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Abstract: The utilization of modal frequency sensors is a feasible and effective way to monitor the
settlement problem of the transmission tower foundation. However, the uncertainties and interference
in the real operation environment of transmission towers highly affect the accuracy and identification
of modal frequency sensors. In order to reduce the interference of modal frequency sensors for
transmission towers, a Kriging surrogate model is proposed in this study. The finite element model
of typical transmission towers is created and validated to provide the effective original database for
the Kriging surrogate model. The prediction accuracy and convergences of the Kriging surrogate
model are measured and confirmed. Besides the merits in computational cost and high-efficiency,
the Kriging surrogate model is proven to have a satisfied and robust interference reduction capacity.
Therefore, the Kriging surrogate model is feasible and competitive for interference filtration in the
settlement surveillance sensors of steel transmission towers.
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1. Introduction

The steel transmission tower is a significant component of the electrical systems for the power
transmission and distribution network [1,2]. The reliability and safety of steel transmission towers
are crucial issues in both the design process and the operation periods [3]. The failure or damage
of steel transmission towers can cause huge economic losses and even disasters for both industrial
manufacturing and people’s daily lives [4]. The surveillance sensors are useful to help monitor the
real-time status of transmission towers [5]. By the data of surveillance sensors, it is not only possible to
predict the safe service life, but it is also possible to avoid the collapse of transmission towers by the
maintenance in advance.

The application of surveillance sensors in the key location of the transmission towers to monitor
the real-time status attracts great concerns of engineers and researchers. For example, the inclination
sensors are effective at reflecting the stress of the large deformation, but the parameters corresponding
to the load balance and the yield failure of the local rods are ignored [6]. In addition, the strain
sensors by the resistance strain gauge are sensitive enough to identify the fluctuation of forces, but are
very susceptible to electromagnetic interference and are not robust enough to avoid rusting in the
measurement circuits [7]. Even though the grating fiber strain sensors have some level of improvement
in the measurement accuracy and range, the limitation in the installation location and quantity is not
completely overcome [8].

The modal identification sensors are one of the promising technologies and have been widely
used in structural health monitoring, such as in the reinforced concrete bridges [9,10] and wind turbine
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blades [11]. By the modal identification of the reinforced concrete bridges, the passing vehicles on the
bridge pavement deck and fatigue damage of the bridge body are tracked and recorded. Moreover,
the modal frequency sensors are effective in identifying the vibration of wind turbine blade and are
sensitive to the structural changes related to damage or failures. Furthermore, the modal identification
technology is also applied in the safety and reliability analysis of transmission towers [12].

The inevitable uncertainties and interference in the modal identification of transmission towers are
originated from several aspects. First, the terrain environment often has uncontrollable factors, such as
the ground displacement, foundation inclination and even cracking and subsidence of rocks. In addition,
the natural climate and weather environment also provides unpredictable uncertainties [13]. For
example, snow in the winter not only evidently increases the weight of the transmission towers, but also
heavily influences the material properties of steel, which causes the reduction of structural stiffness
and strength and makes transmission towers fragile to fracture and collapse. Besides, the random
wind force is non-negligible to affect the modal identification of transmission towers [14,15]. Under
the strong winds [16], such as hurricanes, tornados or isolated thunderstorms, the nonlinear inelastic
behaviors of transmission tower structures become dominated [17,18]. The quasi-steady dynamic
loads make the modal frequencies of transmission towers difficult to analyze. Therefore, it is necessary
to develop the feasible analytical model to identify and reduce the interference in modal identification
sensors of transmission towers.

This paper proposes a Kriging surrogate model to effectively reduce the interference in settlement
surveillance sensors of steel transmission towers. At first, the finite element model of the transmission
tower structure is created based on the ANSYS Parameter Design Language (ANSYS, APDL,
Version 14.5). Meanwhile, the first five order vibration modes and natural frequencies are computed
and recorded. The verification for the numerical simulation model of the transmission towers is
performed by comparing it with the data from the experimental measurements. Next, based on the
database of natural frequencies computed by the finite element method, a Kriging surrogate model
is built to effectively reduce the interference or uncertainties in the identification of the transmission
tower settlement. The accuracy and convergence of the Kriging surrogate model are confirmed in
typical tests. Finally, some brief summaries are drawn in the last section.

2. Problem Formulation and Theoretical Methods

2.1. Steel Transmission Towers

The structures of transmission towers have multiple types. The original finite element model
of the transmission tower structure in this study is presented in Figure 1. The jointed trusses in the
finite element model of the transmission tower are meshed with the beam finite elements. There are
690 trusses, 2524 beam elements and 2168 nodes.

In addition, the parameters corresponding to the geometrical properties of the transmission
tower are shown in Figure 1, and the serial number for the transmission tower is 2A2-J1. For the
material property parameters, the Young’s modulus is 2 × 1011 Pa, the physical density is 7850 kg/m3

and the Poisson ratio is 0.28. The fluctuations and uncertainties in the material and geometrical
property parameters caused by the environment, weather, operation status, etc., are supposed to be the
interference in the settlement surveillance sensor.

The relationship between the parameters corresponding with the settlement in the transmission
tower and the natural frequencies is implicit. Creating the explicit function to express the mathematical
relationship is not feasible in the safety surveillance of transmission towers. By using the Kriging
surrogate model, the implicit expression of the parameters is successfully represented, and the input
signals provided by the sensors installed in the transmission tower can be effectively filtered for
settlement identification.
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Figure 1. The finite element model of the transmission tower structure (the unit is cm, serial
number [19] for the transmission tower is 2A2-J1).

2.2. Kriging Surrogate Model

The Kriging surrogate model is a stochastic interpolation algorithm that assumes that the model
output is a realization of a Gaussian process indexed by x ∈ DX ⊂ RM. A Kriging model is described
by the following equation [20,21]:

y ≈MK(x) = βT f (x) + σ2Z(x, w) (1)

where y = M(x) is the output data and βT f (x) and σ2 are the mean and variance of the Gaussian
process, respectively. Z(x, w) is a zero mean, unit variance, stationary Gaussian process, which is
characterized by a correlation function R with hyper-parameters θ.

Given X = {x1, x2, · · · , xn}, then y =
{
MK(x1), MK(x2), · · · , MK(xn)

}T
, and the calculation of

prediction MK(x) in the point x is based on the Gaussian properties of the process.
The Gaussian assumption states that the vector formed by the true model responses, y and the

prediction,
^
Y(x) has a joint Gaussian distribution defined by [22]: ^

Y(x)
y

 ∼ NN+1

({
f T(x)β

Fβ

}
, σ2

{
1 rT(x)

r(x) R

})
(2)

where F is the information matrix of generic terms: Fi j = f j(xi), i = 1, · · · , N, j = 1, · · · , P; r(x) is the
vector of cross-correlations between the prediction point x and each one of the observations whose
terms read: ri = R(x, xi;θ), i = 1, · · · , N and R is the correlation matrix whose terms are written as:

Ri j = R(x, xi;θ), i, j = 1, · · · , N. (3)

Consequently, the mean and variance of the Gaussian random variate
^
Y(x) can be calculated as [23]:

σ2
^
Y
(x) = σ2(1− rT(x)R−1r(x) + uT(x)(FTR−1F)

−1
u(x)) (4)
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β = (FTR−1F)
−1

FTR−1y. (5)

The generalized least-square estimate of the underlying regression problem can be
expressed as [24]:

u(x) = FTR−1r(x) − f (x). (6)

Another useful corollary of the Gaussian assumption is that:

^
Y(x) ∼ N(µ^

Y
(x), σ2

^
Y
(x)). (7)

Thus,

P
[

^
Y(x) ≤ t

]
= φ

 t− µ^
Y
(x)

σ^
Y
(x)

 (8)

where φ(·) denotes the Gaussian cumulative density function. Based on the above equation,
the confidence intervals on the predictor can be calculated by Equation (9) with probability 1− α.

^
Y(x) ∈

[
µ^

Y
(x) −φ−1

(
1−
α
2

)
σ^

Y
(x),µ^

Y
(x) + φ−1

(
1−
α
2

)
σ^

Y
(x)

]
. (9)

In order to create the Kriging surrogate model and perform it to provide precise prediction,
the functional basis of the Kriging trend should be selected first, and then the appropriate correlation
function R(x, x′;θ) is chosen. If the hyper-parameters θ and the Gaussian process variance σ2 are
unknown, then this involves setting up an optimization problem and solving it. Using the optimal
value of θ, the rest of the unknown Kriging parameters (σ2, β) can be calculated.

2.3. Interference Reduction in Settlement Surveillance Sensor

The interference reduction in the settlement surveillance sensor strongly depends on the original
database of the finite element computation for the natural frequencies of the transmission tower
structure. The parameters corresponding with the settlement of the transmission tower and the natural
frequencies are related to the Kriging surrogate model by implicit expression. By the Kriging surrogate
model, the input signals provided by the sensors installed in the transmission tower are filtered, and the
interference signals are effectively reduced to identify the settlement. Then, real time safety surveillance
of the transmission tower is successfully implemented. The process of interference reduction in the
settlement surveillance sensor is shown in Figure 2.

Due to the satisfied accuracy and feasibility, and the computational cost saving compared with
the finite element method, the Kriging surrogate model is chosen for interference reduction in the
settlement surveillance sensor. The uncertainty and randomness of the settlement in the transmission
tower are propagated as that in the real situation. A number of 1000 stochastic samples of the
transmission tower with the settlement are simulated by the finite element model. The records of the
transmission tower settlement and the corresponding natural frequencies in the five vibration modes
are shown in Figure 3. The results of the natural frequencies and related settlement of transmission
tower provide the useful original database for the Kriging surrogate model.
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3. Results and Discussion

Validation of Finite Element Model

For the validation of the transmission tower finite element model, the displacement and rotation
of the first order vibration mode are computed and presented in Figures 4 and 5. The X, Y and Z
directions in the finite element model of the transmission tower are marked in Figure 1. In Figure 4,
the displacement in the Z direction is more primary than that in the X and Y direction. However,
the rotation in the X direction is more substantial and closer to the sum vector result in Figure 5.
The results demonstrated in Figures 4 and 5 are quite true to the facts.

In addition, the displacement and rotation results of the transmission tower with settlement are
computed by the finite element method and revealed in Figures 6 and 7. Different from the transmission
tower without settlement, the settlement makes the natural frequencies of the transmission tower
obviously amplified. Furthermore, even though the displacement in the Z direction plays an essential
role in the sum vector result, the changes of the displacement in the X direction are evident in Figure 6
when compared with that in Figure 4. Besides, the most dangerous locations in the displacement in
the X direction move up in Figure 6a when the settlement happens. The modifications in the rotation
of the transmission tower caused by settlement are apparent in the Y and Z directions, as shown in
Figure 7. The rotation in the X direction is more dominant in the sum vector result, as shown in Figure 5.
The experimental test and numerical simulation in the reported literature [5] also prove that the X
direction is most sensitive in detecting the settlement of the transmission tower. The displacement
of the transmission tower in the X direction is obviously fluctuated after the settlement and can be
cited as the effective evidence for the identification and judgment of the foundation settlement. Thus,
the finite element model of the transmission towers is verified to analyze the settlement by the natural
frequencies and vibration modes.
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4. Settlement Identification

As explained by the schematic diagram of the interference reduction in the settlement surveillance
sensor in Figure 2, the Kriging surrogate model is performed to identify the settlement and effectively
reduce the interference in the settlement surveillance sensor. Based on the original database provided
by the finite element model computation, the implicit relationship between the natural frequencies
and the settlement are effectually created. When the natural frequencies of the transmission tower are
measured and recorded by the sensor, the settlement can be predicted and evaluated by the Kriging
surrogate model for the safety surveillance. The accuracy of the Kriging surrogate model for the
identification of the transmission tower settlement is tested and compared with the precise solution of
the finite element model, as shown in Figures 8 and 9.

In Figure 8, the differences between the Kriging surrogate model prediction and the precise results
of the transmission tower finite element model for the first five natural frequencies are demonstrated.
By comparison, it is obvious that the Kriging surrogate model provides more accurate predictions
in the low order vibration modes for transmission towers, as the relative errors in Figure 8a,b are
evidently smaller than that in Figure 8d,e. In addition, the prediction accuracy of the Kriging surrogate
model in the third vibration mode is more satisfied than that of the first two order natural frequencies.
The reasons for this phenomenon can be several possibilities. The better original database of finite
element results in the local interval can cause more accurate predictions of the Kriging surrogate
model in Figure 8c. The further confirmation is performed in the following. Even the differences
between the Kriging surrogate model predictions with the precise results have fluctuations, the relative
errors are smaller than 0.01 Hz for natural frequencies in the first two vibration modes. The sharp
peak or high plateau is not present in the low vibration modes. The evident oscillation is marked in
Figure 8d,e. The threshold to track the oscillation for the Kriging surrogate model prediction is when
the relative errors are continuously larger than 0.005 Hz. Thus, the low orders such as the first and
the second natural frequencies are useful to be tracked and recorded as the settlement reference for
transmission towers.
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To be more comprehensive, the settlement identifications of the Kriging surrogate model by the
inverse function are presented in Figure 9. For the normal implicit function of the Kriging surrogate
model, the input information is the settlement possibly happened in the transmission tower, while the
output results are the natural frequencies predicted by the Kriging surrogate model. On the contrary,
for the inverse implicit function, the input database of the Kriging surrogate model is the natural
frequencies of the transmission tower, while the predictive results are the settlement of foundation.
Based on the available natural frequencies tested and recorded by the surveillance sensor, the settlement
of the transmission tower is calculated by the Kriging surrogate model.

As shown in Figure 9a,b, the settlement identification of the Kriging surrogate model is satisfied in
the first two vibration modes. However, different from the results in Figure 8c, the merits of the Kriging
surrogate model in the third vibration mode disappear in Figure 9d for settlement identification.
Different from the threshold in Figure 9, the oscillation for the settlement results for the transmission
tower is marked with the red circle when the value of the relative error is larger than 0.025 m. In addition,
even the Kriging surrogate model offers better results based on the high order natural frequencies in
the local intervals, and the instability in Figure 9e is unneglectable. The reasons for the selection of the
low order natural frequencies to identify the settlement of transmission tower include two aspects.
On the one hand, the natural frequencies of low order vibration modes before and after settlement
are obvious both in experiments and numerical simulation. On the other hand, the instability and
fluctuation in the natural frequencies of high order vibration modes make the settlement identification
lack accurate and convergent results. Therefore, compared with the high order natural frequencies,
the first two order natural frequencies provided by the surveillance sensor are more robust to the
settlement prediction of the Kriging surrogate model.

Interference Reduction

The first two order natural frequencies of the transmission tower are verified to be effective
references recorded by the surveillance sensor for settlement identification. The capacity of interference
reduction in the Kriging surrogate model is measured by taking the uncertainties of the material
property parameters into consideration.

According to the real operation situation of transmission towers, the uncertainties and fluctuations
in the material parameters, such as the Young’s modulus, Poisson’s ratio and physical density,
are propagated in the finite element model. The signals received by the settlement surveillance sensor
are interfered with by the factors corresponding to the changes and uncertainties in the material
properties of transmission towers. The Kriging surrogate model is used to identify and filter the
interference. The filtration percentage discussed in this study is the percentage of uncertain interference
identified by the Kriging surrogate model for the transmission tower. The calculation of filtration
percentage is based on the statistical mathematics. According to the two different order natural
frequencies of the transmission tower, the prediction results of the settlement by the Kriging surrogate
model form the sampling space for the interference identification. The predictive results of the Kriging
surrogate model present the discrepancy or fluctuation if there are interferences and uncertainties in
the system. The settlement discrepancy between two order natural frequencies is tracked and recorded
for interference filtration.

By the Kriging surrogate model proposed in this study, the filtration percentage results of
interference reduction for the settlement surveillance sensor are presented in Figure 10. Each subfigure
selects two order natural frequencies to jointly calculate the filtration percentage. For example, F1–F2
means the filtration percentage when taking the first and second order natural frequencies into
consideration. Firstly, in Figure 10b–d, it can be found that the filtration percentages by the Kriging
surrogate model are very stable and satisfied, and the values stay above 92% even if the accuracy
of the Kriging surrogate model decreases. Thus, the first and the third order (F1–F3), the first and
the fourth order (F1–F4) and the first and the fifth order (F1–F4) natural frequencies are the satisfied
and robust signals used to identify and filter the interference in the settlement surveillance sensor.
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In addition, the second and the third order (F2–F3), the second and the fourth order (F2–F4) and
the second and the fifth order (F2–F4) natural frequencies, as shown in Figure 10e–g, can also reach
as high as 92% of interference reduction, but with small performance degradation along with the
accuracy decline of the Kriging surrogate model. The third and the fourth order (F3–F4) natural
frequencies offered by the settlement surveillance sensor are not decent references to identify or judge
the interference. Finally, according to the results in Figure 10a,i,j, with the accuracy reduction of the
Kriging surrogate model, the filtration percentage results have evident deterioration in the settlement
surveillance sensor. However, the Kriging surrogate model still provides 90% of filtration percentage
in the cases of Figure 10a,i,j. Therefore, the Kriging surrogate model provides a satisfied and robust
interference filtration capacity for the settlement surveillance sensor of the transmission tower.Appl. Sci. 2019, 9, x FOR PEER REVIEW 13 of 15 
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Figure 10. Filtration percentage results of interference reduction by the Kriging surrogate model for
the settlement surveillance sensor (F1, F2, F3, F4 and F5 are the first five order natural frequencies,
respectively). (a): F1-F2; (b): F1-F3; (c): F1-F4; (d): F1-F5; (e): F2-F3; (f): F2-F4; (g): F2-F5; (h): F3-F4;
(i): F3-F5; (j): F4-F5.

Furthermore, the Kriging surrogate model also has time-saving and high-efficiency merits in
settlement surveillance sensors. The finite element model for natural frequency computation takes
more time, is expensive and lacks the inverse judgment ability to identify the complicated interference.
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Besides, the prediction and identification for the 5000 sample signals of natural frequencies form
the settlement surveillance sensor only cost 20.44 s. The proposed Kriging surrogate model is to be
embedded in the safety surveillance system of transmission tower for interference reduction in the
settlement identification, instead of replacing the finite element model. The data of natural frequencies
of the transmission tower in the real system are collected and transferred by modal identification
sensor rather than from the finite element model in the simulation. Furthermore, the rapid sample
treatment speed and high computational efficiency also make the Kriging surrogate model very
competitive in modal identification sensors. Therefore, the Kriging surrogate model not only provides
the satisfied prediction accuracy and robust interference filtration, but also is very competitive in
computational costs.

5. Conclusions

In this paper, a Kriging surrogate model is proposed to effectively reduce the interference in the
settlement surveillance sensor for the transmission tower. According to the comparison and analysis,
the results show that:

1. The displacement of transmission towers in the X direction is obviously fluctuated after the
settlement and can be cited as the effective evidence for the foundation settlement.

2. Based on the original database of the finite element model of transmission towers, the Kriging
surrogate model provides accurate prediction for the natural frequencies and settlement.

3. Compared with the high order natural frequencies, the first two order natural frequencies
provided by the surveillance sensor are more robust for the settlement prediction by the Kriging
surrogate model.

4. The Kriging surrogate model performs the satisfied and robust interference filtration as high as
92% for the settlement surveillance sensor of the transmission tower.

5. The merits of computational costs and high efficiency in the Kriging surrogate model make this
model feasible and competitive in settlement surveillance sensors.

Author Contributions: Conceptualization, J.S. and L.C.; methodology, L.C.; software, L.C.; validation, J.S. and
L.C.; formal analysis, J.S and L.C.; investigation, L.C.; resources, E.S.d.C; data curation, L.C.; writing—original draft
preparation, J.S.; writing—review and editing, L.C.; visualization, J.S; supervision, E.S.d.C.; project administration,
E.S.d.C.; funding acquisition, E.S.d.C.

Funding: This research was funded by the National Natural Science Foundation of China Grant Nos. 61801247
and 61901235.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Couceiro, I.; Paris, J.; Martinez, S.; Colominas, I.; Navarrina, F.; Casteleiro, M. Structural optimization of
lattice steel transmission towers. Eng. Struct. 2016, 117, 274–286. [CrossRef]

2. Guo, H.Y.; Li, Z.L. Structural topology optimization of high-voltage transmission tower with discrete
variables. Struct. Multidiscip. Optim. 2011, 43, 851–861. [CrossRef]

3. Li, X.; Zhang, W.; Niu, H.; Wu, Z.Y. Probabilistic capacity assessment of single circuit transmission tower-line
system subjected to strong winds. Eng. Struct. 2018, 175, 517–530. [CrossRef]

4. Savory, E.; Parke, G.A.; Zeinoddini, M.; Toy, N.; Disney, P. Modelling of tornado and microburst-induced
wind loading and failure of a lattice transmission tower. Eng. Struct. 2001, 23, 365–375. [CrossRef]

5. Huang, X.; Zhao, Y.; Zhao, L.; Yang, L. A Method for Settlement Detection of the Transmission Line Tower
under Wind Force. Sensors 2018, 18, 4355. [CrossRef] [PubMed]

6. Malhara, S.; Vittal, V. Mechanical State Estimation of Overhead Transmission Lines Using Tilt Sensors.
IEEE Trans. Power Syst. 2010, 25, 1282–1290. [CrossRef]

7. Xia, Y.; Zhang, P.; Ni, Y.-Q.; Zhu, H.-P. Deformation monitoring of a super-tall structure using real-time strain
data. Eng. Struct. 2014, 67, 29–38. [CrossRef]

http://dx.doi.org/10.1016/j.engstruct.2016.03.005
http://dx.doi.org/10.1007/s00158-010-0561-3
http://dx.doi.org/10.1016/j.engstruct.2018.08.061
http://dx.doi.org/10.1016/S0141-0296(00)00045-6
http://dx.doi.org/10.3390/s18124355
http://www.ncbi.nlm.nih.gov/pubmed/30544698
http://dx.doi.org/10.1109/TPWRS.2009.2038703
http://dx.doi.org/10.1016/j.engstruct.2014.02.009


Appl. Sci. 2019, 9, 3343 13 of 13

8. Bang, H.-J.; Kim, H.-I.; Lee, K.-S. Measurement of strain and bending deflection of a wind turbine tower
using arrayed FBG sensors. Int. J. Precis. Eng. Manuf. 2012, 13, 2121–2126. [CrossRef]

9. Huynh, T.-C.; Park, J.-H.; Kim, J.-T. Structural identification of cable-stayed bridge under back-to-back
typhoons by wireless vibration monitoring. Measurement 2016, 88, 385–401. [CrossRef]

10. Ding, K. Application of Wavelet Analysis of Curvature Modal to Damage Detection of Bridges. Noise Vib. Control
2013, 33, 131–135.

11. Ou, Y.W.; Eleni, N.C.; Vasilis, K.D.; Minas, D.S. Vibration-based experimental damage detection of a
small-scale wind turbine blade. Struct. Health Monit. 2017, 16, 79–96. [CrossRef]

12. Iwaniec, J.; Iwaniec, M.; Kasprzyk, S. Transverse vibrations of transmission tower of variable geometrical
structure. J. Low Freq. Noise Vib. Act. Control. 2019, 38. [CrossRef]

13. El Damatty, A.; Elawady, A. Critical load cases for lattice transmission line structures subjected to downbursts:
Economic implications for design of transmission lines. Eng. Struct. 2018, 159, 213–226. [CrossRef]

14. Cai, Y.; Xie, Q.; Xue, S.; Hu, L.; Kareem, A. Fragility modelling framework for transmission line towers under
winds. Eng. Struct. 2019, 191, 686–697. [CrossRef]

15. Abd-Elaal, E.-S.; Mills, J.E.; Ma, X. A review of transmission line systems under downburst wind loads.
J. Wind. Eng. Ind. Aerodyn. 2018, 179, 503–513. [CrossRef]

16. Hamzah, N.H.; Usman, F. Geospatial analysis of wind velocity to determine wind loading on transmission
tower. Wind Struct. 2019, 28, 381–388.

17. Zhou, Q.; Zhang, H.; Ma, B.; Huang, Y. Wind loads on transmission tower bodies under skew winds with
both yaw and tilt angles. J. Wind. Eng. Ind. Aerodyn. 2019, 187, 48–60. [CrossRef]

18. Darwish, M.; El Damatty, A. Critical Parameters and Configurations Affecting the Analysis and Design of
Guyed Transmission Towers under Downburst Loading. Pr. Period. Struct. Des. Constr. 2017, 22, 4016017.
[CrossRef]

19. Liu, Z. General Design of Power Transmission and Transformation Project of State Grid Corporation of China; China
Electric Power Press: Beijing, China, 2011; Volume 50.

20. Marelli, S.; Sudret, B. UQLab: A Framework for Uncertainty Quantification in Matlab. In Proceedings
of the Second International Conference on Vulnerability, Risk Analysis and Management (ICVRAM2014),
Liverpool, UK, 13–16 July 2014; pp. 2554–2563.

21. Santner, T.J.; Williams, B.J.; Notz, W.I. The Design and Analysis of Computer Experiments; Springer:
Berlin/Heidelberg, Germany, 2003.

22. Shi, J.; Chu, L.; Braun, R. A Kriging Surrogate Model for Uncertainty Analysis of Graphene Based on a Finite
Element Method. Int. J. Mol. Sci. 2019, 20, 2355. [CrossRef] [PubMed]

23. Chu, L.; Shi, J.; De Cursi, E.S. Kriging Surrogate Model for Resonance Frequency Analysis of Dental Implants
by a Latin Hypercube-Based Finite Element Method. Appl. Bionics Biomech. 2019, 2019, 1–14. [CrossRef]
[PubMed]

24. Lataniotis, C.; Marelli, S.; Sudret, B. UQLAB User Manual—Kriging (Gaussian Process Modelling); Report
UQLab-V1.2-105; Chair of Risk, Safety & Uncertainty Quantification, ETH Zurich: Zurich, Switzerland, 2019.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s12541-012-0281-2
http://dx.doi.org/10.1016/j.measurement.2016.03.032
http://dx.doi.org/10.1177/1475921716663876
http://dx.doi.org/10.1177/1461348418781871
http://dx.doi.org/10.1016/j.engstruct.2017.12.043
http://dx.doi.org/10.1016/j.engstruct.2019.04.096
http://dx.doi.org/10.1016/j.jweia.2018.07.004
http://dx.doi.org/10.1016/j.jweia.2019.01.013
http://dx.doi.org/10.1061/(ASCE)SC.1943-5576.0000301
http://dx.doi.org/10.3390/ijms20092355
http://www.ncbi.nlm.nih.gov/pubmed/31085983
http://dx.doi.org/10.1155/2019/3768695
http://www.ncbi.nlm.nih.gov/pubmed/31093299
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Problem Formulation and Theoretical Methods 
	Steel Transmission Towers 
	Kriging Surrogate Model 
	Interference Reduction in Settlement Surveillance Sensor 

	Results and Discussion 
	Settlement Identification 
	Conclusions 
	References

