
applied  
sciences

Article

An Experimental and Numerical Study of
CO2–Brine-Synthetic Sandstone Interactions under
High-Pressure (P)–Temperature (T)
Reservoir Conditions

Zhichao Yu 1,2, Siyu Yang 1,3,*, Keyu Liu 4, Qingong Zhuo 1,2 and Leilei Yang 5

1 PetroChina Exploration and Development Research Institute, Beijing 100083, China
2 Key Laboratory of Basin Structure and Hydrocarbon Accumulation, CNPC, Beijing 100083, China
3 Department of Middle East E & P, CNPC, Beijing 100083, China
4 School of Geosciences, China University of Petroleum, Qingdao 266580, China
5 Enhanced Oil Recovery Research Institute, China University of Petroleum, Beijing 100083, China
* Correspondence: yangsiy@petrochina.com.cn; Tel.: +86-10-8359-2410; Fax: +86-10-8359-2410

Received: 28 June 2019; Accepted: 12 August 2019; Published: 15 August 2019
����������
�������

Abstract: The interaction between CO2 and rock during the process of CO2 capture and storage was
investigated via reactions of CO2, formation water, and synthetic sandstone cores in a stainless-steel
reactor under high pressure and temperature. Numerical modelling was also undertaken, with
results consistent with experimental outcomes. Both methods indicate that carbonates such as
calcite and dolomite readily dissolve, whereas silicates such as quartz, K-feldspar, and albite do
not. Core porosity did not change significantly after CO2 injection. No new minerals associated
with CO2 injection were observed experimentally, although some quartz and kaolinite precipitated
in the numerical modelling. Mineral dissolution is the dominant reaction at the beginning of CO2

injection. Results of experiments have verified the numerical outcomes, with experimentally derived
kinetic parameters making the numerical modelling more reliable. The combination of experimental
simulations and numerical modelling provides new insights into CO2 dissolution mechanisms
in high-pressure/temperature reservoirs and improves understanding of geochemical reactions in
CO2-brine-rock systems, with particular relevance to CO2 entry of the reservoir.
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1. Introduction

Carbon dioxide emissions from fossil-fuel combustion are projected to increase from 13 Gt yr−1 in
2010 to 20–24 Gt yr−1 in 2050 [1]. CO2 capture and storage (CCS) technologies beneficially affect the
lifecycle of greenhouse gases emitted from fossil-fuel power plants [2,3], with CCS expected to account
for up to 19% of global CO2 emission reductions by 2050, making it the most significant technology
worldwide in this area [4]. Suitable geological formations for CCS include depleted oil and gas
reservoirs, un-mineable coal seams, salt caverns, and deep saline aquifers [5,6]. After CO2 injection, the
initial physico-chemical equilibrium between saline formation fluid and reservoir rocks can be disturbed
by the triggering of reactions between CO2, fluid (brine), and reservoir rock [2]. Such interactions could
lead to the dissolution of carbonates, feldspars, and clay cement in the aquifers [7,8]. In the absence of
dynamic forces, such mineral dissolution could increase porosity and permeability by etching new
pore spaces or widening narrow pore channels, temporarily increasing injectivity [9,10]. However,
while sequestration of CO2 in carbonate minerals can contribute to long-term storage security [11],
rapid mineral dissolution, especially of carbonates, could corrode caprocks, wellbores, and fault seals,
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potentially leading to migration of CO2 into overlying formations. Study of CO2-fluid-rock interactions
is thus crucial for us to understand the physico-chemical processes involved.

Laboratory experiments can reveal the mineralogical and chemical changes resulting from
CO2-brine-rock interactions, how they impact the lithological porosity and permeability of the
geological sequence, and the effects on CCS potential [12–15]. However, experiments are limited
to short-term effects of CO2 injection, whereas CCS is a long-term geochemical issue. Numerical
modelling or simulation is useful for longer-tern studies. Several reactive geochemical transport
models have been developed to simulate CCS, including NUFT [16], PFLOTRAN [17], CMG-GEM [18],
STOMP [19], and TOUGHREACT [20,21]. The TOUGHREACT program has been widely used in
studying geological CO2 sequestration [22–26]. However, simulations are less reliable without the
availability of parameters derived from laboratory studies, so a combination of physical experiments
and numerical simulation is the optimal choice for investigating the geochemical effects following
CO2 injection.

In this study, both laboratory experiments (physical simulation) and numerical modelling were
used to study geochemical interactions between CO2-induced fluids and reservoir rock during CCS.
In the physical simulation, synthetic cores with composition consistent with geological samples were
used to avoid interference from other geological factors such as sedimentary processes and diagenesis.
The numerical simulation involved the same conditions of sample compositions, temperature, pressure,
and fluid composition, with the two simulation types being mutually authenticating. Both numerical
and physical simulations were used to document the process of short-term geochemical interactions
after CO2 injection. A consistency of results would indicate the reliability of the simulations, with
outcomes expected to be similar to those pertaining to actual geological conditions.

2. Samples and Methods

2.1. Sample Descriptions

Six synthetic sandstones were prepared for the physical simulation, with mineralogical
compositions similar to sandstones of the Cretaceous Bashijiqike Formation (K1bs) of the Kuqa
Depression, Tarim Basin, and western China. In order to identify mineralogical compositions of K1bs
sandstones, the sandstone samples were prepared in thin sections and examined petrographically
by point counting 300 to 400 points per section. In addition, these sandstones were also measured
using quantitative X-ray diffraction analysis (D/max2500, Rigaku, Tokyo, Japan), which can provide
quantitative mineralogical results within ±0.1 weight percentage (wt. %). The detail analysis processes
can be found in Yu et al. (2012) [15]. The analytical results indicated that K1bs sandstones are fine- to
medium-grained lithic sandstones with particle sizes of 0.25~0.5 mm, comprising mainly quartz (average
~37.5 wt. %), plagioclase (~20.8 wt. %), K-feldspar (~23.3 wt. %), calcite (~9.5 wt. %), dolomite (~7.4 wt. %),
and kaolinite (~1.5 wt. %) (Table 1). According to Yu et al. (2015) [27], the K1bs reservoir sandstones
were at the stage of mesogenetic diagenetic phase. Then we used the fine- to medium-grained mineral
powders (particle size of 0.25~0.5 mm), having the above-mentioned mineralogical compositions,
to reconstruct the six synthetic cores under the condition of mesogenetic diagenesis.

Table 1. The mineral composition of synthetic core samples.

Mineral Types Quartz K-Feldspar Albite Calcite Kaolinite Dolomite

Content (wt. %) 37.5 23.3 20.8 9.5 1.5 7.4

2.2. Physical Experimental Conditions

The experimental condition is outlined as the following: (1) 48.45 MPa back-pressure (pore
fluid pressure), (2) 60 MPa confining pressure, (3) 150 ◦C reaction autoclave temperature (formation
temperature). The injection solutions were prepared by dissolving NaCl in deionized water saturated
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with CO2 at 150 ◦C and 48.45 MPa, similar to actual K1bs conditions. The injection solutions had a
salinity of 14,182 mg L−1, approximating K1bs formation water. Here we only used the NaCl solution
as the injection fluids and did not employ the imitate reservoir brines, because an amount of divalent
cations, such as Ca2+ and Fe2+, were present in the reservoir bines. After CO2 induced fluid injection
into the autoclaves, some carbonates will precipitate and affect experimental results. Thus, pure NaCl
solution, having a similar salinity with K1bs formation water, would be the most appropriate.

Under the experimental condition (P = 48.45 MPa and T = 150 ◦C), the injection solution was
saturated with CO2. For the solution with a salinity of 14,000 mg L−1, the solubility of CO−2 was
1.5451 mol/Kg, according to the CO−2 solubility in bine of Duan and Sun (2003) [28]. During the
experiment, the injected Vbrine (brine volume), and the volume of CO2 injected into the cylinder was
VCO2 . Based on the equation of sate (EOS ) for gas, PV = ZnRT, where Z is the compressibility, n is
the mole number of CO2 (nCO2 ) in the injection solution, R is gas constant, and T is temperature, we
can obtain the volume of CO2 (VCO2soluble) dissolved in the injection solutions under the experimental
condition (P = 48.45 MPa and T = 150 ◦C). Thus we can calculate the volume of the CO2 gas cap
(VCO2gc) in the intermediate container. The derivation is as follows:

VCO2gc = VCO2 − VCO2soluble (1)

VCO2 =1030 − Vkerosene − Vbrine (2)

VCO2soluble = ZnCO2 RT/P (3)

Based on the above, it is possible to calculate the volume of CO2 in the gas cap of the intermediate
container, which was ca.190.56 mL. Therefore the brine was CO2 saturated throughout the experiments.

2.3. Experimental Apparatus

The physical simulation experiment was conducted at the Key Laboratory of Basin Structure and
Hydrocarbon Accumulation of the China National Petroleum Corporation, Beijing, China. A reservoir
diagenesis modelling system with six identical reaction autoclaves was employed (Figure 1). The system
includes six modules: heating furnace, pressure system, fluid-injection system, sampling system,
control panel, and auxiliary system. In addition, a corrosion-resistant HP/HT CFR-50-100 cylinder
(1030 mL) from TEMC, USA was used as an intermediate container for storing the CO2-bearing
experimental solution. The six reaction autoclaves (Huaxing Company, Nan tong, Jiangxi Province,
China) have a working pressure of 165 MPa and temperature of 300 ◦C. The pressure and fluid injection
systems are controlled by the injection syringe pump and a back-pressure regulator. The 100DX syringe
pump (Teledyne ISCO, Lincoln NE, USA) was used to control the fluid injection system, which consists
of two separate systems (A and B), each of which has a capacity of 103 mL (Figure 1). It is capable
of injecting at rates of 0.001~60 mL/min, with a precision of 0.5% of set point. The pump can handle
pressure from 0.1 to 68.97 MPa. The advantage of this pump is its capability of continuous injection of
any fluids including supercritical CO2. The pore-fluid pressure was controlled by the back-pressure
regulator (DBRP-005, Honeywell, USA), which has a high precision and operating pressure range
up to 51.72 MPa. All experimental parameters including the injection pressure, pore fluid pressure,
and temperature were monitored.
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1), 7 d (# 3), 10 d (# 4), 13 d (# 5), and 16 d (# 6), while # 2 was used as a blank.  

Figure 1. Schematic diagram of CO2-formation water-rock physical experiment.

2.4. Physical Simulation Workflow and Analysis

The experiment was undertaken in two steps: preparation of the synthetic core, and geochemical
reaction between the core and CO2 fluids. During the first step, the selected mineral powder (particle
size 0.25~0.5 mm) was blended with distilled water and placed in six columnar autoclaves (diameter
3.0 cm, length 11 cm, volume 77.7 cm3). The six core samples (# 1 to # 6) were used in the experiment
over 5 days under P/T conditions equivalent to mesogenetic diagenesis (Figure 2). The syringe-pump
injection system injected synthetic formation water saturated with CO2 into the six synthetic core
pores at 150 ◦C and 48.45 MPa, after which temperature and pressure were kept constant for 4 d (# 1),
7 d (# 3), 10 d (# 4), 13 d (# 5), and 16 d (# 6), while # 2 was used as a blank.

During the experiment, the temperature and pressure of each autoclave were monitored
automatically by the control system. After reaction, core and fluid samples were analyzed for
ion contents, mineralogical changes, and porosity. The producing fluid was measured for its pH
values using an Orion4 STAR acidity meter from Thermo within 6 h of each sampling. The ionic
compositions of the water were analyzed after being spiked with 1 mol/L HCl in order to avoid
carbonates precipitation, and measured using an OPTIMA 7300DX ICP-OES (Inductively Coupled
Plasma–Optical Emission Spectrometry) with an analytical precision of 10−3~10−9. Mineralogical
changes were examined using a JSM6700F scanning electron microscope from JEOL with EDS (Energy
Dispersive Spectrometer) from INCA software (Oxford Company, Oxford, England). The porosity
changes were analyzed using visual porosity estimation, which is an image analysis technique. Firstly,
core samples were impregnated with blue epoxy and then polished and made into casting thin sections.
Then, combined high-resolution images of these thin sections were taken under the optical petrographic
microscope; the image analysis software can delineate different types of porosity and calculate the
percentages of these porosities in the thin sections with an accuracy of up to 0.01%.
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Figure 2. Synthetic core samples made by the physical experiment.

2.5. Numerical Simulation

The program TOUGHREACT was used in the numerical simulations. This program is a
non-isothermal, multiphase reactive transport simulation code that was used here to simulate fluid-rock
interactions [21]. The kinetic data used during the simulation are shown in Table 2.

Table 2. List of minerals considered and parameters for calculating the kinetic rate constants.

Mineral A/(cm2/g)
Geochemical Kinetic Rate Constants

K25/(mol/(m2
·s)) Ea/(kJ/mol) n H+

Quartz 9.8
Kaolinite 151.6 4.9 × 10−12 65.9 0.8

Illite 151.6 1.0 × 10−11 23.6 0.3
K-feldspar 9.8 8.7 × 10−11 51.7 0.5

albite 9.8 6.9 × 10−11 65.0 0.5
Chlorite 9.8 7.8 × 10−12 88.0 0.5
Calcite 9.8 5.0 × 10−1 14.4 1.0

Dolomite 9.8 6.5 × 10−4 36.1 0.5
Siderite 9.8 6.5 × 10−4 36.1 0.5
Ankerite 9.8 1.6 × 10−4 36.1 0.5

Dawsonite 9.8 1.6 × 10−4 36.1 0.5
Magnesite 9.8 4.2 × 10−7 14.4 1.0

Pyrite 12.9 3.0 × 10−8 56.9 −0.5

Note that: (1) All rate constants are listed for dissolution; (2) A is specific surface area, k25 is kinetic constant at
25 ◦C, Ea is activation energy, and n is the power term (Equation (A1) in Appendix A); (3) The power terms n for
acid mechanisms are with respect to H+. Data from Palandri and Kharaka (2004) [29].

According to the columnar autoclaves employed by the physical simulation, three identical cubic
grids with volumes of 77.7 cm3 were used to construct the model (Figure 3). The upper and lower
grids were used as boundary cells, while the middle grid was the objective model grid for simulating
the processes of injection and sampling. The numerical model simulated six autoclave reactions,
corresponding to the laboratory experiment, with the same mineralogical cores, temperature, pressure,
and pore fluids. We used the simulation duration to mimic the six numbered autoclaves. The entire
simulation ran for 16 days with intermittent sampling on day 0, 4, 7, 10, 13, and 16, corresponding
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to the physical simulation. At the start of simulation (Day zero), the numerical model had an initial
mineralogical composition and visual porosity, which corresponded to Autoclave # 2. In the same way,
Day 4 corresponded to Autoclave # 1, Day 7 corresponded to Autoclave # 3, Day 10 corresponded
to Autoclave # 4, Day 13 corresponded to Autoclave # 5, and Day 16 corresponded to Autoclave # 6.
Accordingly, these results of different simulation duration from the numerical models can be used for
comparison with the results from the physical simulations. The boundary cell here is an “inactive”
element, whose thermodynamic conditions do not change at all from fluid or heat exchange with
finite-size blocks (numerical model cell) in the flow domain. The boundary cell can confine geochemical
interactions that only occur in the numerical model, which makes the results more reasonable.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 17 

Siderite 9.8 6.5 × 10−4 36.1 0.5 
Ankerite 9.8 1.6 × 10−4 36.1 0.5 

Dawsonite 9.8 1.6 × 10−4 36.1 0.5 
Magnesite 9.8 4.2 × 10−7 14.4 1.0 

Pyrite 12.9 3.0 × 10−8 56.9 −0.5 
Note that: (1) All rate constants are listed for dissolution; (2) A is specific surface area, k25 is kinetic 
constant at 25 °C, Ea is activation energy, and n is the power term (Equation (A1) in Appendix A); (3) 
The power terms n for acid mechanisms are with respect to H+. Data from Palandri and Kharaka 
(2004) [29]. 

According to the columnar autoclaves employed by the physical simulation, three identical 
cubic grids with volumes of 77.7 cm3 were used to construct the model (Figure 3). The upper and 
lower grids were used as boundary cells, while the middle grid was the objective model grid for 
simulating the processes of injection and sampling. The numerical model simulated six autoclave 
reactions, corresponding to the laboratory experiment, with the same mineralogical cores, 
temperature, pressure, and pore fluids. We used the simulation duration to mimic the six numbered 
autoclaves. The entire simulation ran for 16 days with intermittent sampling on day 0, 4, 7, 10, 13, 
and 16, corresponding to the physical simulation. At the start of simulation (Day zero), the numerical 
model had an initial mineralogical composition and visual porosity, which corresponded to 
Autoclave # 2. In the same way, Day 4 corresponded to Autoclave # 1, Day 7 corresponded to 
Autoclave # 3, Day 10 corresponded to Autoclave # 4, Day 13 corresponded to Autoclave # 5, and Day 
16 corresponded to Autoclave # 6. Accordingly, these results of different simulation duration from 
the numerical models can be used for comparison with the results from the physical simulations. The 
boundary cell here is an “inactive” element, whose thermodynamic conditions do not change at all 
from fluid or heat exchange with finite-size blocks (numerical model cell) in the flow domain. The 
boundary cell can confine geochemical interactions that only occur in the numerical model, which 
makes the results more reasonable. 

 
Figure 3. Schematic diagram of CO2-formation water-rock numerical simulation. 

3. Results 

3.1. Changes in Fluid Chemistry 

Results of physical and numerical analyses of reaction products are summarized in Table 3. 
Significant changes in solution chemistry were observed in both sets of experiments (Figure 4). In the 
physical simulation, the pH continued to increase during the 16 d of the experiment, from 5.86 to 6.44 
(Figure 4). In the numerical simulation, the pH first decreased to ~2.8 within 12 d, then increased to 
4.6 over the next 4 d (Figure 4). 

Fluid Si and K contents show similar changes in both simulations (Figure 4), with concentrations 
continuing to increase with reaction time (Figure 4). Fluid Ca and Mg concentrations increased with 
reaction time in the physical simulation, but were more constant in the numerical simulation (Figure 

Figure 3. Schematic diagram of CO2-formation water-rock numerical simulation.

3. Results

3.1. Changes in Fluid Chemistry

Results of physical and numerical analyses of reaction products are summarized in Table 3.
Significant changes in solution chemistry were observed in both sets of experiments (Figure 4). In the
physical simulation, the pH continued to increase during the 16 d of the experiment, from 5.86 to 6.44
(Figure 4). In the numerical simulation, the pH first decreased to ~2.8 within 12 d, then increased to 4.6
over the next 4 d (Figure 4).

Fluid Si and K contents show similar changes in both simulations (Figure 4), with concentrations
continuing to increase with reaction time (Figure 4). Fluid Ca and Mg concentrations increased with
reaction time in the physical simulation, but were more constant in the numerical simulation (Figure 4).
The Al content exhibited a distinct trend (Figure 4), reaching maximum values after 7 d and 10 d for
the physical and numerical simulations, respectively, and then decreasing during further reaction.
Absolute value of ion concentration differed between the simulations, with the numerical simulation
set generally being higher, not including pH and Al (Figure 4).

Table 3. Chemical composition of outlet solutions.

Physical
Simulation

Reaction Time (d) pH
K Si Ca Mg Al

mol/L mol/L mol/L mol/L mol/L

0 5.86 0.000000 0.000000 0.000000 0.000000 0.000000
4 5.97 0.000046 0.001000 0.001360 0.000554 0.000148
7 5.94 0.000810 0.001004 0.002500 0.000879 0.000667

10 6.01 0.000854 0.001832 0.003125 0.001079 0.000852
13 6.27 0.001987 0.002943 0.006825 0.002396 0.000500
16 6.44 0.002000 0.004500 0.009575 0.004583 0.000200
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Table 3. Cont.

Numerical
simulation

Reaction Time (d) pH
K Si Ca Mg Al

mol/L mol/L mol/L mol/L mol/L

0 4.01 0.000000 0.000000 0.000000 0.000000 0.000000
3 3.93 0.000252 0.000625 0.000631 0.000298 0.000182
4 3.09 0.000616 0.001471 0.001344 0.000648 0.000450
5 2.94 0.000964 0.002277 0.002119 0.000985 0.000664
6 2.87 0.001226 0.002881 0.002733 0.001238 0.000795
7 2.84 0.001417 0.003323 0.003178 0.001423 0.000825
9 2.85 0.001678 0.003922 0.003846 0.001676 0.000675
10 2.85 0.001749 0.004083 0.004035 0.001744 0.000656
11 2.88 0.001818 0.004243 0.004192 0.001812 0.000518
12 3.41 0.002036 0.004758 0.004568 0.002029 0.000435
13 4.08 0.002144 0.005024 0.004732 0.002137 0.000321
14 4.40 0.002201 0.005174 0.004819 0.002196 0.000211
15 4.57 0.002245 0.005295 0.004891 0.002242 0.000194
16 4.68 0.002282 0.005395 0.004953 0.002281 0.000100Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 17 
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3.2. Changes in Mineral Morphology during the Physical Simulation

Scanning electron microscope (SEM) analyses of core samples before and after physical simulations
showed that minerals such as quartz, K-feldspar, albite, and dolomite dissolved after CO2 injection,
with feldspar and dolomite showing pronounced dissolution and quartz weak dissolution. Before
the experiment, mineral surfaces of quartz grains were generally smooth with terraced growth
patterns (Figure 5A), with dissolution effects and corrosion pits being evident afterwards (Figure 5B).
Initially, the albite surface was relatively flat and exhibited no obvious dissolution, but dissolution
pits and fissures along cleavage surfaces were evident after the experiment (Figure 5C,D). K-feldspar
was partially dissolved after the experiment, with the formation of corrosion pits (Figure 5E,F).
The dissolution of K-feldspar was stronger than that of quartz and weaker than that of albite.
Carbonates exhibited stronger dissolution than silicates, with entire dolomite particles being dissolved
into a cloud-like phase and showing a paste-like flow structure (Figure 5G,H). Calcite was not observed
after the experiment, indicating that it was completely dissolved.
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Figure 5. Scanning electron photomicrographs of pre-and post-experimental cores. (A) Quartz before
the experiment; (B) Quartz after the experiment; (C) detrital albite before the experiment; (D). detrital
albite after the experiment; (E) K-feldspar before the experiment; (F) K-feldspar after the experiment;
(G) dolomite before the experiment; (H) dolomite after the experiment. Q—quartz; Ab—detrital albite;
Kf—K-feldspar; Do—dolomite.
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3.3. Changes in Porosity

Surface porosity of the synthetic cores remained relatively constant at 12.64% during the physical
simulation, with no variation being observed (perhaps limited by the analytical method). Similarly,
porosity changes were not evident in the numerical simulation (Figure 6), with porosity being constant
up to 8 d of reaction, then increasing with carbonate dissolution to only 12.646% over the next 8 d
(Figure 6).
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4. Discussion

4.1. Mineral Dissolution and Precipitation

Feldspars and carbonates are known to be easily corroded by acidic fluids during CO2 injection [2,30,31],
as confirmed by numerical simulations [32–34], in situ, real-time field monitoring [35,36], and natural
analogies [37,38]. Changes in fluid ion contents and SEM core observations in the physical simulation
confirm that feldspar and carbonate were altered by CO2 injection. This is consistent with the numerical
simulation, which also indicated dissolution of feldspars and carbonates (Figure 7). Both simulations
indicate that Si and K, and Ca and Mg exhibit similar trends with ongoing reaction (Figure 4). Statistical
analysis of Si, K, Ca, and Mg data using SPSS (Statistical Program for Social Sciences) software indicates
correlation coefficients >0.5 (Table 4). Ion contents are thus likely controlled by a common reaction
mechanism, as follows.

Table 4. Correlation coefficient matrix of the outlet solution ions.

Correlation Matrix K Ca Mg Si Fe Al

K 1.000
Ca 0.943 1.000
Mg 0.989 0.979 1.000
Si 0.921 0.932 0.955 1.000
Fe 0.877 0.978 0.938 0.931 1.000
Al −0.035 −0.143 −0.126 −0.301 −0.330 1.000
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The main mechanism controlling these reactions involves the formation of H2CO3 from dissolved
CO2, causing the formation water to become acidic (Equation (4)), with reducing pH. Reactions between
the acidic fluid and core minerals, especially carbonates and feldspars (Equations (5)–(8), below),
buffer formation-water pH, causing an increase in pH of fluid produced during the experiments [39].
This process is described by the following equations:

CO2 + H2O→ H+ + HCO3
− (4)

CaCO3 (calcite) + H+
→ Ca2+ + HCO3

− (5)

CaMg (CO3)2 (dolomite) + 2H+
→ Ca2+ + Mg2+ + 2HCO3

− (6)

2KAlSi3O8 (K-feldspar) + 2H+ + 9H2O→ Al2Si2O5(OH)4 (kaolinite) + 2K+ + 4H4SiO4(aq) (7)

∆G0 = 18 KJ mol−1, ∆S0 = 73J mol−1

NaAlSi3O8 (albite) + CO2 + H2O→ NaAlCO3 (OH) 2 (dasownite) + 3SiO2 (chalcedony) (8)

∆G0 = −132 KJ mol−1, ∆S0 = −101J mol−1

where ∆G0 is the Gibbs free-energy change and ∆S0 is the entropy change.
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The degree of dissolution of albite is significantly greater (by a factor of ~2) than that of K-feldspar
(Figure 7), possibly due to differences in their ∆G0 and ∆S0 values. Albite ∆G0 and ∆S0 values are
both negative, with albite therefore needing little energy to dissolve, whereas K-feldspar values are
positive, with more energy input needed for dissolution. The numerical simulation indicated that
some kaolinite (up to 0.25 mol m−3) and quartz (up to 19.8 × 10−6 mol m−3) precipitated after 4 d
of reaction (Figure 7), although quartz precipitation can obviously be ignored. Equations (7) and (8)
indicate that kaolinite precipitation restrains the reactions, leading to reduced K-feldspar dissolution.
This is consistent with the results of other studies [15,40].

The precipitation of carbonate minerals is common during CO2-induced reactions [41], and our
physical and numerical results indicate that the concentrations of carbonate minerals, calcite,
and dolomite all decreased significantly during reaction. In particular, dolomite was almost completely
dissolved, with no carbonate minerals remaining after the experiments. This is consistent with
previous experimental findings [36,37,42]. However, the numerical simulations indicate that calcite
and dolomite have similar dissolution tendencies (Figure 8), whereas calcite was completely dissolved
in the physical simulations. We infer that under actual geological conditions, CO2 fluids react first with
the most reactive minerals until they are exhausted before reacting with other minerals. In contrast, in
the numerical simulations the reactions followed normal geochemical dynamic processes associated
with the different minerals. Carbonate minerals did not precipitate during reaction (but produced
minor amounts of kaolinite and quartz) because under the experimental conditions the reaction
liquid was unsaturated with carbonates (Figure 8). Similarly, results akin to the above-mentioned
calculations have also been presented by Ketzer et al. (2009) [43] and Tutolo et al. (2015) [44].
Quartz dissolution began after 5 d, and it precipitated later (Figure 8), but this reaction was very
weak and is ignored here. Kaolinite was the predominant precipitated mineral (Figures 7 and 8),
consistent with the results of Yu et al. (2012) [15]. However, carbonate precipitation is usually observed
in CO2-formation-water–rock autoclave experiments conducted in closed systems over extended
periods. For example, in an experiment using Triassic Sherwood Sandstone and sea water, Pearce et al.
(1996) [37] observed calcite precipitation on the sample surface in an autoclave reaction under reservoir
P/T conditions after almost eight months.
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Equations (4)–(6) indicate that calcite is the main reaction product, with some dolomite dissolving
rapidly in the CO2-saturated formation water at the beginning of the experiments. However, the silicate
minerals (mainly detrital albite and K-feldspar) also gradually become unstable and start dissolving.
Precipitation of clay minerals such as kaolinite occurs under acidic conditions during the reaction
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process. Details of the reaction process are indicated by Equations (7) and (8). These reactions lead to a
rapid increase in pH of liquid produced during the initial stage, but with pH gradually reaching a
stable equilibrium value, as also observed by Bowker and Shuler (1991) [35].

4.2. Porosity Changes

No obvious porosity changes were observed in the synthetic core after the physical simulation,
with plane porosity being constant (within measurement uncertainty) at 12.64%. This was also
observed in the numerical simulation (Figure 6) where porosity only increased from 12.64% to 12.646%
(Figure 6). Minor changes in mineral contents after CO2 injection lead to minor changes in core
porosity, as confirmed by changes in ion content in the physical simulation and other mineral changes
in the numerical simulation (Figures 4 and 7). However, there were variations in porosity in the
numerical simulations, where after six days of reaction the dissolution of minerals was very weak and
porosity did not change noticeably, but over the following four days mineral dissolution increased
with marked changes in porosity (Figures 4 and 7). Especially, a notable changes happened in porosity
(Figure 6). This is due to the remarkable changes in the mineral dissolution (Figure 7). After nine
days, the dissolution of feldspars and carbonates reached their peaks, indicating that the dissolution
volume induced by the CO2-fluid injection increased to its maximum. A large number of newly added
pore spaces lead to the porosity increase. By Day 10, minerals such as kaolinite and quartz began to
precipitate, with porosity becoming less variable (Figures 4, 6 and 7). Overall, porosity varied little,
indicating limited dissolution and precipitation during short-term CO2 injection.

The lack of reduction in porosity is common in CO2-induced reactions in sandstone [7,14,40,45],
with a reduction of permeability being the dominant result of short-term CO2 injection. The precipitation
of kaolinite, solid-phase materials, and clay particles released by the dissolution of carbonate cement
may account for the non-reduction of porosity and the reduction of permeability. Shiraki and Dunn
(2000) [40] considered that the precipitation of kaolinite crystals in pores is the main reason for the
reduction of permeability after CO2 displacement reactions, while Luquot et al. (2012) [14] considered
that newly formed minerals of amorphous carbon cause the reduction in permeability. Our results
also indicate that precipitation of new minerals is related to the non-reduction of porosity. In both the
physical and numerical simulations, the concentration of Al increased over the first six days before
decreasing over the following 10 days. In the numerical simulation, the precipitation of kaolinite
occurred after six days of reaction, with this requiring large amounts of Al (Equation (7)). While minor
kaolinite was precipitated during the reaction, core porosity remained almost unchanged, for two
possible reasons: (1) the dissolution of minerals was very weak in short-term CO2-induced reactions,
with few changes occurring in feldspars and carbonates after CO2 injection (<1% mol m−3 variation);
and (2) the precipitation of minerals was limited. Kaolinite content varied by a few percent, while
changes in quartz content were negligible, with porosity being unchanged during such weak reactions.

The physical simulation was an autoclave experiment with the inlet connected to an injection
pump (an open system), and with the outlet being a closed system opened only during sampling at the
end of the experiment. The reaction system was therefore a semi-closed system. Under conditions of
deep burial in semi-closed space, dissolution of carbonates rarely occurs or is very weak [46]. Regarding
the volumes of water required to increase porosity through calcite or dolomite dissolution, the problem
is essentially the inverse of the effect on porosity loss in limestones of calcite cementation caused by
dissolved calcium carbonate from external sources [47–50]. For example, to increase the porosity of a
100 m thick limestone bed by 1%, 1 m3 of calcite must be dissolved for each m2 of bedding surface.
For pore water that is undersaturated by 100 ppm, ~27,000 volumes of water are required to dissolve
one volume of calcite. Increasing the porosity by 1% in 100 m thick limestone thus requires 27,000 m3 of
water per square meter of surface. Even if the limestone was underlain by 5 km of sediments in which an
average porosity loss of 10% of total rock volume occurred, the pore water released from the underlying
sediments would not exceed 500 m3 m−2 [46], which, in an actual geological reservoir, would not be
sufficient to dissolve the carbonates. In our experiment, the autoclave volume was 77.7 cm3, and it was
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impossible to provide sufficient water for carbonate dissolution. However, it is certain that dissolution
and precipitation are very weak at the beginning of CO2 fluid-rock interactions, with our physical
and numerical simulations confirming that only limited geochemical reactions, including dissolution
and precipitation, occur during short-term CO2 injections, with no sharp variations in core porosity or
permeability. Similar results were also found by Tutolo et al. (2015), which confirmed that only very
weak geochemical reactions could happen during the reaction of CO2 and feldspar-rich sandstone [51].
For long-term CO2 injections, however, dissolution and precipitation are the dominant geochemical
processes occurring between CO2-induced fluids and sandstones [51–53]. Our study of short-term
geochemical interactions in a semi-closed system therefore showed no remarkable changes in the
porosity of cores.

5. Conclusions

(1) No significant short-term CO2-rock-formation-water geochemical reactions are induced by
CO2 injection.

(2) Neither physical nor numerical simulation found significant core porosity variations after
CO2 injection.

(3) Minor amounts of kaolinite and quartz were precipitated during the numerical modelling but
were not observed in the physical simulation.

(4) Physical and numerical simulations conducted in tandem can be used to verify each other and
improve their reliability.
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Appendix A. Kinetic Rate Law for Mineral Dissolution and Precipitation

The general rate expression used in TOUGHREACT is taken from Lasaga et al. (1994) [54]:

rn = ±knAn

∣∣∣∣∣∣∣1−
(

Qn

Kn

)θ∣∣∣∣∣∣∣
η

(A1)

where n denotes the kinetic mineral index, positive values of rn indicate dissolution, while negative
values indicate precipitation; kn is the rate constant (moles per unit mineral surface area and unit time)
and is temperature dependent; An is the specific reactive surface area per kg H2O; Kn is the equilibrium
constant for the mineral-water reaction for the destruction of one mole of mineral n; and Qn is the
reaction quotient. The parameters θ and ηmust be determined from experiments. However, they are
usually, but not always, set to 1.

For many minerals, the kinetic rate constant k can be summed from three mechanisms (Palandri
and Kharaka, 2004) [29]:
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where superscripts or subscripts nu, H, and OH indicate neutral, acidic, and alkaline mechanisms,
respectively; Ea is the activation energy; k25 is the rate constant at 25 ◦C; R is gas constant; T is the
absolute temperature; a is the activity of the species; and n is an exponent (constant).
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