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Abstract: Small unmanned aircraft vehicles (SUAVs) or drones are very useful for visual detection and
tracking due to their efficiency in capturing scenes. This paper addresses the detection and tracking
of moving pedestrians with an SUAV. The detection step consists of frame subtraction, followed by
thresholding, morphological filter, and false alarm reduction, taking into consideration the true size
of targets. The center of the detected area is input to the next tracking stage. Interacting multiple
model (IMM) filtering estimates the state of vectors and covariance matrices, using multiple modes of
Kalman filtering. In the experiments, a dozen people and one car are captured by a stationary drone
above the road. The Kalman filter and the IMM filter with two or three modes are compared in the
accuracy of the state estimation. The root-mean squared errors (RMSE) of position and velocity are
obtained for each target and show the good accuracy in detecting and tracking the target position—the
average detection rate is 96.5%. When the two-mode IMM filter is used, the minimum average
position and velocity RMSE obtained are around 0.8 m and 0.59 m/s, respectively.

Keywords: UAV/drone imaging; pedestrian detection; multiple target tracking; state estimator

1. Introduction

Recently, the use of small/miniature unmanned aerial vehicles (SUAV) or drones has increased for
a variety of applications. SUAVs range from micro air vehicles to man-portable UAVs, classified by their
weight or size [1]. The SUAV is cost-effective for capturing aerial scenes. The camera can be easily built
and manipulated in order to capture the scene of interest in a long distance, however, the computational
resources of the drone are often limited to processing high-resolution video sequences in real time.

Visual object detection has been studied with various methods [2]. Methods based on background
subtraction or frame difference were studied in [3–6]. Gaussian mixture modeling (GMM) was used
to analyze the background and target regions [3,4]. In [5], the background was subtracted under a
Gaussian mixture assumption, followed by a morphological filter. Long-range moving objects were
detected by a drone in [6]. Visual tracking is of intense interest, with the development of digital camera
technology and image processing technology [7–11]. Various experimental studies were surveyed in [7].
A particle filter was utilized with background subtraction in [8]. Deep learning-based visual tracking
was researched in [9]. In [10,11], supervised learning and reinforcement learning were adopted for
visual tracking, respectively. Vison-based target tracking with UAV was researched in [12–15]. Closely
located-object tracking was performed with feature matching and multi-inertial sensing data in [12].
Pedestrians were tracked by template-matching in [13]. Small animals were tracked with a freely
moving camera in [14]. A moving ground target was tracked in dense obstacles areas with UAV in [15].

Tracking can be performed by means of a consecutive estimation of the target state, such as the
position, velocity, and acceleration [16]. The Kalman filter is known to be optimal under independent
Gaussian noise assumption in estimating the target’s dynamic state in real time [17]. The interacting
multi model (IMM) can handle multiple targets with different maneuverings, because it can switch the
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target’s dynamics between multiple modes [18]. IMM was researched with an unscented Kalman filter
(UKF) in [19]. The effect of the multi-modal approach on high maneuvering was emphasized in [20].

Another consideration for multiple target tracking is data association, a method to assign each
measurement to either established targets, a new target, or a false alarm. The Bayesian data association
approach, probabilistic data association (PDA), calculates the probabilities of association between the
target and the measurement. It has been extended to joint probabilistic data association (JPDA) to handle
multiple targets [21]. Another Bayesian approach, multiple hypotheses tracking (MHT) [22], requires
hypothesis reduction techniques to reduce computational complexity, which increases exponentially.
A non-Bayesian data association approach, N-dimension (frame) assignment, was developed in [23].

In this paper, we address the detection and tracking of multiple moving pedestrians by an SUAV
or drone. Visual detection is performed through frame subtraction, with thresholding and dilation
operation, and false alarm removal [24,25]. Each frame is subtracted from a past frame, separated
by a constant interval. Then, thresholding generates a binary image and dilation is applied to the
binary image to produce candidate target regions. Finally, false target regions are removed, with the
known size of the real object. The centroids of final region of interest (ROI) windows are considered x
and y positions, which are fed to the next tracking stage as measurements. This detection approach
does not require intense training process and heavy computational burdens. Therefore, this method
is suitable for autonomous stand-alone aerial video surveillance systems with a drone, which have
limited computational resources.

For state estimation, the IMM filter estimates the state of the target and the covariance matrix.
Nearly constant velocity (NCV) models with two different covariance matrices of the process noise
are assumed for the dynamic states of the target [16]. For data association, a gating process excludes
measurements outside the validation region of each target. The nearest measurement-to-track
association scheme assigns one measurement to the closest track based on the statistical distance of
the residual. This nearest neighbor (NN) approach is efficient for the visual tracker because the false
measurements cannot appear in the area of a target of interest. It is assumed that the measurement
from the target in the next frame is closest to the predicted state of the target.

In the experiments, a total of 13 moving pedestrians and one car are captured at a height of 15 m
by a drone. Some people are clustered as one target during detection, thus a total of 10 tracks are
established by the Kalman (IMM filter with one mode) and the IMM filter with two or three modes.
The RMSEs of position and velocity are obtained and compared between the filters, showing their
dynamic states are well tracked with good accuracy—the average detection rate is 96.5% and the
minimum position and velocity RMSE are obtained at around 0.8 m and 0.59 m/s, respectively, when the
two mode-IMM filter is used.

The major contributions of this paper lie in the following: (1) we integrate visual detection
based on image processing and a target tracking derived from statistical estimation. In the literature,
image-based detection and state estimation-based target tracking are often researched individually,
but few studies are found that integrate the two parts. It is noted that we instantly get dynamic state
estimates, such as position, velocity, and acceleration, in the proposed method; (2) No massive training
data is required for target detection and tracking. Thus, this method can speed up the process, with less
computational resources. Drones have limited computing power, memory, bandwidth, and battery;
thus, a small computational load is required for a drone system; (3) A practical solution is proposed for
autonomous stand-alone aerial surveillance. The SUAV can move to any location where CCTV cameras
cannot be installed and hover or maintain its position. It is very low cost and can be operated by
non-experts. Thus, it is useful for combat missions, counter terrorist operations, or search and rescue in
military or commercial use. Figure 1 illustrates fully autonomous stand-alone aerial video surveillance
with an SUAV. The SUAV continuously monitors human movement within the field of view of the
attached camera at a certain altitude. If any threat is detected, an alert is sent to the authorities.
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Figure 1. Illustration of aerial surveillance with a small unmanned aerial vehicle (SUAV). 

The remains of the paper are organized as follows. Moving pedestrian detection is discussed in 
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where I(m,n;k) and I(m,n;k–kd) are the kth frame and the (k–kd)th frame, respectively, kd is a constant 
interval for frame subtraction, θT is a thresholding value, and M and N are pixel sizes in x and y 
directions, respectively. After this, a morphological filter, dilation is applied to the binary image to 
enlarge the segmented regions. The dilation operation is defined as [26]: 
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where Oi is the i-th region, θs and θf are the minimum and the maximum size of region, respectively; 
they are determined based on the true size of the target. The center of each target region is considered 
a measured position for target tracking in the next section. Figure 2 is the block diagram of moving 
object detection. 

 

Figure 1. Illustration of aerial surveillance with a small unmanned aerial vehicle (SUAV).

The remains of the paper are organized as follows. Moving pedestrian detection is discussed
in Section 2. Multiple target tracking with IMM is presented in Section 3. Section 4 demonstrates
experimental results. The conclusion follows in Section 5.

2. Object Detection with Frame Subtraction

A current frame is subtracted from a past frame at a constant interval. A thresholding step follows
to generate a binary image as:

IT(m, n; k) =
{

1, i f |I(m, n; k) − I(m, n; k− kd)| > θT

0, otherwise

}
,

m = 1, . . . , M, n = 1, . . . , N,
(1)

where I(m,n;k) and I(m,n;k–kd) are the kth frame and the (k–kd)th frame, respectively, kd is a constant
interval for frame subtraction, θT is a thresholding value, and M and N are pixel sizes in x and y
directions, respectively. After this, a morphological filter, dilation is applied to the binary image to
enlarge the segmented regions. The dilation operation is defined as [26]:

ID =
{
l|Dl ∩ IT , ϕ

}
, (2)

Dl = {d + l|d ∈ D}, (3)

where D is the structuring element for dilation, and l denotes an integer value less than the image size.
All alternative regions are considered candidate target regions. At last stage of detection, false target
regions are removed as:

Oi(m, n) =
{

1, θS ≤ Size{Oi} ≤ θ f
0, otherwise

}
, (4)

where Oi is the i-th region, θs and θf are the minimum and the maximum size of region, respectively;
they are determined based on the true size of the target. The center of each target region is considered
a measured position for target tracking in the next section. Figure 2 is the block diagram of moving
object detection.
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3. Target Tracking with IMM Filtering

3.1. System Modeling

The dynamic state of the target is modeled as a nearly constant velocity (NCV) model; the targets’
maneuvering is modeled by the uncertainty of the process noise, which is assumed to follow the
Gaussian distribution. The following is the discrete state equation of target t:

xt(k) = F(∆)xt(k− 1) + q(∆)v(k− 1), t = 1, . . . , n(k), (5)

where xt(k) is the state vector of target t at frame k, which is composed of positions and velocities in x and

y directions as xt(k) =
[
xt(k)

.
xt(k) yt(k)

.
yt(k)

]T
, T denotes matrix transpose, ∆ is the sampling time, v(k)

is a process noise vector composed of Gaussian white noise in x and y directions as v(k) =
[
vx(k) vy(k)

]T
,

n(k) is the number of targets at frame k, and F(∆) and q(∆) are the transition and the noise gain matrix,
respectively. They are defined as:

F(∆) =


1 ∆ 0 0
0 1 0 0
0 0 1 ∆
0 0 0 1

, (6)

q(∆) =


∆2/2 0

∆ 0
0 ∆2/2
0 ∆

. (7)

The filter modes of the IMM filter is set up with different covariance matrices of v as Q j =

diag
(
[σ2

jx σ2
jy]

)
, j = 1, . . . , M, where M is the number of filter modes. The following is the measurement

equation of target t:
zt(k) = H xt(k) + w(k), (8)

where zt(k) is the measurement vector of target t which is composed of positions in x and y directions

as zt(k) =
[
ztx(k) zty(k)

]T
, w(k) is a measurement noise vector composed of Gaussian white noise

in x and y directions as w(k) =
[
wx(k) wy(k)

]T
. It is assumed that the covariance matrix of w(k) is

R = diag
(
[r2

x r2
y]
)
, and H is the measurement matrix, defined as:

H =

[
1 0 0 0
0 0 1 0

]
. (9)

3.2. Multi-Mode Interaction

The state vectors and the covariance matrices of the IMM mode filters at the previous frame k−1
are mixed to generate the initial state vectors and the covariance matrices for each of the IMM mode
filter at the current frame k:

x̂t
0 j(k− 1|k− 1) =

M∑
i=1

x̂t
i(k− 1|k− 1)µt

i| j(k− 1|k− 1), t = 1, . . . , n(k), j = 1, . . . , M, (10)

Pt
0 j(k− 1|k− 1) =

M∑
i=1


µt

i| j(k− 1|k− 1)
{
Pt

i(k− 1|k− 1)+

[x̂t
i(k− 1|k− 1) − x̂t

0 j(k− 1|k− 1)]×

[x̂t
i(k− 1|k− 1) − x̂t

0 j(k− 1|k− 1)]T
}

, (11)
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µt
i| j(k− 1|k− 1) =

pi jµ
t
i(k− 1)

M∑
i=1

pi jµt
i(k− 1)

, (12)

where x̂t
i(k− 1|k− 1) and Pt

i(k− 1|k− 1) are, respectively, the state vector estimation and the covariance
matrix at the previous frame, µt

i(k − 1) is the i-th mode probability of target t, and pij is the mode
transition probability from mode i to mode j.

3.3. Mode Matched Kalman Filtering

The Kalman filter was performed for each IMM mode. The first step is to predict the state of each
target of which the dynamic state is modeled as:

x̂t
j(k|k− 1) = Fx̂t

j(k− 1|k− 1), t = 1, . . . , n(k), j = 1, . . . , M, (13)

Pt
j(k|k− 1) = FPt

j(k− 1|k− 1)FT + Q j. (14)

Next, the residual covariance St
j(k) and the filter gain Wt

j(k) are, respectively, obtained as:

St
j(k) = HPt

j(k|k− 1)HT + R, (15)

Wt
j(k) = Pt

j(k|k− 1)HTSt
j(k)

−1. (16)

3.4. Measurement Gating and Data Association

Measurement gating is a pre-process of data association that reduces the number of candidate
measurements. Let Z(k) be a set of measurement vectors detected at frame k:

Z(k) =
{
z1(k), . . . , zm(k)(k)

}
, (17)

where m(k) is the number of measurements at frame k. The measurement gating is chi-squared
hypothesis testing, assuming the Gaussian measurement residuals. Thus, a set of valid measurements
for target t and mode j is obtained as:

Zt
j(k) =

{
zm(k)|νt

mj(k)
T[St

j(k)]
−1
νt

mj(k) ≤ γ
}
, (18)

νt
mj(k) = zm(k) −Hx̂t

j(k|k− 1), m = 1, . . . , m(k), (19)

where γ is the gating size. The NN rule is adopted to associate a measurement with a track by
minimizing the norm of the residual as:

m̂t
j(k) = arg min

m=1,...,mt
j(k)
||νt

mj(k)
T[St

j(k)]
−1
νt

mj(k)||, (20)

and mt
j(k) is the number of candidate measurements which falls in the validation region for target t

and mode j.

3.5. State Estimate and Covariance Update

The state estimate and the covariance matrix of targets are updated as:

x̂t
j(k|k) = x̂t

j(k|k− 1) + Wt
j(k)ν

t
m̂t

j(k) j
(k), t = 1, . . . , n(k), j = 1, . . . , M, (21)
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Pt
j(k|k) = Pt

j(k|k− 1) −Wt
j(k)S

t
j(k)W

t
j(k)

T. (22)

If mt
j(k) is equal to zero, i.e., no measurement exists in the validation region, the state estimate

and the covariance become the predictions of the state and the covariance as:

x̂t
j(k|k) = x̂t

j(k|k− 1), (23)

Pt
j(k|k) = Pt

j(k|k− 1). (24)

The mode probability is updated as:

µt
j(k) =

Λt
j(k)

M∑
i=1

pi jµ
t
i(k− 1)

M∑
j=1

Λt
j(k)

M∑
i=1

pi jµt
i(k− 1)

, (25)

Λt
j(k) = N

(
0; vt

m̂t
j(k) j

, St
j(k)

)
, (26)

where N denotes Gaussian probability density function. If no measurement exists in the validation
region, the mode probability becomes:

µt
j(k) =

M∑
i=1

pi jµ
t
i(k− 1). (27)

Finally, the state vector and covariance matrix of each target are updated as:

x̂t(k|k) =
M∑

j=1

x̂t
j(k|k)µ

t
j(k), (28)

Pt(k|k) =
M∑

j=1

µt
j(k){P

t
j(k|k) + [x̂t

j(k|k) − x̂t(k|k)][x̂t
j(k|k) − x̂t(k|k)]

T
}. (29)

The procedures from Equation (10) to Equation (29) repeat until the track is terminated. Figure 3
is the block diagram of moving object tracking. The track is terminated when the track continuously
fails to update its state with validated measurements for a certain number of frames. It is noted that
when there is no measurement in the validation region, the track can update its state as Equations (23)
and (24), not Equations (21) and (22). The terminated track is also considered false if the number of
updates with validated measurements is too small, that is, it is assumed that the true target generates
at least a certain number of validated measurements.
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3.6. Performance Evaluation

Several metrics are used for performance evaluation, position error, velocity error, and RMSE
of position and velocity. The position error of target t at frame k is obtained in x and y directions,
respectively:

et
px(k) = |x̂t(k|k) − xtrue

t (k)|,
et

py(k) = |ŷt(k|k) − ytrue
t (k)|,

t = 1, . . . , Nt, k = 1, . . .Nk,
(30)

where xtrue
t (k) and ytrue

t (k) are the ground truth of position of target t in x and y directions, respectively,
Nt and Nk are, respectively, the total number of targets and the total number of frames. The ground
truth of positions of targets is obtained manually at each scene. The RMSE of position is obtained as:

RMSEp(t) =

√√√√√
1

Kt( f ) −Kt(s) + 1

Kt( f )∑
k=Kt(s)

{[
et

px(k)
]2
+

[
et

py(k)
]2
}
, (31)

where Kt(s) and Kt(f ) are the first and last frame where target t is estimated. The velocity error of target
is obtained in x and y directions, respectively:

et
vx(k) = |v̂tx(k|k) − vtrue

tx (k)|,
et

vy(k) = |v̂ty(k|k) − vtrue
ty (k)|,

t = 1, . . . , Nt, k = 1, . . . , Nk,
(32)

where the ground truth of the velocity is approximated as:

vtrue
tx (k) = 1

2δ∆

[
xtrue

t (k + δ) − xtrue
t (k− δ)

]
,

vtrue
ty (k) = 1

2δ∆

[
ytrue

t (k + δ) − ytrue
t (k− δ)

]
,

(33)

where δ is heuristically set up when the minimum velocity error is produced in the experiments.
The RMSE of velocity is obtained as:

RMSEv(t) =

√√√√√
1

Kt( f ) −Kt(s) + 1

Kt( f )∑
k=Kt(s)

{
[et

vx(k)]
2
+

[
et

vy(k)
]2
}
. (34)
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4. Results

4.1. Experimental Set-Up

A drone (DJI Phantom 4 Advanced) was used to capture moving objects. The drone, with an
attached gimbal and camera, is shown in Figure 4. The gimbal can tilt the camera within a 120◦ range
(−90◦ to 30◦). The camera pitch was set to −30◦ during the experiments.
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Figure 4. Drone with an attached camera.

The drone ascended to a height of 15 m and stayed still as a stationary sensor (platform), as shown
in Figure 5. It maintained its position while capturing video sequences of moving objects in the campus
area. Figure 6 shows the take-off/landing position. Figure 6 was taken by a camera pointing directly
downwards (−90◦ pitch) at a height of 100 m, to better visualize nearby buildings and structures.
Figure 7a shows a sample frame extracted from the video. The size of one frame was 4096 × 2160 pixels;
the frame was reduced to 20% size for efficient image processing, and the front and central part was
cropped to 550 × 300 pixels, as shown in Figure 7b.
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4.2. Scenario Description

The drone captured a video sequence at 30 frames per second (fps) at a height of 15 m. A total of
13 people and 1 car were captured for 550 frames (16.5 s). Figure 8a shows Targets 1–3 at the sixth
frame, Figure 8b shows Targets 1–7 at the 350th frame, and Figure 8c shows Targets 3–10 at the 550th
frame. Table 1 shows the duration, moving direction, and components of each target. All targets were
composed of one person or one car except for Target 3 and 4, which were composed of two and three
people, respectively. Target 1 was partly composed of two people, because the person in Target 2
merged to Target 1 after 237th frame.
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Table 1. Target characteristics.

Target No. First Frame Last Frame Direction Component

Target 1 1 515 Downward 1–2 person(s)
Target 2 1 237 Downward 1 person
Target 3 1 550 Downward 2 people
Target 4 123 550 Upward 3 people
Target 5 218 550 Downward 1 person
Target 6 266 550 Left 1 person
Target 7 310 550 Downward 1 Car
Target 8 379 550 Upwards 1 person
Target 9 411 550 Upwards 1 person
Target 10 397 550 Upwards 1 person

4.3. Detection of Moving Objects

The detection and tracking methods were implemented in MATLAB (version 8.5) on a PC (Intel
i5-7500). The interval kd in Equation (1) was set at 5, thus the detection process was applied from
the sixth frame; θT in Equation (1) was set at 30; D in Equation (3) was set at [1]1×1, θs and θf in
Equation (4) were set at 30 and 1200 pixels, respectively. Figure 9 shows the detection process of the
6th, 350th, and 550th frame. The first row is the detection results of Figure 8a. The second and the third
rows are the results of Figure 8b,c, respectively. Figure 9a shows the binary images after the frame
subtraction with thresholding. Assuming that the size of the targets is known, Equations (2) and (4)
were applied to Figure 9a to result in Figure 9b. Figure 9c shows the target regions with rectangular
windows. All targets in three frames were detected, with one false alarm in the 550th frame, as shown
in the third row in Figure 9c. Table 2 shows the detection rate of ten targets; the average detection rate
was 96.5%. The total number of false alarms detected was 638, thus the false alarm rate was 1.17 per
frame. The supplementary material, Video S1: Object Detection (AVI format) for object detection is
available online.
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Table 2. Detection results.

Target No Initial Frame Final Frame # of Frames # of Detection Detection Rate (%)

Target 1 6 515 510 510 100%
Target 2 6 237 232 230 99%
Target 3 6 550 545 545 100%
Target 4 128 550 423 423 100%
Target 5 223 550 328 242 74%
Target 6 271 550 280 280 100%
Target 7 315 550 236 236 100%
Target 8 384 550 167 167 100%
Target 9 416 550 135 130 96%
Target 10 402 550 149 143 96%

Avg. - - 326 316 96.5%

4.4. Multiple Target Tracking

Figure 10 shows all the measured (detected) positions of 10 targets, including false alarms.
The sampling time ∆ in Equation (5) was 0.033 s, since the frame rate was 30 fps. It was assumed
that one pixel corresponds to 0.1 m. The standard deviations of the process and the measurement
noise of the two-mode IMM filter were set at σx1 = σy1 = 0.6 m/s2, σx2 = σy2 = 1 m/s2, and
rx = ry = 0.5 m, respectively.

For the Kalman filter, σx = σy = 0.8 m/s2, and three-mode IMM filter, σx1 = σy1 = 0.6 m/s2,
σx2 = σy2 = 0.8 m/s2, and σx3 = σy3 = 1 m/s2; γ in Equation (18) for the gating process was set at 8.

A track was initialized by a two-point initialization method with the speed gating, which limited
the maximum speed to 1 m/s. Figure 11a–j are the tracking results of Targets 1–10, respectively.
Figure 11k shows all trajectories in one frame. Also, the supplementary material, Video S2: Human
Tracking (AVI format) for target tracking is available online. The track was terminated if there were no
updates for more than 40 consecutive frames. After termination, the track was considered false if the
number of updates with validated measurements was less than 60 times, thus, the true target should
be detected in at least 60 frames (2 s).
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Figure 12 shows the ground truth of the position of the targets. Figure 13 shows the approximated
ground truth of the velocity in x and y directions, obtained by Equation (33); δ was set at 65 when the
least average velocity RMSE was produced. Figures 14 and 15 show the position in Equation (30) and
velocity errors in Equation (32), respectively.
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Table 3. Root-mean squared errors (RMSE) of position and velocity.

Target No.
Kalman Filter Two-Mode IMM Filter Three-Mode IMM Filter

Position
(Meter)

Velocity
(m/s)

Position
(Meter)

Velocity
(m/s)

Position
(Meter)

Velocity
(m/s)

Target 1 0.8833 0.3412 0.8839 0.3419 0.8827 0.3419
Target 2 0.5420 0.9592 0.5428 0.9589 0.5412 0.9589
Target 3 0.7956 0.4418 0.7958 0.4466 0.8033 0.4466
Target 4 0.5460 0.4186 0.5429 0.4162 0.5563 0.4290
Target 5 0.4543 0.6297 0.4547 0.6295 0.4540 0.6299
Target 6 0.6071 0.6922 0.6105 0.6941 0.6039 0.6904
Target 7 1.2829 0.5496 1.2786 0.5476 1.2871 0.5493
Target 8 0.5825 0.6356 0.5832 0.6358 0.5818 0.6354
Target 9 1.0639 0.4462 1.0627 0.4444 1.065 0.4481

Target 10 1.2842 0.7522 1.2842 0.7522 1.284 0.7522
Average 0.8042 0.5866 0.8039 0.5860 0.8060 0.5882

5. Discussion

Table 2 shows the detection rates of ten targets—the average detection rate was 96.5%. The detection
rate of Target 5 was particularly low, at 74.5%. Target 5 was located far away from the drone, as shown
in Figures 8b and 11e. Therefore, its relative lower speed caused detection to be missed during frame
subtraction. The false alarm rate was 1.17 per frame. The false alarms were mostly generated when the
drone was swung by the wind or the objects passed through a complex background. Table 3 shows the
RMSE of position and velocity. The average RMSE of the position was about 0.8 m, and the average
RMSE of the velocity was about 0.586 m/s (≈2.1 km/h) for the two-mode IMM filter. The minimum
RMSEs were obtained when the two-mode IMM filter was used. It turns out that the process noise
standard deviations (0.6 and 1 m/s2) were properly chosen, because similar results were obtained from
the Kalman filter with the average standard deviation (0.8 m/s2). The two-mode IMM filter provided
slightly better results than the Kalman filter. It was especially good for Target 7 (car), which moved to
higher maneuvers than other targets. It is noted that the IMM filter with three modes did not provide
better results in this scenario.

The position RMSE varied from 0.458 m for Target 5 to 1.284 m for Target 10. The average RMSE
(about 0.8 m) was close to half the human height. Except for Target 7 (car), Targets 9 and 10 generated
higher position errors than other targets; there were biases between the measurements and the position
estimates. The velocity RMSE varied from 0.342 m/s (1.23 km/h) for Target 1 to 0.959 m/s for Target 2
(3.45 km/h). The speed of human movement is important because we can recognize the threats from
unexpected movements.

6. Conclusions

In this paper, several moving people and cars were captured by an SUAV. The objects were
detected based on frame subtraction. Ten targets were tracked with the Kalman and IMM filters.
Experimental results show that moving objects were well detected and tracked with good accuracy.
The number of filter modes and the target dynamics of each mode, such as the process noise variance,
should be determined properly to cope with the maneuvering of multiple targets.

For security and defense applications, the trajectories and the states of targets can be transferred
to a control tower in real-time. Also, this system is suitable for people counting in a crowd area. Fully
autonomous and stand-alone aerial video surveillance systems are very useful in commercial as well
as military/government applications. In this work, the drone was fixed in the air as a stationary sensor
(platform). Target tracking with a moving platform remains a subject for future study.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/9/16/3359/s1,
Video S1: Object Detection, Video S2: Human Tracking.

http://www.mdpi.com/2076-3417/9/16/3359/s1
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