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Abstract: We investigate the enhancement of second-harmonic generation in cylindrical GaAs
nanowires. Although these nanostructures confine light in two dimensions, power conversion
efficiencies on the order of 10−5 with a pump peak intensity of ∼1 GW/cm2 are possible if the pump
and the second-harmonic fields are coupled to the Mie-type resonances of the nanowire. We identify
a large range of nanowire radii in which a double-resonance condition, i.e., both the pump and the
second-harmonic fields excite normal modes of the nanowire, induces a high-quality-factor peak of
conversion efficiency. We show that second-harmonic light can be scattered with large efficiency even
if the second-harmonic photon energy is larger than 1.42 eV, i.e., the electronic bandgap of GaAs,
above which the material is considered opaque. Finally, we evaluate the efficiency of one-photon
absorption of second-harmonic light and find that resonant GaAs nanowires absorb second-harmonic
light in the near-field region almost at the same rate at which they radiate second-harmonic light in
the far-field region.
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1. Introduction

Optical and electronic properties of semiconductors such as Si and GaAs are suitable for the
development of highly-efficient nonlinear and tunable nanophotonic devices. Semiconductors possess
a high refractive index, which is a fundamental requirement to slow-down light and to increase light
confinement and field-enhancement at the nano- or sub-wavelength-scale. In addition, semiconductors
have low losses at telecom wavelengths, they are chemically and electrically tunable, and they show
a strong nonlinear optical response from visible to far-infrared wavelengths. The bulk quadratic
nonlinear response is very strong in anisotropic crystals such as GaAs [1], in which a χ(2) effect is also
present at the surface due to crystal-symmetry breaking and electric-field discontinuity [2]. On the
other hand, in isotropic crystals such as Si, χ(2) is only strong on the surface. Cubic nonlinearities are
very large both in the bulk of Si and GaAs. Enhanced nonlinear optical effects have been predicted
and experimentally observed in a variety of nanoscale structures based on semiconductors: At the
band-edge of photonic crystals [3–7], in leaky-mode-resonant gratings or photonic-crystal slabs [8–10],
and more recently in Mie-resonant nanoantennas [11,12] and metasurfaces [13–16]. Besides the large
nonlinearity, the fabrication processes of nanoscale semiconductor devices are mature and reliable,
and in some cases compatible with existing technologies for photonic integrated circuits, e.g., silicon
photonics. The recent popularity gained by semiconductors in nonlinear nanophotonics is also due
to the modest amount of absorption losses at telecom wavelengths, at photon energies below the
electronic bandgap. Indeed, nanostructures based on semiconductors offer an all-dielectric solution
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for the design of nanophotonic devices with enhanced light–matter interactions [17], and they are
considered valid alternatives to plasmonic-based systems [18], especially for nonlinear optics which
require high light-intensities and, in particular, for applications in the visible and near-infrared,
where metals absorb light more efficiently. It has been shown that the combination of high material
nonlinearity, low absorption losses and the presence of Mie resonances in semiconductor nanoparticles
creates ideal conditions to induce highly-efficient nonlinear interactions. Conversion efficiencies
as high as 10−5 for second-harmonic (SH) generation in AlGaAs nanocylinders [13,14] and 10−6 for
third-harmonic (TH) generation in Si nanospheres [11] have been experimentally demonstrated by
tuning the pump signal on the magnetic-dipole resonance. SH generation with record-high efficiency
has been predicted in AlGaAs resonators that host bound-in-continuum states [19]. Moreover, the
possibility to tailor polarization and radiation patterns has been demonstrated for SH light scattered by
AlGaAs nanocylinders [20,21]. The key factor to achieve strong nonlinear interactions in semiconductor
nanoparticles is to couple light to Mie scattering modes [22]. Nonlinear effects, such as SH and
TH generation, have been so far investigated in isolated and arrayed Si- and GaAs-based resonant
nanoparticles with three-dimensional (3D) light confinement, such as spheres and finite cylinders
(nanodisks or nanopillars). Here we analyze SH generation in Mie-resonant GaAs nanowires, or infinite
cylinders. Mie theory is used to describe the response in the linear regime, which is dominated by
the normal modes of the nanowire. Next, an average nonlinear susceptibility, derived by the linear
Mie-scattering coefficients and normal modes, is introduced to predict the far-field SH scattering
efficiency and finite-element simulations are performed to calculate SH light absorption, to examine
near fields, and to test the validity of the average nonlinear susceptibility. Although light is confined in
only two dimensions, defined by the scattering plane orthogonal to the nanowires’ axis, we show that,
if the nanowires are judiciously designed, conversion efficiencies for SH generation are similar to those
achievable in nanoparticles with 3D light confinement. Finally, we discuss the role of absorption losses
in SH generation, and demonstrate that: (i) Nanowires produce intense SH light even when the SH
photon energy is tuned above the electronic bandgap of GaAs, where the material is opaque and it is
commonly assumed that harmonic generation is not efficient, and (ii) absorption of SH light is not
negligible even when the SH photon energy is tuned below the electronic bandgap of GaAs.

2. Mie Scattering in the Linear Regime and Normal Modes of GaAs Nanowires

The nanowire geometry and the electromagnetic fields have translational invariance in the
direction of the nanowire axis (z axis in our coordinate system) and therefore we analyze linear
and nonlinear optical scattering only in the xy plane. Light is incident as a plane wave with either
TM polarization (electric field parallel to the scattering xy-plane) or TE polarization (electric field
perpendicular to the scattering plane). We assume that the principal axes of the crystal are oriented as
follows: x̂ ‖ [100], ŷ ‖ [010], and ẑ ‖ [001]. The second-order nonlinear tensor contains only elements
of type χ(2)i jk = χ(2) with i , j , k, so that the nonlinear current induced at the SH frequency can be
written as: 

JNL
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JNL
z
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where ωp is the pump angular frequency, Ep
x,y,z indicate the pump electric-field components, and JNL

x,y,z
indicate the SH induced current components. Both the relative permittivity of GaAs, εGaAs, and
the nonlinear susceptibility χ(2) are weakly dispersive at infrared wavelengths, in particular for
photon energies smaller than the GaAs energy bandgap, Eg = h c

λBG
= 1.42 eV, where λBG ' 870 nm.

The frequency-dependence becomes significant at shorter wavelengths (λ ≤ λBG), where interband
transitions play a non-trivial role in the spectra of SH light scattering and absorption. In Figure 1, we plot
the real and imaginary parts of εGaAs and χ(2) that we use for calculations of linear and nonlinear
scattering and absorption efficiencies. Linear and nonlinear optical data are taken from [23–26],



Appl. Sci. 2019, 9, 3381 3 of 15

respectively. Both models account for the electronic band structure of GaAs, and therefore they include
the E0, E0 + ∆0, E1, E1 + ∆1, E′0, and E2 transitions of GaAs.
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Figure 1. (a) Real and imaginary parts of the GaAs relative permittivity, εGaAs, in the wavelength
range of interest. (b) Real and imaginary parts, and amplitude, of the GaAs second-order nonlinear
susceptibility, χ(2) for second-harmonic (SH) generation. The x-axis in (b) refers to pump wavelength.

Maps of scattering and absorption efficiency spectra for plane wave excitation are reported in
Figure 2 as a function of the nanowire radius. The efficiencies are calculated in the linear regime,
i.e., assuming the input light intensity induces negligible nonlinear polarization sources in GaAs.
Under these circumstances the problem can be approached by using Mie theory and the scattering
and absorption efficiencies can be evaluated as normalized cross-sections. The normalization factor is
the power (per unit length) flowing through the geometric cross-section, 2rNWIinc, where rNW is the
nanowire radius and Iinc is the input light intensity [27]. In other words, scattering efficiencies, QTE,TM

sca ,
and absorption cross sections, QTE,TM

abs , are evaluated, for TE- and TM-polarized incident plane waves,
as follows:
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where x = krNW and k is the wavenumber in the background medium. In our simple geometry,
with a cylindrical nanowire, the scattering coefficients for TE-polarized light scattering, i.e., bn,
and TM-polarized light scattering, i.e., an, retrieved by imposing continuity of the tangential fields at
the nanowire surface, are written as follows [27]:

an =
mJ′n(x)Jn(mx) − J′n(mx)Jn(x)

mH′n(x)Jn(mx) − J′n(mx)Hn(x)
, (6)

bn =
J′n(x)Jn(mx) −mJ′n(mx)Jn(x)

H′n(x)Jn(mx) −mJ′n(mx)Hn(x)
, (7)

where m =
√
εGaAs
√
εb

is the nanowire index contrast, Jn are the Bessel functions of first kind and order n
and J′n their derivatives, whereas Hn are the Hankel functions of first kind and H′n their derivatives.



Appl. Sci. 2019, 9, 3381 4 of 15
Appl. Sci. 2019, 9, x FOR PEER REVIEW 5 of 15 

 

Figure 2. Field distribution in the scattering plane (𝑥𝑦) associated with the first four normal modes 

with TE and TM polarization. 

TE light scattering only depends on the 𝑏𝑛 (𝑐𝑛  inside the nanowire) coefficients, while TM 

scattering is only ruled by the 𝑎𝑛 (𝑑𝑛 inside the nanowire) coefficients. Although the expansions in 

Equations (2–5) are valid for plane waves, it is possible to expand the fields with the same Mie 

coefficients in the presence of any kind of source, including SH sources induced in the volume and 

on the surface of the nanowire. In other words, TE(TM) scattered fields are always equal to the 

superposition of normal modes of an increasing order number, each weighted by the corresponding 

coefficient 𝑏𝑛 (𝑎𝑛). The normal modes of an open cavity must radiate into the far-field [28], and 

therefore it is common to associate them with cartesian multipoles [29,30]. For example, the Mie 

coefficient 𝑎0  is related to a magnetic-dipole moment (or electric quadrupole [29,31]) and the 

associated electric field is of type 𝑎0𝐻0
′(𝑘𝑟)𝜙̂ ; the coefficient 𝑎1 is associated with a superposition 

of an electric dipole moment and a combination of electric-octupole moments. Higher-order 

coefficients 𝑎𝑛, with 𝑛 > 1, are related to higher-order multipoles. TE-polarized normal modes are 

instead weighted by the 𝑏𝑛 coefficient and they are z-polarized. The coefficient 𝑏0 is related to a TE 

mode with electric field distribution associated with an electric dipole, therefore of type 𝑎0𝐻0(𝑟)𝑧̂. 

Similarly, in the TM case, coefficients 𝑏𝑛 with 𝑛 ≥ 1 are associated with higher-order modes. In 

Figure 2, we summarize the electric and magnetic field distributions associated with the first four TE- 

and TM-polarized modes with the corresponding Mie coefficients.  

In Figure 3, we report scattering and absorption linear efficiencies, calculated with Equations (2-

5), in response to either TE or TM polarized plane waves impinging on the nanowire. The scattering 

peaks are associated with the maxima of the Mie scattering coefficients, therefore, they correspond to 

maxima of either 𝑎𝑛  for the TM case or 𝑏𝑛  for the TE case—the maxima occur when the 

denominators of the scattering coefficients, 𝑑𝑛 and 𝑎𝑛 for TM polarization and 𝑐𝑛 and 𝑏𝑛 for TE 

polarization approach zero. The Mie coefficients peaks overlapped with the scattering and absorption 

maxima are reported in Figure 3. On each maximum of a Mie coefficient, light is efficiently coupled 

to the corresponding normal mode and intensity maxima of internal near-fields and scattered far-

fields are observable. For this reason, maxima of scattering and absorption are virtually overlapped. 

Figure 2. Field distribution in the scattering plane (xy) associated with the first four normal modes
with TE and TM polarization.

It is worth mentioning that TE and TM problems are fully decoupled in our z-invariant structure
with scattering only occurring in the xy-plane. Incident, scattered and internal fields are superpositions
of vector cylindrical harmonics, namely superpositions of Hankel or Bessel functions. These harmonics
are the normal modes of the particle. In particular, for an incident TM-polarized plane wave with
electric-field amplitude Einc, the scattered field outside the nanowire (r > rNW) can be written as
follows:

ETM
S (r,φ) = Einc

∞∑
n=−∞

(−i)nian

[ in
kr

Hn(kr)ρ̂−H′n(kr)φ̂
]
einφ, (8)

HTM
S (r,φ) =

−iEinc
η

∞∑
n=−∞

(−i)nianHn(kr)ẑeinφ, (9)

where η = η0/
√
εb is the impedance of the background medium and η0 the impedance in vacuo,

and r̂⊥φ̂⊥ẑ are the unit vectors of a cylindrical coordinate system in which the axial coordinate, z,
is aligned with the nanowire axis. By duality, for a TE-polarized plane wave the scattered field outside
the nanowire is as follows:

ETE
S (r,φ) = −Einc

∞∑
n=−∞

(−i)nbnHn(kr)ẑeinφ (10)

HTE
S (r,φ) =

iEinc
η

∞∑
n=−∞

(−i)nbn

[ in
kr

Hn(kr)r̂−H′n(kr)φ̂
]
einφ. (11)
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The vector cylindrical harmonics inside the nanowire can be evaluated by substitution of Hn(kr)
and H′n(kr) with Jn(mkr) and J′n(mkr), respectively. For example, the TM and TE-polarized electric
fields inside the nanowire can be calculated as follows:

ETM
1 (r,φ) = Einc

∞∑
n=−∞

(−i)nidn

[
−

in
mkr

Jn(mkr)ρ̂+ J′n(mkr)φ̂
]
einφ (12)

ETE
1 (r,φ) = Einc

∞∑
n=−∞

(−i)ncn Jn(mkr)ẑeinφ, (13)

with internal scattering coefficients:

dn =
2i/πx

mH′n(x)Jn(mx) − J′n(mx)Hn(x)
, (14)

cn =
2i/πx

H′n(x)Jn(mx) −mJ′n(mx)Hn(x)
. (15)

It is clear that electric (magnetic) fields in TM polarization have the same shape and symmetry of
magnetic (electric) fields in TE polarization, with the only difference being the scattering coefficients.
Figure 2 summarizes this concept.

TE light scattering only depends on the bn (cn inside the nanowire) coefficients, while TM scattering
is only ruled by the an (dn inside the nanowire) coefficients. Although the expansions in Equations
(2)–(5) are valid for plane waves, it is possible to expand the fields with the same Mie coefficients in
the presence of any kind of source, including SH sources induced in the volume and on the surface
of the nanowire. In other words, TE(TM) scattered fields are always equal to the superposition of
normal modes of an increasing order number, each weighted by the corresponding coefficient bn (an).
The normal modes of an open cavity must radiate into the far-field [28], and therefore it is common
to associate them with cartesian multipoles [29,30]. For example, the Mie coefficient a0 is related to a
magnetic-dipole moment (or electric quadrupole [29,31]) and the associated electric field is of type
a0H′0(kr)φ̂; the coefficient a1 is associated with a superposition of an electric dipole moment and a
combination of electric-octupole moments. Higher-order coefficients an, with n > 1, are related to
higher-order multipoles. TE-polarized normal modes are instead weighted by the bn coefficient and
they are z-polarized. The coefficient b0 is related to a TE mode with electric field distribution associated
with an electric dipole, therefore of type a0H0(r)ẑ. Similarly, in the TM case, coefficients bn with n ≥ 1
are associated with higher-order modes. In Figure 2, we summarize the electric and magnetic field
distributions associated with the first four TE- and TM-polarized modes with the corresponding
Mie coefficients.

In Figure 3, we report scattering and absorption linear efficiencies, calculated with Equations
(2)–(5), in response to either TE or TM polarized plane waves impinging on the nanowire. The scattering
peaks are associated with the maxima of the Mie scattering coefficients, therefore, they correspond to
maxima of either an for the TM case or bn for the TE case—the maxima occur when the denominators
of the scattering coefficients, dn and an for TM polarization and cn and bn for TE polarization approach
zero. The Mie coefficients peaks overlapped with the scattering and absorption maxima are reported
in Figure 3. On each maximum of a Mie coefficient, light is efficiently coupled to the corresponding
normal mode and intensity maxima of internal near-fields and scattered far-fields are observable.
For this reason, maxima of scattering and absorption are virtually overlapped. The abrupt increase
of absorption cross-section above the bandgap (λ < λBG) is due to the electronic transitions of GaAs.
Although quenched by absorption, resonances associated with higher-order modes appear at shorter
wavelengths within the visible range. It is worth noticing that the response of the nanowire is
dominated by four normal modes, namely the order 0, ±1, ±2, and ±3, across the whole range of
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nanowire radii considered, from 50 to 300 nm, and across a broad wavelength range that covers visible
and near-infrared.
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Figure 3. Scattering (a,b) and absorption (c,d) efficiency spectra for TE-polarized incident light (a,c)
and TM-polarized incident light (b,d) for GaAs nanowires with variable radius, rNW . The white dashed
lines in (a,b) follow the maxima of the scattering coefficients. The white dotted lines indicate the
electronic-bandgap wavelength of GaAs (~870 nm).

3. Second-Harmonic Generation: Scattering and Absorption Efficiencies

We consider an input pump with TM polarization and intensity Ip = 2 GW/cm2. The second-order

bulk response due to χ(2)xyz will induce a TE-polarized SH signal. The normal modes available in the
spectrum play a key role in determining the far-field emission efficiency and radiation pattern for
SH light. We have investigated far-field SH radiation by varying the pump wavelength across the
whole spectrum shown in Figure 3. The total SH scattered efficiency is calculated in two ways: (i) By
introducing an effective nonlinear susceptibility retrieved from the linear response at both the pump
and SH wavelengths; (ii) with a finite-element solver (COMSOL). The SH scattering efficiency is
defined as

QSH =

∮
C SSH · n̂d`

2rNWIp
, (16)

where SSH is the Poynting vector at the SH wavelength in the far-field zone, and the integral is
performed along a closed line surrounding the nanowire in the far-field with n̂ being the unit vector
normal to the line and pointing in the outward direction. Neglecting pump depletion and third-order
nonlinear effects, it is straightforward to prove that the SH scattering efficiency shows the usual linear
dependence on the pump intensity Ip and a simple dependence on an average nonlinear susceptibility,

χ
(2)
av , as follows:
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QSH =
ηb

4ε2
b

π2(kSHrNW)3
∣∣∣∣χ(2)av

∣∣∣∣2Ip (17)

where ηb is the background impedance, kSH = 2k =
2ωp

c
√
εb is the SH wavenumber in the background

medium and the average susceptibility is calculated as the average of
∣∣∣∣∣χ(2)e f f (φ)

∣∣∣∣2 , across all the possible

SH scattering angles between 0 and 2π in the xy plane, i.e.,

∣∣∣∣χ(2)av

∣∣∣∣2 = 〈|χ
(2)
e f f (φ)|

2
〉 =

∫ 2π
0

∣∣∣∣∣χ(2)e f f (φ
′)
∣∣∣∣2dφ′

2π
. (18)

The derivation of Equation (17) is based on the Lorentz reciprocity theorem, and it is reported in
the Appendix A section. The angle-dependent, effective nonlinear coefficient, χ(2)e f f (φ

′), is related to
the field enhancement at both pump and SH and to the overlap integral in the volume of the nanowire
(NW):

χ
(2)
e f f (φ

′) =

∫
NW χ

(2)
xyzξxξyξz(φ′)dS

πr2
NW

. (19)

In Equation (19), ξx is the Ex field distribution in the nanowire under TM plane wave excitation at
the pump frequency with amplitude Einc = 1 V/m and incident at ϕ = 0, ξy is the Ey field distribution
at the pump frequency under TM plane wave excitation with amplitude Einc = 1 V/m and incident at
ϕ = 0, and ξz(φ

′) is the Ez field under TE plane wave excitation at the SH frequency with amplitude
Einc = 1 V/m and incident at ϕ = φ′. The fields in Equation (19) are calculated in the linear regime
and therefore they are evaluated by using the Mie-theory expressions presented in Equations (12)–(13).
We have verified that truncating the cylindrical expansion of the fields in order to include only four
normal modes in Equation (19) is enough to predict with good accuracy the SH scattering efficiency
using the expression in Equation (17). The differences in the calculated QSH values with respect to the
finite-element numerical simulations (COMSOL) are on the order of 1%, and they are mainly due to
the order of truncation of cylindrical harmonics in the fields’ expansions. The maxima of scattering
coefficients are plotted in Figure 4 for a large range of nanowire radii next to the SH generation
efficiency QSH map.
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Figure 4. (a) Maximum peaks of the Mie scattering coefficients monitored as a function of nanowire
radius. For TM-scattering coefficients (an), the wavelength axis is on the bottom (pump wavelength);
for TE-scattering coefficients (bn), the wavelength axis in on the top (SH wavelength). (b) Color map
representation of SH scattering efficiency as a function of wavelength and nanowire size. The circles in
(a,b) highlight scenarios in which either the pump or the SH, or both pump and SH, are coupled to
normal modes of the nanowire.

It is clear that the peaks in the SH scattering spectrum are associated with the excitation of nanowire
modes at the pump or at the SH wavelengths, or at both wavelengths if the system is doubly-resonant.
In Figure 4, we have indicated with circles several SH peaks. In one case—see the black circle—the
radius is equal to 220 nm and the pump wavelength is equal to ~1933 nm, therefore the SH is generated
at 966.5 nm, in the transparency region of GaAs (λ > λBG). In this scenario, the nanowire is doubly
resonant for both the pump and the SH field, and this condition only occurs in a very narrow band.
In particular, the pump plane wave is exciting the TM0 mode, which is related to a broadband peak
of the Mie coefficient a0, whereas the SH is resonant with the mode TE3, which is associated with a
narrowband peak of the Mie coefficient b3. The result of this doubly-resonant, TM0 + TM0 → TE3

interaction is that SH light is scattered with high efficiency, larger than 10−5. In Figure 5, we plot the
field distribution of the pump and SH on this peak, when the nanowire radius is rNW = 220 nm.
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If the pump is slightly detuned from this double resonance condition, then the structure turns out
to be singly-resonant with the only TM0 mode resonantly excited by the pump and a 4-fold reduction
of conversion efficiency—the dotted black circle belongs to this singly-resonant region. This explains
the spectral behavior of the SH efficiency near this region, with a sharp peak (due to SH coupling
to the TE3 mode) emerging from a shallow peak (due to pump coupling to the TM0 mode). Owing
to a combination of factors, including the chromatic dispersion of GaAs as well as the dispersion of
the scattering coefficients, the double resonance condition persists over a wide range of nanowire
sizes, form radii smaller than 200 nm to radii larger than 300 nm. Other peaks, indicated in Figure 4
with circles of different colors, are due to mode coupling of either the pump or SH to normal modes
of the nanowire. It is remarkable that the conversion efficiency remains at similar levels, between
10−6 and 10−5, even in cases in which the SH wavelength, λSH, is smaller than λBG and therefore
absorption losses are expected to inhibit up-conversion. In particular, on the peak indicated with a red
circle—corresponding to a nanowire with radius 268 nm and pumped at 1550 nm—the efficiency is as
high as in the doubly resonant case, even though only the pump signal is here resonantly coupled to
the TM1 mode and the SH is tuned above the bandgap (λSH < λBG). The field distributions for pump
and SH in this scenario are reported in Figure 6. While the pump takes on the typical shape of a TM1

mode, the SH is coupled to a superposition of modes, with the stronger components being the TE1 and
the TE2, i.e., the modes associated with the b1 an b2 Mie coefficients, respectively.Appl. Sci. 2019, 9, x FOR PEER REVIEW 9 of 15 
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4. Absorption of SH Light

The usual metrics for SH conversion efficiency involves the SH light that one may collect in a
certain direction in the far-field region, or the total light scattered QSH in all directions in the far-field,
as defined in Equation (16). However, a portion of SH energy is inexorably dissipated in the near field
via one-photon absorption. The rate of this SH absorption can be calculated as follows:

ASH =
ωε0/2

2rNWIinc
Im(εGaAs)

∫
NW

∣∣∣ETE
1

∣∣∣2dS, (20)

ASH can be significant in enhanced nonlinear interactions at the nanoscale. For example, in
plasmonic resonators, in addition to the pump energy lost as heat in the metal, reabsorption of SH light
is orders of magnitude larger than far-field scattered SH light [32–34]. In other words, ASH >> QSH in
many nanoplasmonic systems designed to resonate at the pump and/or at the harmonic frequency.
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Dielectric resonators are considered immune to pump absorption if illuminated in the transparency
region below the bandgap (i.e., if the pump wavelength λP is larger than λBG), although Mie theory
predicts that light absorption on the Mie resonances above the bandgap can reach values as high as 5%
of the total light extinction for GaAs nanowires, as one can infer by comparing absorption maps and
scattering maps in Figure 3. In addition, a study of SH light absorption in dielectric nanoantennas
(isolated or in metasurfaces) has not been reported so far, taking for granted that most of the SH
light is scattered in the far-field by dielectric resonators, and not absorbed in the near field. Here we
demonstrate that this is not the case, at least for nanowires with 2D light-confinement. In Figure 7,
we report a side-by-side comparison of SH scattering efficiency spectra, QSH, and SH absorption
spectra, ASH, as functions of the nanowire radii.
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Figure 7. (a) Same as Figure 4b. (b) SH absorption ASH, as a function of pump/SH wavelength and
nanowire size. The dark-shaded portion of the SH wavelength axis indicates the opaque region for both
pump and SH light (λp ≤ λBG); the medium-shaded portion indicates a region that is transparent for the
pump but absorptive for the SH (λSH < λBG < λp); the light-shaded portion indicates the transparent
range (λSH ≥ λBG).

SH scattering peaks are associated with SH absorption peaks, as in other resonant photonic
structure, including plasmonic nanoantennas and gratings. ASH is non-negligible with respect to QSH.
Indeed, ASH is on the same order or even larger than QSH for most resonant peaks, including those peaks
that entirely fall in the transparency region of GaAs (λSH ≥ λBG). These facts are summarized in Figure 8,
where the SH scattering and absorption spectra are plotted for a nanowire radius rNW = 220 nm
illuminated with a TM polarized pump plane wave with intensity Ip = 2 GW/cm2. In the transparent
region (λSH ≥ λBG), in which GaAs is a poor absorber at both pump and SH wavelengths, scattering
and absorption of SH light show similar efficiencies on the order of 10−5 on the doubly-resonant
peak at λp ' 1.933 µm. In the intermediate wavelength range in which GaAs is mostly transparent
for the pump but absorbing for the SH (λSH < λBG < λp), SH absorption gets somewhat larger than
SH scattering but the scattering efficiency reaches almost the same level that one has in the fully
transparent region (see, e.g., the peak at λp ' 1.29 µm). In the opaque range (λp ≤ λBG), SH absorption
dominates over scattering by at least one order of magnitude.
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Figure 8. SH scattering and absorption efficiency for a GaAs nanowire with rNW = 220 nm with
an input pump intensity Ip = 2 GW/cm2. The three background colors indicate the three regions
described in the text with the same color code of Figure 7.

5. Conclusions

To summarize, we have investigated SH generation from Mie-resonant GaAs nanowires.
When judiciously designed, nanowires are able to boost the conversion efficiency of SH generation
up to 10−5 using a ∼ 1 GW/cm2 pump intensity, similar to the efficiency previously reported in 3D
confined dielectric antennas made of GaAs and AlGaAs. We have found a doubly-resonant condition
in which both the pump and the SH fields excite normal modes of the nanowire, a scenario that can be
achieved in a large range of pump wavelengths by changing the nanowire radius. When the nanowire
is under doubly-resonant conditions, the SH light is coupled to a multipolar normal mode with large
quality factor (the bandwidth of the SH scattering peak is as narrow as ~15 nm). Such narrow spectral
features may be exploited for sensing devices, tunable filters, and modulators.

Our results suggest that, due to the resonant nature of SH generation in GaAs nanowires, on one
hand, SH scattering in the opaque region of GaAs may be as efficient as in the transparency region,
and, on the other hand, SH absorption in the transparency region may be as strong as in the opaque
region of GaAs.
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Appendix A

The expression of the SH scattering efficiency in Equation (17) derives from the Lorentz reciprocity
theorem and the concept of effective susceptibility [35–37]. In the undepleted pump approximation
and in the absence of third-order nonlinear effects, the time-harmonic electromagnetic problem at the
SH frequency (2ωp) is given by a distribution of volume currents localized inside the nanowire,
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JNL = −i2ωpPNL = −i2ωp

(
ε0χ

(2)
xyzETM

1,x ETM
1,y

)
ẑ, (A1)

which radiate into the background medium and induce the unknown field ESH(R,φ′) = ESH ẑ at a
distance R from the nanowire in a direction tilted by an angle φ′ with respect to the input pump, where
a virtual detector is located. The problem is illustrated in Figure A1a. In Figure A1b, we also report the
reciprocal problem, in which a line current source J0 = I0δ(x− x0)δ(y− y0)ẑ, at the virtual-detector
location, emits radiation of frequency 2ωp and induces a z-polarized field ETE

1 = ETE
1,z ẑ inside the

nanowire. The Lorentz reciprocity imposes that∫
J0 · ESHdS =

∫
JNL · E

TE
1 dS (A2)

where the surface integral is performed across the whole xy plane. The expression of the unknown
field is therefore:

ESH =
−i2ε0ωp

I0

∫
NW

χ
(2)
xyzETM

1,x ETM
1,y ETE

1,z(φ
′)dS. (A3)

If the source J0 is located in the far-field region, then the phase fronts emitted by J0 at the nanowire
position are virtually planar. Under these circumstances, it is convenient to replace, in the reciprocal
problem, the current J0 with a z-polarized plane wave with amplitude E0 and traveling in the direction
φ′, as illustrated in Figure A1c. This plane wave induces an electric field ETE

1,z (φ′) identical to that
produced in the original reciprocal problem of Figure A1b. The plane wave excitation may be more
practical for full-wave numerical simulations. An additional advantage is that all the internal fields in
the integral of Equation (A3) can now be retrieved analytically by using the expressions in Equations
(12)–(13).
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The electric field associated with this vector potential is therefore: 
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𝑖
𝜋
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√8𝜋𝑘𝑆𝐻𝑅 
𝑧̂. (A6) 

Hence, the plane wave amplitude is  

𝐸0 = |𝐄0| =
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Figure A1. (a) SH scattering problem, with a volume current distribution JNL inside the nanowire
radiating into the background medium and inducing a field ESH on a detector located in a point in the
far-field. (b) Reciprocal scattering problem, with a radiating line current source located at the detector
point that induces a field ETE

1 inside the nanowire. (c) The equivalent of (b) with a plane wave source
instead of a line current (the approximation is valid if kSHR� 1).

The only missing piece of information is the relation between the plane wave amplitude E0 and
the current I0. This can be retrieved by solving for the 2D Green’s function for the Helmholtz equation
at the SH frequency in the plane of scattering (xy plane), G2D = i

4 H(1)
0 (kSHR). Using the asymptotic

approximation of the Hankel function for kSHR� 1, the Green’s function reduces to:

G2D ' ei π4
eikSHR√
8πkSHR

. (A4)
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The vector potential for the current source J0 is, at a distance R from J0:

A0 = µ0

∫
J0G2DdS = µ0I0ei π4

eikSHR√
8πkSHR

ẑ. (A5)

The electric field associated with this vector potential is therefore:

E0 = i2ωpA0 = i2ωpµ0I0ei π4
eikSHR√
8πkSHR

ẑ. (A6)

Hence, the plane wave amplitude is

E0 = |E0| =
2ωpµ0I0√

8πkSHR
(A7)

and Equation (A3) can be re-written as follows:

ESH =
−i4µ0ε0ω2

p√
8πkSHR

∫
NW

χ
(2)
xyzETM

1,x ETM
1,y

ETE
1,z(φ

′)

|E0|
dS. (A8)

If we now consider a TM-polarized plane-wave field at the fundamental frequency ωp, with pump

intensity Ip = 1
2ε0
√
εbc

∣∣∣Ep
∣∣∣2, and indicate with ξx/y = ETM

1,x/y/
∣∣∣Ep

∣∣∣ the field enhancement profiles for

the x and y component of the TM-polarized pump field, and ξz(φ′) =
ETE

1,z(φ
′)

|E0 |
the analogous quantity

for the z component of the TE-polarized SH field, then Equation (A8) can be recast as follows:

ESH =
−i8µ0Ipω2

p

c
√
εb

√
8πkSHR

πr2
NWχ

(2)
e f f (φ

′) (A9)

where

χ
(2)
e f f (φ

′) =

∫
NW χ

(2)
xyzξxξyξz(φ

′)dS

πr2
NW

(A10)

is the angle-dependent, effective nonlinear coefficient reported in Equation (19).
The Poynting vector can now be written as:

SSH =
|ESH |

2

2ηb
n̂ =

ηbI2
pk3

SHπr4
NW

4Rε2
b

∣∣∣∣χ(2)e f f (φ
′)
∣∣∣∣2n̂, (A11)

where ηb is the background impedance.
Finally, the expression of the SH scattering efficiency reported in Equation (17) of the main text

can be derived:

QSH =

∮
C SSH · n̂d`

2rNWIp
=

ηb

4ε2
b

π2(kSHrNW)3
∣∣∣∣χ(2)av

∣∣∣∣2Ip, (A12)

where the average susceptibility is defined as in Equation (18):

∣∣∣∣χ(2)av

∣∣∣∣2 = 〈|χ
(2)
e f f (φ)|

2
〉 =

∫ 2π
0

∣∣∣∣∣χ(2)e f f (φ
′)
∣∣∣∣2dφ′

2π
. (A13)
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