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Abstract: The dimension detection of high-speed railway track slabs is one of the most important 
tasks before the track slabs delivery. Based on the characteristics of a 3D scanner which can acquire 
a large amount of measurement data continuously and rapidly in a short time, this paper uses the 
integration of 3D scanner and the intelligent robot to detect the CRTSIII (China Railway Track 
System) track slab supporting block plane, then the dense and accurate supporting block plane point 
cloud data is obtained, and the point cloud data is registered with the established model. An 
improved Random Sample Consensus (RANSAC) plane fitting algorithm is also proposed to extract 
the data of supporting block plane point cloud in this paper. The detection method is verified and 
the quality analysis of the detection results is assessed by a lot of real point cloud data obtained on 
site. The results show that the method can meet the quality control of CRTSIII finished track slab 
and the detection standard. Compared with the traditional detection methods, the detection method 
proposed in this paper can complete the detection of a track slab in 7 min, which greatly improves 
the detection efficiency, and has better reliability. The method has wide application prospects in the 
field of railway component detection. 

Keywords: high-speed railway CRTSIII track slab; 3D scanning technology; point cloud; robot; 
rapid detection of the supporting block plane; improved RANSAC plane fitting algorithm 

 

1. Introduction 

With the rapid development of Chinese high-speed railway construction and the continuous 
expansion of the international market, the demand for China Railway Track System (CRTSIII) track 
slabs with completely independent intellectual property rights continues to grow rapidly. The 
dimensional accuracy directly affects the stability, smoothness of the track and the safety of the train 
operation. Therefore, it is necessary to carry out a strict inspection on the external dimensions of the 
track slab before the delivery, and the higher requirements should also be put forward for the 
detection efficiency and detection accuracy of the track slab. At present, the detection of the deviation 
of the track slab external dimensions is mainly based on the manual inspection and contact-type 
measurement devices. It takes 40 min to detect a track slab, and the detection efficiency and 
repeatability of which are rather low, which cannot bring greater benefits to actual production [1]. 

With the advancement of computer science and information technology, the rapid development 
of industrial photography and machine vision, 3D scanning technology has become a widely used 
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measurement technology with its fast scanning speed, non-contact, and high measurement accuracy 
[2–5]. Compared with other non-contact measurement methods [6–9], 3D scanning technology has 
the advantages of convenient integration with the computer, real-time processing and high flexibility 
of 3D reconstruction. It is widely applied in various fields, especially in industrial measurement, and 
it has great prospects. The data acquired by the 3D scanning system is point cloud data with three-
dimensional information, which are usually defined by X, Y, and Z coordinates, and are often used 
to represent the external surface information of the object being scanned. In the last decade, capture 
technologies that can generate 3D point cloud data are becoming mature and usable for more accurate 
point cloud data acquisition. As point cloud data acquisition technology is gradually maturing, the 
demand for 3D scanning technology in workpiece positioning and inspection, vehicle detection, and 
aircraft and shipbuilding manufacturing in industrial measurement is also increasing. Yang [10] 
reported an automatic welding robot path planning system based on 3D vision technology and the 
successfully applied 3D scanning technology to the measurement and welding of complex geometric 
workpieces. Ahmed et al. [11] studied an edge and corner detection method for unstructured 3D 
point clouds for unorganized point clouds and its application in robot welding. Kim and Cheng et al. 
[12] presented a systematic and practical approach for dimensional and surface quality assessment 
of precast concrete elements using building information modeling (BIM) and 3D laser scanning 
technology, and the approach has the potential to produce an automated and reliable dimensional 
and surface quality assessment for precast concrete elements. Song et al. [13] investigated a new 
solution to the high-quality 3D reverse modeling problem of complex surfaces for fine workpieces by 
using a laser line-scanning sensor. The surface of the measured object was reconstructed completely 
and accurately, and the measurement accuracy of the workpiece reconstruction was relatively high. 
Simler and Berndt [14] used a 3D scanner to detect the surface of the car and proposed a new 
algorithm for various defects in the context of industrial surface inspection of free-form metallic 
pieces of cars. Jovancevic and Pham et al. [15] used three-dimensional scanning technology to 
automatically detect defects on the airplane exterior surface, and the result shows that their work is 
robust, effective, and promising for industrial applications. Reyno and Marsden et al. [16] also used 
3D scanning technology to measure and evaluate surface damage of honeycomb sandwich panels, 
and the results showed that this method is more efficient and reliable compared to manual methods. 
According to the geometry of large-scale conical workpieces, integrating three-dimensional laser 
scanning and virtual environments, a novel rapid on-machine geometric measurement system was 
presented, and the 3D scanner is used to obtain the critical contour of the workpiece surface at high 
speed [17]. Javier and Jose et al. [18] discussed different non-contact 3D measuring strategies and 
presented a model for measuring geometrically complex parts, manipulated through a robot arm, 
using a novel vision system which consists a laser triangulation sensor and a motorized linear stage. 

However, the application of 3D scanners for large-scale workpiece inspection, such as high-
speed railway track slabs, is relatively rare. With an increasing amount of research—by institutes, 
units, and scholars—on high-precision track slab detection technology, many important theoretical 
achievements and patents have been attained. Lu et al. [1] investigated a photogrammetric method 
to detect the track slab. The method adopts the marking point and the base station ruler on the track 
slab. It uses a digital camera to take a picture, and then uses the image matching principle to realize 
the registration between the image pairs and extracts the three-dimensional coordinates of each key 
position to calculate each detection indicators. The method requires the inspection tooling to perform 
the matching measurement, which can meet the requirements of rapid measurement on site. Fan et 
al. [19] introduced the concept of industrial digital photogrammetry in the detection of CRTS III track 
slab. The system is used as follows the track slab is laid flat, the code control bracket is placed on the 
track slab to be detected, and the measuring device is erected thereon, so that the laser points of the 
guiding device are all projected onto the key position of the supporting block, and controlled. The 
camera motion completes the data acquisition of the whole slab, and finally extracts all the detection 
indicators by using feature extraction and calculation methods based on image features. Xue et al. 
[20] reported a linear detection system for the track slab rapid detection system based on the three-
dimensional detection technology of line image technology. The high-precision measurement 
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reference platform and fast-moving mechanism are used to realize the plane image and 3D model 
size extraction of the track slab, and the key geometry of the track slab is obtained by algorithm 
correction. Xu et al. [21] investigated a CRTS III track slab detection method based on laser tracking 
and handheld laser scanning combination. The method uses a hand-held laser scanner to scan the 
track slab in all directions, and the laser tracker achieves the real-time position and posture of the 
scanner to complete the stitching of the point cloud data. In this cycle, the point cloud data acquisition 
of the entire track slab surface is completed. Finally, the point cloud classification algorithm is used 
to classify different feature planes, thereby extracting the detection indexes of the track slab. When 
this detection method is used to detect the relative dimensional deviation of the track slab embedded 
bushing, it needs to rely on the spherical self-centralizing tooling, so the automatic detection cannot 
be completely realized. When the detection method detects the dimensional deviation of the pre-
embedded casing of the track slab, it is necessary to use the spherical self-centering tooling, and the 
automatic detection cannot be fully realized. Yang et al. [22] discussed the application of 3D laser 
scanning technology in the detection of CRTS III track slab. A large amount of point cloud data on 
the track slab surface is used for 3D reconstruction of the target, and the target geometric data is 
quickly obtained by the reconstructed model library. Finally, the target geometric data is compared 
with the BIM model to determine the construction deviation accurately. 

Track slab detection methods based on three-dimensional scanners, photogrammetry, and other 
technologies are constantly being proposed. Such detection methods considerably improve detection 
efficiency while ensuring detection accuracy. The detection time of one slab can be controlled within 
15 min, and the efficiency is improved by 60% compared with the traditional contact detection. The 
track slab detection technology has a qualitative leap, but there are some limitations of the current 
methods. To overcome these limitations of the current methods, this study uses 3D scanning 
technology combined with intelligent robot to obtain 3D point cloud data of the track slab detection 
index area and achieves the rapid detection of CRTSIII track slab. An improved RANSAC method is 
presented to extract the point cloud of the supporting block plane. 

In this paper, we collected the data in the operation site by the system which includes the 3D 
scanner and the intelligent robot. Then, the obtained point cloud data was denoised, spliced, 
registered, and the surface of the supporting block plane was extracted. A lot of experimental work 
was done, and the detection results of the supporting block plane were analyzed and evaluated. Our 
final findings provide theoretical support for track slab detection and improve work efficiency in the 
field of track slab detection. 

2. 3D Measurement Point Cloud Acquisition and Preprocessing 

2.1. 3D Scanning Measurement Process 

Figure 1a shows the overall architecture of the entire detection system. The high-repetition and 
high-stability intelligent robot carries a 3D scanner to automatically acquire high-precision point 
cloud data on the surface of the CRTSIII track slab. As shown in Figure 1b, the robot carries the 3D 
scanner to detect the track slab supporting block according to the preset path. When the light beam 
emitted by the light source is irradiated onto the object to be measured, the surface contour 
information of the measured object can be obtained, and three-dimensional point cloud information 
is generated. 
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(a) (b) 

Figure 1. Overall design and operation of the detection system: (a) The detection system overall 
architecture; (b) The system moving direction. 

2.2. Track Slab Solid Model and Feature Establishment 

The obtained single supporting block point cloud data contains many inspection indicators, such 
as supporting block plane, pre-embedded casing, single rail vise spacing (small jaw distance), etc. 
This paper will mainly discuss supporting block plane detection method. 

The core inspection index of the supporting block plane as the track slab inspection is the key to 
the quality control of the track slab dimensions. Before the extraction of the supporting block plane 
point cloud data, the physical modeling of the track slab is carried out firstly, and the basic geometric 
features are established. Secondly, the point cloud data is denoised and spliced. Finally, the point 
cloud data is registered with the design model. The segmentation of point cloud data is the basis of 
point cloud computing and it plays a crucial role in subsequent plane extraction. Point cloud data 
segmentation methods can be broadly classified into model-driven and data-driven [23]. This paper 
will adopt the model-driven method, which is a top-down method. The model-driven method works 
as follows: The feature library is built firstly, and then the point cloud is matched with the predefined 
features to obtain the feature-based point cloud segmentation results. Model-based segmentation can 
find several rules for segmentation regions, helping data simplification, and thus speeding up data 
reconstruction and object recognition [24]. 

The basic unit of the part model is the feature, and the establishment of features is based on the 
sketch. The model of the supporting block and the track bottom slab part is respectively established, 
and the complete track slab is further assembled to complete the construction of the track slab model. 

The parameters of the track slab model are obtained through the design drawing and point cloud 
reverse engineering. The design includes the parameters such as the length, width, thickness, and 
fastener spacing of each type of track slab. The 3D model is drawn according to the geometric 
relationship of the design parameters and the basic geometric features are established. The modeling 
process is shown in Figure 2. 
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Figure 2. Track slab solid modeling process. 

The model and geometric features are established to semantically segment the acquired original 
point cloud data, and the original point cloud data is divided into the supporting block, the jaw 
surface, and the embedded circle according to the established geometric feature information. 

2.3. Point Cloud Data Preprocessing 

2.3.1. Point Cloud Denoising 

In the process of obtaining massive 3D point cloud data, other redundant points or noise points 
will inevitably be obtained. These noises not only increase the volume of point cloud data, but also 
affect the precision of point clouds fitting and registration [25], so they must be removed. 

At present, there are two main methods for dealing with noise, manual denoising and automatic 
denoising [26,27]. For automatic denoising of point clouds, algorithms such as least squares filtering 
(for ordered point clouds), median filtering (for ordered point clouds), and bilateral filtering 
algorithms (for cluttered point clouds) are commonly used [28,29]. Manual denoising means that for 
some isolated points and redundant points, these points can be manually removed. Due to the 
advanced production process of the track slab, the surface of the track slab is smooth and flat, and 
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the measured track slab point cloud data quality is better, and the noise points are mostly isolated 
points and redundant points, which can be directly denoised manually. 

2.3.2. Point Cloud Splicing 

The original point cloud data of the surface of the supporting block obtained by the three-
dimensional scanner is located at the scanner coordinate system, and the origin of the coordinate 
system is the phase center of the scanner. The point cloud data is overlapped in the scanner coordinate 
system, which is inconsistent with the actual supporting block position, as shown in Figure 3. In order 
to achieve the registration of the point cloud and the standard track slab model, it is necessary to first 
splice the point cloud of each supporting block to restore the true position of the point cloud. 

 
Figure 3. Overlapping scattered original point cloud data. 

Considering the field of view of the 3D scanner, the placement of the track slab, the processing 
time of the point cloud data and the efficiency of the system detection, we use the direct conversion 
method of the coordinate system to realize the splicing of each part of the point clouds, as shown in 
Figure 4. The detailed process is as follows: 

𝑥
𝑦

𝑧 𝑥
𝑧𝑦

𝑋
𝑌𝑍

Point cloud data in the 
scanner coordinate system

Base

robot
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Point cloud data in the 
base coordinate system

transform

 
Figure 4. Schematic diagram of point cloud splicing. 
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Step 1: The robot carries the 3D scanner to move to the specified position to obtain the point 
cloud data of the corresponding area, and obtains the current position and posture parameters of the 
camera-type 3D scanner coordinate system (TOOL) in the base coordinate system, including three 
rotation parameters (εX, εY, εZ) and three translation parameters (ΔX, ΔY, ΔZ) and a proportional 
parameter [30,31] which are shown in Figure 5. 

 

Figure 5. BASE and TOOL space rectangular coordinate system. 

Step 2: According to the position and attitude parameters of the transmitted flange (FLANGE), 
the conversion matrix (rotation matrix Rt and translation matrix Tt) between the two coordinate 
systems (photographed 3D scanner coordinate system and robot base coordinate system) is 
calculated. 

First, the origin of the coordinate system is coincident by the translation of the coordinate origin, 
and then the rotation between the coordinate axes is realized by the rotation around the coordinate 
axis. Among them, the rotation matrix around the X, Y, and Z axes are 

R1 εX  = 1 0 0
0 cosεX sinεX
0 -sinεX cosεX

 (1) 

R2 εY  = cosεY 0 -sinεY
0 1 0

sinεY 0 cosεY

 (2) 

R3 εZ  = cosεZ sinεZ 0-sinεZ cosεZ 0
0 0 1

 (3) 

The rotation matrix is 

Rt=R1 εX R2 εY R3 εZ  (4) 

Rt=
cosεYcosεZ sinεXsinεYcosεZ + cosεXsinεZ -cosεXsinεYcosεZ + sinεXsinεZ-cosεYsinεZ -sinεXsinεYsinεZ + cosεXcosεZ cosεXsinεYsinεZ + sinεXcosεZ

sinεY -sinεXcosεY cosεXcosεY

 (5) 

The translation matrix is 

Tt = ΔX
ΔY
ΔZ

 (6) 

Step 3: Converting the point cloud data of the part to the robot base coordinate system by using 
the transformation matrix; 

X
Y
Z

= λRt

x
y
z

+ Tt (7) 
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Theoretically, the spatial scale between the scanner coordinate system and the robot coordinate 
system is consistent, there is no scaling, therefore, the scaling factor λ = 1 in this paper 

Step 4: Obtaining the point clouds of all the features of the track slab, and repeating the above 
steps to complete the point cloud data splicing. 

2.4. Point Cloud Data Registration 

The track slab detection method in this paper adopts the idea that the point cloud data is 
automatically registered with the standard model [32–34] to improve the efficiency and automation 
of the track slab detection. Computer Aided Verification (CAV), a computer-aided verification 
method, is used to achieve automatic registration of point cloud data and standard models according 
to detection requirements. However, the premise of automatic registration is that the point cloud data 
is roughly similar to the standard model. Therefore, the initial registration of the point cloud data is 
required to move the point cloud data to the approximate position, and the ICP (iterative closest 
point)-based method is used to further iteratively calculate the point clouds and accurate registration 
of the model [35]. 

3. Supporting Block Plane Extraction 

After completing the registration of the point cloud data and the standard track slab design 
model, the measured values of the characteristics of each detection index are calculated. Based on the 
geometric size (measured value) of each detected feature of the extracted track slab and the standard 
size (nominal value) of the standard design model, the deviation values of the two are calculated. The 
basis for extracting the parameters of each detection index is to fit the point cloud of the geometric 
parameter. In order to extract the slope of the supporting block, the angle between the supporting 
block plane and the jaw plane, the features of the height of the convexity and the skew, and the 
supporting block plane should be extracted first. Therefore, the plane fitting of the point cloud data 
of the supporting block plane should be carried out first. 

In this paper, the point cloud plane fitting of the supporting block plane is an important part of 
the point cloud data processing and information extraction process, and it is the basis for the outer 
dimensions of the track slab. At present, the commonly used point cloud fitting algorithms are least 
squares method, eigenvalue method, global least squares method, RANSAC algorithm, etc. [36–39]. 

3.1. Improved RANSAC Plane Fitting Algorithm 

Among many point cloud fitting algorithms, the RANSAC algorithm is widely used. Its 
robustness to noise and outliers makes RANSAC a suitable choice for performing shape detection on 
real-world scan data. Buer et al. [40] successfully used RANSAC to extract the main surface from a 
very dense 3D point cloud. Schnabel et al. [41] used the advantageous properties of the RANSAC 
algorithm to fit planes, cylinders, spheres, and torus in point clouds. Tarsha-kurdi et al. [42] 
successfully extracted the roof plane of the building automatically from the airborne laser data based 
on the RANSAC algorithm. All the research results show that the algorithm has a good effect on the 
plane fitting. RANSAC judgement criterion are as follows: 

According to the basic criteria of the RANSAC algorithm, at least one set of sampling result 
points in the K group sampling under the confidence probability P is all valid points (inliers) [43]. 

1 - (1- (1 - ε)n)K = P (8) 
Among them: 
ε is the sample contamination rate (roughness ratio); n is the minimum number of points 

required to determine the parameters of model M; P is the probability of successful confidence; (1−ε) 
is the probability of extracting a point as the correct point; (1 - ε)n  indicates the probability of 
extracting all n points as correct points, and extracts n points to determine the model 
parameters; 1- (1- (1 - ε)n)K = P means that, under the condition that the above formula is satisfied, 
the probability that the K group samples are all correct points is P. 
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However, some improvements and corrections are required in order to make the algorithm more 
efficient for extracting the supporting block point clouds captured by the scanner. Therefore, 
compared with the basic method, we propose an improved RANSAC algorithm to improve the 
accuracy of extraction and the processing efficiency. 

When the RANSAC algorithm performs plane fitting, its plane parameters are only fitted by 
three initial points (it takes at least three points to determine a plane). The plane fitting error of these 
three points may affect the fitting error judgment of all subsequent points. The farther away from the 
center of gravity of the three points, the larger the influence. Therefore, when the final optimal model 
(Best_Model_final) is selected, it is more reasonable to use the principle of least fitting error as the 
optimal model judgment criterion [36,44–46]. 

In order to avoid the cumulative effect of the error caused by using only three points to judge 
plane parameters, this paper improves the conventional RANSAC algorithm. After the RANSAC 
iteration is completed, the plane point sets obtained by RANSAC are re-fitted with the least squares 
to fit the plane parameters, and finally, the best fitting plane parameters of each plane are obtained. 
Take the fitting of a plane as an example: 
1. The RANSAC algorithm is used to select the optimal plane. The selection condition is that the 

minimum plane of the plane fitting error is used, and the minimum plane of the model fitting 
error is taken as the optimal fitting plane to obtain the model “Candidate_Best_Model”. 

2. Based on the point of the model “Candidate_Best_Model”, the least squares fitting method is 
used to solve the plane parameters of “Best_Model_Temporary”, and the 
“Best_Model_Temporary” temporary optimal plane parameters are obtained. 

3. Based on the parameters, all points in the point clouds are re-selected and judged instead of 
using the random sampling method. According to the rejection threshold t, all the points in the 
point clouds whose error with the “Best_Model_Temporary” is less than the threshold t are 
included in the plane, and together with the point clouds in n, the previous model constitute the 
new “Best_Model_Temporary” model; 

4. Repeat steps 2 and 3 above to end. Each time an iteration is completed, the temporary best model 
will be recorded. Repeat the iteration to get the final best plane “Best_Model_Final”. The 
determination condition of the end of the iteration is that the total number of interior points 
reaches a certain threshold. The threshold value should be determined according to the overall 
situation of the point clouds. In this paper, the fitting object is the point cloud data of the outer 
surface of the track slab supporting block. The overall flatness is smooth and the noise is less. 
Therefore, the threshold can be set to 90% of the total number of point clouds. 

3.2. Algorithm Implementation 

According to the above analysis and algorithm optimization, the improved RANSAC algorithm 
is used to planarly fit the point cloud data of the supporting block. The algorithm sets the sample 
contamination rate, the rejection threshold t, the minimum number of points to determine the 
parameters of a plane model n = 3, and the minimum number of points N in a single plane according 
to the point cloud density, the scanning quality, and the roughness of the outer surface of the 
supporting block. According to the formula (8) transformation, the logarithm of the two sides can 
calculate the maximum number of iterations K, and the plane point cloud automatic fitting process is 
shown in Figure 6. 
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Figure 6. Improved RANSAC algorithm for planar point cloud fitting process. 

3.3. Algorithm Comparison 

In order to compare the fitting results of the proposed algorithm with the classical RANSAC, a 
plane Z = X + 2Y + 1 was set up. 2000 points are randomly selected from the planes and 500 outliers 
are added. The classical RANSAC algorithm and the algorithm presented in this paper are used for 
plane fitting, and the parameters are estimated. The standard deviation between the estimated value 
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and the set parameters is calculated, and the results obtained by the two methods are compared. As 
shown in Table 1. 

Table 1. Comparison of the results of the two algorithms 

Method a b c Standard Deviation 
Setting parameters 1 2 1  

RANSAC 1.0539 1.9294 0.9916 0.0018 
Algorithm of this paper 1.0074 1.9957 0.9999 0.0002 

Table 1 shows the results of two algorithms. Compared with the classical RANSAC, the 
algorithm proposed in this paper can eliminate outliers effectively, reduce model errors and improve 
the accuracy of parameter estimation. 

4. Data Acquisition and Experiment 

4.1. Experimental Data 

The detection method in this paper was fully tested in our experiment. The intelligent robot was 
used to carry the 3D scanner to detect the track slab in a certain slab factory, and the reliable point 
cloud data was obtained, and the detection method was fully tested. Table 2 presents the detailed 
specifications of the robot, and Table 3 presents the detailed specifications of the scanner. 

Table 2. Specifications of KUKA robot KR 90 R3700 prime K 

Parameters Values 
Working radius 3700 mm 

Repetitive positioning accuracy 0.06 mm 
Absolute positioning accuracy 0.7 mm 

Table 3. Specifications of FARO Cobalt Array Imager 5MP 

Parameters Values 
Scanning accuracy 0.05 mm 

Point cloud spacing 0.255 mm 
Measuring range 500.0 (length) × 350.0 (width) × 300.0 mm (depth of field) 

KUKA robot KR 90 R3700 prime K is used as automatic actuator. The working radius of the 
robot is 3700 mm and its repetitive positioning accuracy is 0.06 mm, and it can fully meet the 
requirements of detection range and accuracy. The FARO Cobalt Array Imager 5MP is selected as the 
data acquisition equipment for track slab surface. The scanning accuracy of the scanner is 0.05 mm, 
and the point cloud spacing is 0.255 mm. The point cloud data acquired each time is about 5 million. 
The measuring range of the scanner is 500.0 (length) × 350.0 (width) × 300.0 mm (depth of field), which 
can basically cover a complete supporting block. 

P5600 track slabs were collected at the field. There are 18 supporting blocks on each track slab, 
and all the supporting blocks plane point cloud data was acquired. The detection system operation 
and data acquisition in the operation field are shown in Figure 7a,b. 
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(a) (b) 

Figure 7. Operation field: (a) The detection system operation; (b) The data acquisition. 

4.2. Experimental Test 

First, the track slab model and the geometric characteristics of the supporting block plane were 
established. Then, the point cloud data was denoised and then registered with the model. Finally, the 
point cloud data of the supporting block plane was fitted and extracted. 

According to the establishment process of the track slab model in Section 2.1, the 3D solid model 
of the track slab and the supporting block plane feature were created and exported in the IGS format 
for subsequent data processing. The model is shown in Figure 8. 

 
Figure 8. Track slab model and the establishment of bearing surface features. 

Using the point cloud splicing principle in Section 2.2, splicing test was conducted on the point 
cloud data of 18 supporting block plane of a single-track slab. The splicing results are shown in Figure 
9. 

 
Figure 9. Point cloud splicing result. 

After the point cloud splicing was completed, the point cloud data was further processed by the 
point cloud registration method in Section 2.4, so that the point clouds and the model were accurately 
registered, and the registration result is shown in Figure 10. 
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Figure 10. Results of point cloud and model registration results. 

The supporting block plane of the No. 1 supporting block on a P5600 track slab (a total of 18 
supporting blocks) was tested by the plane fitting extraction method in Section 3.2. Since the surface 
of the track slab is flat and smooth, the threshold of the number of intra-points of the improved 
RANSAC algorithm was set to 95% of the total number of point clouds, and 5% of the extra-points 
was regarded as noise, and the number of sample points in the optimal estimation model was 
1,193,568. Figure 11a,b show the characteristic of the No. 1 supporting block plane, and the result of 
the point cloud fitting extraction of the No. 1 supporting block plane. 

  
(a) (b) 

Figure 11. Characteristic creation and the extraction result: (a) Establishment of the characteristics of 
the supporting block plane; (b) The supporting block plane fitting extraction. 

In order to improve the efficiency of plane fitting calculation, the idea of “local area represents 
all planes” was adopted, and all basic plane features were cropped according to the scale without 
affecting the fitting precision, to improve the calculation speed of point cloud data. Within the range 
of the covered supporting block plane features after cropping, the point cloud was sampled at equal 
intervals, with a sampling interval of approximately 1.500 mm, and the number of sample points in 
the optimal estimation model is 6818. The cropping sample fit result is shown in Figure 12. 

 
Figure 12. Result of the cropped supporting block plane fitting extraction. 
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4.3. Validation 

4.3.1. Repeatability of the Detection Method 

Ten repeated measurements of the same track slab were carried out to verify the repeatability of 
the detection method in this paper, and all the supporting block planes were detected. 

4.3.2. Accuracy of the Detection Method 

In order to verify the accuracy the method, we used the detection indicator related to the 
supporting block (the slope of the supporting block) to test. The single supporting block model is 
manufactured according to the design drawings. The slope of the model supporting block relative to 
the bottom of the track slab is measured 10 times by the contact measurement system with accuracy 
of (0.9 + L/400) um, and the average measurement value was obtained. Similarly, the slope of the 
model supporting block was measured 10 times by the method presented in this paper, and the 
average measured value was obtained. The dimension of the area measured to extract the slope is 
shown in Figure 13. 

 
Figure 13. Dimensions of the area measured to extract the slope. 

5. Results and Discussion 

5.1. Analysis of Registration Result 

In order to analyze the accuracy of the point cloud registration, the No. 1 supporting block is 
selected for testing. Figure 14 displayed the registration deviation information between point cloud 
data and standard model, and the deviation value is in the range of −1 mm to 1 mm. As can be seen 
from Figure 14, the deviation of registration results for most point clouds is ≤±0.300 mm, and the 
deviation is small in general. According to Table 4, among the 3 million points involved in registration 
calculation. The points with deviation within ±0.26 mm are about 79% of the total points, and the 
points with deviation within double standard deviation (±0.5 mm) are about 96% of the total points. 
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Figure 14. Registration deviation color map (mm). 

Table 4. Statistical results of registration bias 

Point Cloud Registration Deviation Statistics 
Point Number 3,314,649  

Average deviation 0.091 mm 
Standard deviation 0.257 mm 

Points in +/− (1 * Standard deviation) 2,615,584 (78.910%) 
Points in +/− (2 * Standard deviation) 3,192,525 (96.316%) 
Points in +/− (3 * Standard deviation) 3,249,480 (98.034%) 
Points in +/− (4 * Standard deviation) 3,283,100 (99.048%) 
Points in +/− (5 * Standard deviation) 3,310,660 (99.880%) 
Points in +/− (6 * Standard deviation) 3,314,440 (99.994%) 

5.2. Analysis of Extraction Results of the Supporting Block Plane 

Figure 15 depicts the deviation color map of each point in the cropped extraction result to the 
fitting plane. The color scale in the plane fitting deviation color map indicates the deviation amount 
from −0.571 mm to 0.064 mm. The color deviation is a visual indication of the quality of the plane 
fitting. The deviation of the plane fitting is small overall, basically blue and green, that is, the 
deviation value is between −0.050 mm and 0.060 mm. There are some red and yellow areas in the 
color picture, which should be small protrusions (red and yellow) on the supporting block plane. 
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Figure 15. Plane fitting deviation color map (mm). 

In order to quantitatively evaluate the accuracy of the detection method used in this paper, the 
quality of the supporting block plane was comprehensively analyzed by calculating the flatness, the 
plane normal vector and the standard deviation of the measuring point in the fitting result of the 
supporting block plane. The plane extraction parameters of the supporting block plane (taking the 
No. 1 supporting block as an example) are shown in Table 5. 

Table 5. Supporting block plane parameter extraction result (mm) 

Parameter Name Characteristic Nominal Value Extraction Result Deviation 

Plane normal vector 
I 0.000 0.000 0.000 
J −0.025 −0.024 0.001 
K 1.000 1.000 0.000 

Point number 6818 
Standard deviation of measuring point 0.029 

Flatness 0.091 

The plane obtained by the detection method of this paper has good accuracy, and the standard 
deviation of the measuring point is 0.029 mm, and the flatness is 0.091 mm, which indicates that the 
obtained point cloud of the supporting block plane of the track slab has higher precision and is flat. 
The normal vector of the fitted plane is roughly consistent with the design value (nominal value of 
the feature), indicating that the plane obtained by the fitting is parallel to the supporting block plane 
in the track slab model. 

Using the same analysis method, the plane fitting quality of the 18 supporting block planes data 
of the entire track slab was evaluated. The plane fitting process of the 18 supporting block planes 
after cutting takes less than 2 min, and the fitting result is shown in Figure 16. The statistical results 
of the standard deviation and flatness deviation of all the supporting block planes are shown in 
Figure 17. The maximum standard deviation of the measuring points is 0.029 mm, the minimum 
value is 0.013 mm, the maximum value of flatness is 0.103 mm, and the minimum value of flatness is 
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0.057 mm. The normal vectors of the fitting plane of the 18 supporting block planes are [0.000 ± 0.001, 
−0.025 ± 0.001, 1.000 ± 0.001]. 

 

Figure 16. The 18 supporting block planes fitting results. 
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Figure 17. Statistical results of standard deviation of the measuring points and the flatness. 

5.3. Validation Result 

5.3.1. Result of Repeated Measurements 

All the supporting block planes are extracted, and the flatness and the standard deviation of 
measuring points of the supporting block planes are calculated. Figures 18 and 19 show the 
experimental results. 
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Figure 18. Standard deviation of measuring points for repeated measurements. 
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Figure 19. Flatness of repeated measurements. 

The experimental results show that the variation range of standard deviation of each supporting 
block plane is within 0.010 mm. The difference between the maximum flatness and the minimum 
flatness of each supporting block plane is within 0.030 mm. It shows that the detection method has 
high repetitive measurement accuracy. 
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5.3.2. Analysis of the Accuracy 

The angle measurement of the supporting block plane and the bottom of the track slab measured 
by two detection methods are compared. The measured value of the contact measurement is 1.321°, 
and the value measured by the method in this paper is 1.342°. The difference between the two 
measurements is 0.021°. The measurement results prove that the detection method in this paper is 
accurate. As shown in Table 6. 

Table 6. Comparison of the two methods 

Method Value of Slope 
Contact measurement 1.321° (1:43.365) 

The method in this paper 1.342° (1:42.680) 
Difference value 0.021° 

5.4. Experimental Discussion 

The experimental results demonstrate the efficiency and accuracy of the proposed method based 
on the 3D scanner. The point cloud data obtained by the detection method can truly show the 
information of the surface of the measured object, and can effectively extract the plane point cloud of 
the supporting block plane. The standard deviation of the measured points and flatness are small, 
the precision of extraction is high. The method can accurately measure the detection indicators related 
to the supporting block plane, which proves that the detection method used in this paper is reliable, 
which lays a good foundation for the subsequent extraction of the track slab detection index 
parameters. 

6. Conclusions 

Aimed at the problem of detecting the dimensional deviation of high-speed railway track slabs, 
this paper proposes a method for detecting the supporting block plane based on a 3D scanner. It is 
the first time that the three-dimensional scanner and robots have been applied to the detection of the 
high-speed railway track slab supporting block plane. Compared with traditional measurement 
method which takes 40 min to complete the detection of a track slab, this method not only guarantees 
the detection accuracy, but also improves the detection efficiency of track slab, and improves a plane 
extraction algorithm. We used the robot to carry a 3D scanner to detect the outer dimensions of the 
track slab and did a lot of experiments. We obtained the real point cloud data of the supporting block 
planes of track slab and processed the obtained point cloud data. Firstly, the point cloud data was 
denoised, and the data was spliced according to the physical space location, and then registered with 
the established model. Finally, the improved RANSAC algorithm was used to extract the point cloud 
data and analyze the final results. This method provides support for the subsequent automatic 
extraction of the index of the angle between the supporting block plane and the jaw surface, the slope 
of the supporting block plane, the features of the height of the convexity, etc. The summary is as 
follows: 
1. Compared with the traditional detection method, the detection method can obtain high-quality 

supporting block detection data, and there is no need to touch the finished slab during the 
detection process, so as to avoid collision between the detection equipment and its transmission 
equipment. The detection method is fast and reliable, it takes only 7 min to complete the 
detection of a track slab, which greatly improves the detection efficiency of the track slab. The 
requirement for the detection environment is reduced, and the investment of manpower is 
reduced; 

2. The point cloud data obtained by the detection method used in this paper can truly reflect the 
actual situation of the surface of the detected supporting block. The proposed RANSAC 
algorithm which is robust can efficiently extract the point cloud data of the supporting block 
planes, and the extraction results are higher. Compared with the design value of the model, the 
dimensional deviation of the appearance of the track slab is obtained. The establishment of the 
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standard model enhances the visual expression of the detect parameters of the track slab and 
realizes the control of the dimensional quality; 

3. The manufacturing process of the CTRSIII track slab and its geometric dimensional accuracy 
determine that the inspection of the outer dimensions of the track slab belongs to the category 
of industrial measurement. The minimum allowable deviation of the detect indexes of the track 
slab dimensions is 0.500 mm. Several detection indicators related to the supporting block plane 
are detected respectively by the detection method proposed in this paper and the contact 
measurement. By comparing the measurement results of the two methods, it is concluded that 
the average error of the method proposed in this paper is less than 0.100 mm and the maximum 
error is less than 0.200 mm, which meets the accuracy requirements of CRTSIII track slab 
detection. 
The detection method has wide application prospects in the field of railway component 

detection. In future work, we will improve the detection method, add other sensors, and propose a 
multi-sensor integrated detection method. 
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