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Abstract: Metamaterials integrated with graphene exhibit tremendous freedom in tailoring their
optical properties, particularly in the infrared region, and are desired for a wide range of applications,
such as thermal imaging, cloaking, and biosensing. In this article, we numerically and experimentally
demonstrate an ultrathin (total thickness < λ0/15) and electrically tunable mid-infrared perfect
absorber based on metal–insulator–metal (MIM) structured metamaterials. The Q-values of the
absorber can be tuned through two rather independent parameters, with geometrical structures of
metamaterials tuning radiation loss (Qr) of the system and the material loss (tanδ) to further change
mainly the intrinsic loss (Qa). This concise mapping of the structural and material properties to
resonant mode loss channels enables a two-stage optimization for real applications: geometrical
design before fabrication and then electrical tuning as a post-fabrication and fine adjustment knob.
As an example, our device demonstrates an electrical and on-site tuning of ~5 dB change in absorption
near the perfect absorption region. Our work provides a general guideline for designing and realizing
tunable infrared devices and may expand the applications of perfect absorbers for mid-infrared
sensors, absorbers, and detectors in extreme spatial-limited circumstances.

Keywords: metamaterial; perfect absorber; graphene; coupled-mode theory; tunable device

1. Introduction

Metamaterial absorbers are two-dimensional electromagnetic structures absorbing light at the
resonance, which have attracted huge attention over the years [1–3]. Many functional absorbers
integrated with various metamaterial structures have been reported [4–6], holding potential in a broad
range of applications, such as sensors [7], spectroscopy [8], and thermal emitters [9,10]. In particular,
a metamaterial perfect absorber (MPA) based on a metal–insulator–metal (MIM) structure has been a
hotspot for researchers due to its near unity absorptivity. By optimizing the periodic subwavelength
arrays topping the device, with the bottom layer as effective reflector, near unity absorption can be
achieved at its resonance. Although different types of perfect absorbers with various metamaterial
structures have been widely investigated and analyzed [11–15], the realization of MPA structures
typically requires heavy computation and repetitive trial and error experiments to achieve the critical
damping condition (i.e., Qr = Qa, where Qr and Qa are quality factors related to radiative loss and
intrinsic loss, respectively), because a large amount of geometrical and material parameters are involved
and entangled. It is therefore anticipated that the independent tuning of Qr and Qa by individual
parameters can facilitate the easy design. What’s more, absorbers in extreme forms, like ultrathin and
compact absorbers, are desirable for scaling down the device size and/or minimizing parasitic effects,
such as thermal leak conductance and large heat capacity for bolometric detector arrays [16–20].

With its unique electronic and optical features, graphene has drawn tremendous attention in
recent years [21,22]. Graphene, with a single atomic layer thickness of only 0.33 nm, is by now the
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thinnest two-dimensional material and exhibits the remarkable property of changing its conductivity
through electrical modulation [23]. Graphene has been reported to be applicable for modulators
over a large wavelength region, ranging from near-infrared to far-infrared frequencies [24–27]. As a
result, graphene integrated into metamaterials provides tremendous freedom in tailoring their optical
properties. The reported works, however, typically utilized complicated device structures, such as
ion-gel gating, to realize electrical modulation [28] and sophisticated interplay between graphene and
background absorption remains elusive. It is therefore desirable to design more compact metamaterials
with built-in tunability.

In this article, we demonstrate an ultrathin and electrically tunable graphene MIM metamaterial
perfect absorber working at the mid-infrared region, with a total thickness of ~270 nm
(thickness< λ0/15). The MIM tri-layer structure forms an agile platform to engineer the infrared optical
properties of the structure. The bottom metal layer of the MIM structure provides two-fold functions:
a mirror to form resonant cavity and an effective gate to adjust the Fermi level in the graphene layer,
and hence the absorption. This tunable absorption provides a compact, flexible, and post-fabrication
fine adjustment freedom to the hybrid metamaterials.

2. Materials and Methods

The metamaterial absorbers were fabricated on a Si3N4 membrane with supporting Si frame,
as schematically illustrated in Figure 1a. The thickness of the Si3N4 membrane was 200 nm. A series of
nano-fabrication processes were performed on the membrane. The reflecting layer underneath the
membrane, which was also used as the back-gate of the absorber, was prepared with 5 nm Cr and 30 nm
Au by electron beam evaporation. Graphene on top of Si3N4 was grown using the chemical vapor
deposition (CVD) method and subsequently transferred onto the membrane. Source and drain contacts,
grown with 5 nm Cr and 50 nm Au, were then fabricated onto the graphene by photolithography
procedures. Standard electron-beam lithography and lift-off processes were finally used to pattern the
cross-shaped Au metamaterial arrays (5 nm Cr/30 nm Au), whose scanning electron microscope (SEM)
image is shown in Figure 1b. For each absorber, the total patterned area was about 50 µm × 50 µm.
The period (P) of each square unit cell in these arrays was 2.3 µm, while the arm width (W) and arm
length (L) of the cross-shaped microstructures were to be optimized. All of the following optical and
electrical experiments were carried out at room temperature.

The reflectance spectra of our absorbers are shown in Figure 1c, with the back-gate voltage fixed at
0 V. Considering the transmittance of the device with a reflecting layer underneath the Si3N4 membrane
was nearly 0, the absorption (A) of our device is closely related to the reflectance (R). Their relationship
can be written as A = 1 − R. From Figure 1c, the reflectance of the absorber without a metasurface was
nearly constant and equal to 1, indicating that the absorber reflected almost all the mid-infrared light
without noticeable absorption. For those with different patterns, different modes of localized plasmon
induced by metamaterial arrays can resonate with light of a specific wavelength. With the help of the
reflecting layer, the light trapped in the Si3N4 membrane will finally contribute to the absorption of the
device. As a result, mid-infrared light is largely absorbed at the resonant wavelength. The absorber
with parameters of L = 1.25 µm and W = 0.3 µm exhibited the best performance, with reflectance
< 0.03, or absorptance > 0.963, at the frequency of 2013 cm−1. The reflectance of the device was
mainly influenced by the length and width of the arm. More systematic studies indicate that a longer
arm length results in a red-shift of its resonant frequency, while the arm width affects the depth of
reflectance [29]. These patterns can generate different dips in reflectance at its resonance frequency.
Figure 1d depicts numerical results based on the Finite-Difference Time-Domain (FDTD) method.
The parameters of the MIM structure in the simulation were nearly identical to our experiments.
The metals in the simulation were based on the Drude model. The plasma frequency for Au was
set to be ωp = 1.365 × 1016 rad/s and the collision frequency was γ = 5.78 × 1013 Hz. The relative
permittivity for the semiconductor layer (Si3N4) was chosen to be 3 [30]. The perfect matched layer was
introduced as the boundary condition in our system. The simulation results are reasonably consistent
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with our experimental results, except that the absorption peaks are wider and the absorption rates are
lower in the experiments than in the simulation. The discrepancy in peak width may have arisen from
the imperfection of the sample fabrication, such as variations in period and length, which were not
considered in the simulation. However, it is certain that the MIM structures offers an important and
effective approach to design a cavity-like absorber, which can efficiently harvest mid-infrared photons
for real applications.Appl. Sci. 2019, 9, x FOR PEER REVIEW 3 of 8 
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Figure 1. (a) The schematic of the graphene metamaterial perfect absorber and the unit cell of the
metamaterial arrays. The tunable reflectance can be achieved by back-gating of graphene between
the Si3N4 membrane and the metasurface. (b) The SEM image of the metamaterial structure topping
the absorber, with L = 1.25 µm and W = 0.3 µm. (c) Reflectance spectra for the absorbers in (a) with
different metamaterial structures. (d) Simulated results for the same structures in (c).

3. Results and Discussion

According to coupled-mode theory (CMT) [28,29,31,32], the optical properties of the MIM
structures are determined essentially by two competing loss channels, namely, the radiation loss
of the resonance cavity and intrinsic loss due to material absorption. The tunable property of the
MIM structure is therefore realizable by changing either of these two channels. From CMT theory,
the reflection coefficient (r) of our system can be written as [29],

r(ω) = −1 +
2/τr

−i(ω−ω0) + 1/τr + 1/τa
, (1)

where and 1/τa are the decay rates of radiation and absorption, respectively. Furthermore, the radiative
and absorptive quality factors (Q-value) of the system are defined as Qr = ω0τr/2 and Qa = ω0τa/2,
which determine the physical properties of the system. From Equation (1), r(ω0) =

Qa/Qr−1
Qa/Qr+1 when

frequency is at its resonance (ω = ω0), which shows that Qa/Qr is the physical quantity to decide the
minimum reflection or maximum absorption. Based on Equation (1) and the definitions of Qa and Qr

we mentioned above, Qa and Qr of the system with specific structural parameters can be obtained
through numerical fitting of our simulation or experimental results [29]. Figure 2a depicts the phase
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diagram of Qa/Qr as a function of the geometrical parameter W and the material loss tanδ. tanδ defines
the dielectric loss angular tangent of the system, which can indicate the inherent dissipation (such as
heat) of electromagnetic energy in the dielectric layer [33]. When Qr > Qa, the resonator is overdamped
and the variation of phase only occupies a small range, less than 180◦. The solid line shows the perfect
absorption condition with Qr = Qa. Interestingly, this line shows a simple and approximately linear
dependence in the region with small W (≤0.6 µm) and tanδ (≤0.08) This implies that the loss channel
of the resonant mode may depend on specific parameters, W or tanδ. In Figure 2b,c, Qr and Qa are
displayed as functions of W or tanδ when the other one is fixed. It is obvious that Qr is affected mainly
by W (≤0.6 µm), while Qa is affected by tanδ. This appears to be physically reasonable, since the
non-radiative loss leads to material absorption and therefore depends on the imaginary part of its
dielectric permittivity, while the radiation loss relies on the dipole oscillation strength of the resonant
mode and hence increases with W. When W > 0.6 µm, the field distribution becomes dramatically
different from the case with small W, which prevents the radiative loss rate from further increase.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 8 

3. Results and Discussion 

According to coupled-mode theory (CMT) [28,29,31,32], the optical properties of the MIM 

structures are determined essentially by two competing loss channels, namely, the radiation loss of 

the resonance cavity and intrinsic loss due to material absorption. The tunable property of the MIM 

structure is therefore realizable by changing either of these two channels. From CMT theory, the 

reflection coefficient (r) of our system can be written as [29],  

r(ω) = −1 +
2/τr

−i(ω−ω0)+1/τr+1/𝜏𝑎
, (1) 

where 1/τr and 1/τa are the decay rates of radiation and absorption, respectively. Furthermore, the 

radiative and absorptive quality factors (Q-value) of the system are defined as Qr = 0r/2 and Qa = 

0a/2, which determine the physical properties of the system. From Equation (1), r(ω0) =
Qa Qr⁄ −1

Qa Qr⁄ +1
 

when frequency is at its resonance (ω = ω0), which shows that Qa/Qr is the physical quantity to decide 

the minimum reflection or maximum absorption. Based on Equation (1) and the definitions of Qa and 

Qr we mentioned above, Qa and Qr of the system with specific structural parameters can be obtained 

through numerical fitting of our simulation or experimental results [29]. Figure 2a depicts the phase 

diagram of Qa/Qr as a function of the geometrical parameter W and the material loss tan. tan defines 

the dielectric loss angular tangent of the system, which can indicate the inherent dissipation (such as 

heat) of electromagnetic energy in the dielectric layer [33]. When Qr > Qa, the resonator is overdamped 

and the variation of phase only occupies a small range, less than 180°. The solid line shows the 

perfect absorption condition with Qr = Qa. Interestingly, this line shows a simple and approximately 

linear dependence in the region with small W (≤0.6 μm) and tan (≤0.08) This implies that the loss 

channel of the resonant mode may depend on specific parameters, W or tan. In Figure 2b,c, Qr and 

Qa are displayed as functions of W or tan when the other one is fixed. It is obvious that Qr is affected 

mainly by W (≤0.6 μm), while Qa is affected by tan. This appears to be physically reasonable, since 

the non-radiative loss leads to material absorption and therefore depends on the imaginary part of 

its dielectric permittivity, while the radiation loss relies on the dipole oscillation strength of the 

resonant mode and hence increases with W. When W > 0.6 μm, the field distribution becomes 

dramatically different from the case with small W, which prevents the radiative loss rate from further 

increase. 

 
Figure 2. (a) The ratio between Qa and Qr, with different W and tanδ. (b) Qa and Qr change when
L = 1.25 µm and tanδ = 0.08. (c) Black dashed lines indicate the quality factor (Qa and Qr) of the
simulated results with fixed W, while red square dots show the experimentally tunable regime of
graphene modulated by electricity. (d) Qa/Qr of the simulated and experimental results. 2D polarization
images depict |EZ| distribution at VG = −8 V and VG = 26 V.

The above scenario provides useful hints for the realization of tunable infrared devices with nearly
perfect absorption. Experimentally, we examined the tuning performance through back-gating in our
compact MIM structure with fixed geometrical parameters (L = 1.25 µm and W = 0.3 µm). The Raman
spectra of the graphene we used are shown in Figure 3a. The inset figure in Figure 3a shows the
Raman spectrum of the graphene after being integrated into our device using an excitation laser of
λ = 633 nm. We can clearly see that the intrinsic G peak and 2D peak of graphene are around 1580 cm−1

and 2680 cm−1, which are consistent with precious reports [34], despite the series of nano-fabrication
processes. The source-drain current (ISD) in graphene is modulated by back-gate bias (VG), which is
shown in Figure 3b. When the source–drain current reaches its lowest level, namely VG = VF,
which is at around 17 V, the Fermi level matches the Dirac point. As the back-gate voltage increases,
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the source–drain current curve shows an obvious kink shape, indicating that the concentration of
carriers in graphene is varying due to the change of Fermi energy level (VF). When VG < VF,
the carriers transported in graphene are hole-dominated, and when VG < VF, transport in graphene
is electron-dominated.
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Figure 3. (a) Raman spectra of the graphene we used coating on SiO2 substrate and the graphene
integrated in the absorber with cross arrays of L = 1.25µm and W = 0.3µm (inset figure). The wavelength
of the applied laser is 633 nm. (b) The source–drain current is controlled by back-gating. Dirac point is
achieved at around the bias of 17 V. The reflectance spectra of the absorbers with different cross-shaped
metamaterials. (c) Modulation of reflectance achieved by back-gating of graphene with cross-shaped
metamaterial of L = 1.25 µm and W = 0.3 µm. (d) The change in reflectance and frequencies at different
back-gate bias.

Figure 3c shows the reflection spectra at different back-gate voltages. It can be seen that the
reflection spectra can be tuned continuously by the gate bias, and the change of r(ω0) due to back-gating
can reach about 5 dB (dip-to-dip). The minimum reflectance, r(ω0), at different biases is depicted
as black squares in Figure 3d. From Figure 3d, the largest reflection value at resonant dip is near
the Dirac point (VG ~ 17 V) and, with increasing the carrier density (no matter electron or hole),
the reflection value decreases, which indicates additional absorption. In the meantime, with decreasing
VG, the resonant frequency increases slightly (~1%), which may be ascribed to a smaller effective
mode volume. The rather limited tunability of the present device is associated with the quality
of the graphene layer, which consisted of impurities and defects due to CVD growth and device
fabrication processing. The tunability can be further improved with better sample quality or using
BN/graphene/BN sandwiched structures.

To reveal the physical insights behind the demonstrated tunability, we followed CMT and
numerically fit the experimental data with equation 1 to extract Qr and Qa values. As the reflectances

(R =
∣∣∣r(ω)

∣∣∣2) of the device under different bias are known, Qr and Qa of the system can be easily
obtained by numerical fitting based on Equation (1). The results are shown by red hollow squares in
Figure 2c and it can be seen that the extracted Qr and Qa agree reasonably with the simulation data.
This agreement validates the simplified model to treat graphene as an effective layer with tunable
absorption. The apparent deviation in the region of VG > 17 V is attributable to the fact that carriers
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are inverted into electron type, and that the carrier density shows a non-monotonous dependency
upon VG. In the region of VG < 17 V, Qr appears to be almost independent of back-gating, while Qa

can be considerably modulated by back-gate biasing. The Qa/Qr value extracted from experimental
data is also displayed in Figure 2d, and a similar agreement can be clearly identified. 2D images in the
inset of Figure 2d show the modular z-component of the electric field (|EZ|) of a unit cell at VG = −8 V
and VG = 26 V. As VG decreases, the difference between Qr and Qa also decreases. Accordingly,
the electrical field around the cross increases, which leads to a condition closer to perfect absorption
(Qa/Qr = 1). In our present work, although the Qa/Qr change covered only a limited interval along the
dashed line and perfect absorption (Qa/Qr = 1) was not yet reached, it is evident that electrical tuning
of graphene Fermi level by back-gating is effective for modulating the optical property of the hybrid
metamaterial structure. In addition, it is expected that electrical tuning at a different geometrical
parameter W (and therefore different Qr) will lead to a different tunable range, and the same electrical
gating at a larger W will lead to possibly perfect absorption, as indicated by the phase diagram in
Figure 2a.

4. Conclusions

In summary, we studied an ultrathin (< λ0/15) and electrically tunable graphene metamaterial
perfect absorber working at the mid-infrared region. The Q-values of the absorber can be tuned through
rather independent parameters, namely, radiation loss (Qr), mainly modulated by W, and intrinsic
loss (Qa) by the graphene with tunable absorption through back-gating. Our work suggests that
near-independent Q-tuning could be realized by integrating graphene into metamaterial absorbing
systems, which may facilitate the devising and experimental process of finding critical damping.
Our work also provides new thinking for designing and realizing tunable infrared devices, and may be
valuable for wider applications of perfect absorbers in mid-infrared sensors, absorbers, and detectors.
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