)]

(25)

With the aim of achieving
.

V2k ≤ 0, the backstepping sliding mode controller U =

( U1 U2 U3 )
T

is designed as

Uk =
1

bλ3
(−

e1k
λ3

+
λ2e1k
λ3sk

Dα−1e1k − λ1
.
e1k − λ2Dαe1k − λ3 f (x1k) + λ3

.
α1k) (26)

where U1 = 1
bλ3

(− e11
λ3

+ λ2e11
λ3s1

Dα−1e11 − λ1
.
e11 − λ2Dαe11 − λ3 f (x11) + λ3

.
α11), U2 =

1
bλ3

(− e12
λ3

+ λ2e12
λ3s2

Dα−1e12 − λ1
.
e12 − λ2Dαe12 − λ3 f (x12) + λ3

.
α12), U3 = 1

bλ3
(−

e13
λ3

+
λ2e13
λ3s3

Dα−1e13 − λ1
.
e13

−λ2Dαe13 − λ3 f (x13) + λ3
.
α13).

Substituting Equation (26) into Equation (25) yields

.
V2k = −c1e2

1k −
λ1

λ3
e2

1k ≤ 0 (27)

From Barbalart lemma, e1k, e2k, and sk will converge to zero as time goes to infinity and the
closed-loop system is asymptotically stable.

4. Design of Fractional Backstepping Sliding Mode Adaptive Fuzzy Controller

By designing the fractional backstepping sliding mode controller, the system is proved to be stable
based on Lyapunov theory. However, considering the unknown function f (x1), the control law (26)
cannot be implemented directly. Due to the fuzzy system’s advantage of approximating an arbitrary
nonlinear function to accuracy, an adaptive fuzzy system f̂ (x1) is constructed to estimate the unknown
function f (x1). In the following, the comprehensive analysis of designing a fractional backstepping
sliding mode adaptive fuzzy controller will be given, as shown in Figure 2.
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Applying the strategy of singleton fuzzification, product inference and center average
defuzzification, the output of adaptive fuzzy system can be expressed as

f̂ (xk|θ f k) = θ f k
Tξ(xk)

T (28)
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where ξk(x) =

n∏
i=1

µk(xi)

M∑
l=1

(
n∏

i=1
µk(xi)

) is fuzzy basis function and θ f k
T is an adjustable parameter which can be

updated by the adaptive law
.
θ f k = rskξ(xk)

T (29)

where r is a positive constant.
Then we can get the improved control law by replacing fk with f̂k

uk =
1
b
(−e1k +

1
sk
λ2Dα−1e1k − λ1

.
e1k − f̂k +

.
α1k − λ2Dαe1k) (30)

Proof. Define the optimal parameter as

θ∗f = arg min
θ f ∈Ω f

[sup| f̂ (x| θ f
x∈Rn

) − f (x)|] (31)

where Ω f is the aggregation of θ f .
The minimum approximation error is defined as

ω = f (x) − f̂ (x|θ∗f ) (32)

where ω is bounded by a positive constant ωmax as

|ω| ≤ ωmax (33)

A Lyapunov function is defined as

V3k = V2k +
1
2r
ϕT

f kϕ f k (34)

where ϕ f k = θ∗f k − θ f k. �

Then the derivative of V3k becomes

.
V3k =

.
V2k +

1
rϕ

T
f k

.
ϕ f k

= −c1e2
1k −

λ1
λ3

e2
1k + sk( fk − f̂k) + 1

rϕ
T
f k

.
ϕ f

= −c1e2
1k −

λ1
λ3

e2
1k + sk[ f̂ (xk|θ

∗

f k) − f̂ (xk) +ωk] +
1
rϕ

T
f k

.
ϕ f k

= −c1e2
1k −

λ1
λ3

e2
1k + sk[ϕ

T
fk
ξ(xk)

T +ωk] +
1
rϕ

T
f k

.
ϕ f k

= −c1e2
1k −

λ1
λ3

e2
1k +

1
rϕ

T
fk
[rskξ(xk)

T +
.
ϕ f k] + skωk

(35)

where
.
ϕ f k = −

.
θ f k.

Applying the adaptive law (Equation (29)) into Equation (35) yields

.
V3k = −c1e2

1k −
λ1

λ3
e2

1k + skωk (36)

According to the fuzzy approximation theory, adaptive fuzzy systems can achieve the results that
the approximation errorωk would be a tiny number which can be ignored, then

.
V3k ≤ 0 is semi-negative

definite. From Barbalart lemma, we can prove that e1k, e2k, and sk will converge to zero. As a result,
the proposed controller can ensure that the system is stable. Furthermore, the controlled system will
exhibit a certain degree of robustness to external disturbances.
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Remark 2. The sliding surface designed in this paper is an ordinary sliding surface with an integrated fractional
term which is not a terminal sliding surface. The reaching time obtained in this sliding mode control is same as
the that of an ordinary sliding surface. The ordinary form of the sliding surface designed in this paper can only
converge to zero asymptotically. Then the fractional order term is incorporated into sliding phase which offers
an extra degree of freedom fractional order α and flexible control laws to designers for meeting higher control
precision and better performance compared to the integer-order sliding mode control method.

5. Simulation and Discussion

In this section, the feasibility of the proposed fractional backstepping sliding mode adaptive fuzzy
controller is verified at the platform of MATLAB/SIMULINK with SimPower Toolbox. Comparison
between the controller with fractional modules and the controller with integer orders is also given to
show the advantage and effectiveness of the proposed scheme.

The membership we choose is µ = exp[−(x + 4− (i− 1) ∗ 1.6)2], i = 1, . . . , 6 as shown in Figure 3.
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In the fractional backstepping sliding mode adaptive fuzzy controller, λ1 = 1,λ2 = 0.1,λ3 =

0.000001, θ f k =
[
θhk1 θhk2 θhk3 θhk4 θhk5 θhk6

]T
, where k = 1, 2, 3, and adaptive gain r =

100, 000, c = 100, 000.
The main parameters of the APF system are shown in Table 1.

Table 1. Main parameters.

Supply voltage and frequency Vs1 = Vs2 = Vs3 = 220 V, f = 50 Hz

Switching frequency fsw = 10 KHz

The non-linear load R = 10 Ω, L = 2 mH

Active power filter parameters L = 10 mH, R = 100 Ω, C = 100 µF, vdcre f = 850 V

PI controller kp = 0.03, ki = 0.01

When the electronic system starts to work at 0 s, the source current of A phase is shown in Figure 4,
which is seriously affected by the harmonic current. At the time t = 0.04 s, the switch is closed and the
proposed APF controller begins to work, the source current in Figure 5 tends to a steady state after a
half cycle which is about 0.01 s.
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When the fractional order is set with different values, the effects of tracking the instruction current
obtained are not exactly the same. Figure 6 shows the specific waveforms of the instruction current and
compensation current with different values of fractional order. It can be observed that if α is too small
(α = 0.1), the compensation current can track the instruction current reluctantly with considerable error
which cannot meet the tracking standard. While α = 0.5, tracking quality is significantly improved,
however, the effect is not excellent for its relative larger tracking error compared with the result when
we choose α = 0.9. Logically, we choose α = 0.9 in order to achieve better effects. Correspondingly,
the compensation current tracking error while α = 0.9 is shown in Figure 7, further illustrating the
advantage of the proposed fractional backstepping sliding mode adaptive fuzzy controller in tracking
instruction current. The values of total harmonic distortion (THD) before and after the proposed APF
controller is implanted into the system are 24.71% and 1.5%, respectively. The values of the THD
index decrease from the high value of 24.71% to the low value of 1.5% in 0.06 s, which is far less than
the harmonic standard of IEEE of 5% [36], meaning that the designed controller has a good effect in
decreasing distortion. Figure 8 shows the changing tendencies adaptive parameter θ f . Obviously, the
parameters converge to stable values.

In order to verify the good robustness of the proposed controller in the presence of load changes,
we add the loads in a ladder-type increase. Specifically speaking, we add the same loads to the system
at the time 0.1 s and 0.2 s to see the performance of the controlled system. THD in 0.16 s and 0.26 s
is 1.39% and 1.83%, respectively, still under 5%, which verifies the strong robustness of the system.
Moreover, we adopt the Propotional-Intergral (PI) controller at the DC side to acquire a stable DC
capacitor voltage. In Figure 9, it can be seen the DC capacitor voltage can tend to be stable regardless
of the changes of the applied load.
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In order to prove the superiority of the proposed fractional backstepping sliding mode fuzzy
controller over conventional integer-order ones, comparison between them is also given in Table 2. It is
noted that THD with a fractional controller is always lower than that using an integer-order controller,
which proves better THD performance and robustness.
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Table 2. Total harmonic distortion (THD) in proposed controller and normal controller.

Time
THD (%)

Fractional Backstepping Sliding
Mode Adaptive Fuzzy Control

Backstepping Sliding Mode Adaptive
Fuzzy Control with Integer Order

0 24.71% 24.71%
0.06 s 1.50% 2.33%
0.16 s 1.39% 2.30%
0.26 s 1.83% 2.37%

6. Conclusions

In this paper, a fractional backstepping sliding mode adaptive fuzzy controller for a three-phase
active filter has been proposed. By applying the backstepping method, a fractional-order scheme with
a backstepping sliding mode controller is designed without establishing a precise mathematical model
for the active power filter. The unknown dynamics are approximated precisely by the adaptive fuzzy
system. The simulation result demonstrates the excellent dynamic performance, small tracking error,
good THD performance, and stable DC voltage compared with the integer-order one. The THD values
are 1.5%, 1.39%, 1.83% in 0.06 s, 0.16 s, and 0.26 s, compared to 2.33%, 2.30%, and 2.37% between
the proposed fractional backstepping sliding mode adaptive fuzzy controller, and backstepping
sliding mode adaptive fuzzy controller with integer-order. In the next research step, a hardware
experiment will be investigated to verify the effectiveness of the proposed scheme using the dSPACE
real-time system.
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